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Abstract: The approach of graph-based diffusion tensor imaging (DTI) networks has been used to 

explore the complicated structural connectivity of brain aging. In this study, the changes of DTI 

networks of brain aging were quantitatively and qualitatively investigated by comparing the 

characteristics of brain network. A cohort of 60 volunteers was enrolled and equally divided into 

young adults (YA) and older adults (OA) groups. The network characteristics of critical nodes, path 

length (Lp), clustering coefficient (Cp), global efficiency (Eglobal), local efficiency (Elocal), strength 

(Sp), and small world attribute (σ) were employed to evaluate the DTI networks at the levels of 

whole brain, bilateral hemispheres and critical brain regions. The correlations between each network 

characteristic and age were predicted, respectively. Our findings suggested that the DTI networks 

produced significant changes in network configurations at the critical nodes and node edges for the 

YA and OA groups. The analysis of whole brains network revealed that Lp, Cp increased (p < 0.05, 

positive correlation), Eglobal, Elocal, Sp decreased (p < 0.05, negative correlation), and σ unchanged (p 

≥ 0.05, non-correlation) between the YA and OA groups. The analyses of bilateral hemispheres and 

brain regions showed similar results as that of the whole-brain analysis. Therefore the proposed 

scheme of DTI networks could be used to evaluate the WM changes of brain aging, and the network 

characteristics of critical nodes exhibited valuable indications for WM degeneration. 
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1. Introduction 

Brain aging is mainly characterized by cognitive decline during the normal neurodegenerative 

process [1]. It has caused serious social burdens and aroused widespread concern. The magnetic 

resonance imaging (MRI) neuroimaging is a promising technique to investigate the neural basis of 

cognitive impairments. Different from conventional MRI, diffusion tensor imaging (DTI) could 

reflect non-random motion of water molecules in a variety of diffusion measures [2] and even 

noninvasively reconstruct white matter (WM) fiber tracts in the human brain in vivo [3,4]. It has 

become a novel imaging modality for evaluating brain WM [5,6]. Especially, the tract characteristics 

derived from DTI have been widely used in clinical to study brain development and neurological 

diseases [7–10].  

In general, DTI WM tract characteristics were divided into three types: geometry, diffusion, and 

networks or connectomes. The geometry characteristics of WM tracts, including fiber length, tract 

volume, and fiber number, describe the morphological properties of reconstructed fiber tracts [11,12]. 

While diffusion characteristics of WM tracts represent the water diffusion properties of neural fibers 

with the metrics of fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial 

diffusivity (RD) [13–16]. Besides, the deduced DTI network characteristics have been used to 

describe the changes of DTI brain networks, and have become a hot spot of brain research [17]. 

Complex network analyses originated from graph theory have been proved to be able to reliably 

quantify brain functional and structural networks with certain neurobiologically measures [18]. The 

information about of the DTI structural networks could promote the understanding of brain abnormal 

development, traumatic brain injury, and neurodegenerative diseases [19]. Also, the performance of 

DTI networks was validated, and the investigation of DTI network characteristics demonstrated 

reasonable explanations for the evaluation of binary and weighted DTI networks [20].  

A series of neuroscientific investigations have recently identified age-related abnormalities in 

brain networks. In the literature, a preliminary study revealed that the four DTI network efficiency 

measures, i.e., native global efficiency (Enative), normalized global efficiency (Enorm), integrated 

global efficiency (Eint) and local efficiency (Eloc), were negatively correlated with age, and these 

network measures showed the same decreased trend with brain aging [21]. The network-based 

statistical analysis found that there existed disrupted WM structural connectivity between significant 

brain regions for young-old and middle-aged groups during the brain aging process [22]. Moreover, 

the global DTI network properties, such as network strength, cost, topological efficiency, and 

robustness, followed an inverted U-shaped trajectory with a peak age around the third decade, and 

different brain regions had heterogeneous trajectories across the human lifespan [23]. According to 

the hub nodes of brain connectivity, it showed close correlation with the anatomy of brain disorders, 

and the highly connected hub nodes were considered functionally valuable because their topological 

centrality supported integrative processing and adaptive behavior [24]. In addition, two major 

approaches, hub measurement and vulnerability measurement had been used to detect critical nodes 

within brain networks and to determine the relationships between the identified critical nodes of DTI 

networks [25]. Generally, the previous studies of brain aging via DTI networks showed varied 
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reliabilities and capabilities. However, the above approaches didn’t fully consider the complicated 

changes of DTI networks during brain aging. Moreover, the consistency of results still need to be 

detailedly addressed due to the lack of gold standard data set as well as the implemented approaches. 

In our study, one improved scheme of DTI brain networks was proposed and the DTI brain 

networks were quantitatively and qualitatively evaluated for the two groups of young adults (YA) 

and old adults (OA). The novelties of our method was summarized as follows: 1) The analyses of 

DTI brain networks were given for a comprehensive evaluation at the three aspects of critical nodes, 

node edges and network characteristics for the YA and OA groups, especially for the analyses of 

network characteristics across the three levels of the whole brain, bilateral hemispheres and critical 

brain regions; 2) The correlations between each network characteristic and age were further 

predicted, respectively. Here, the network characteristics of path lengths (Lp), clustering coefficient 

(Cp), global efficiency (Eglobal), local efficiency (Elocal), strength (Sp), and small world attribute (σ) 

were measured. This would provide insights into the normal WM aging of the human brain. 

2. Materials and methods 

2.1. Materials 

The retrospective study has complied with the standard guidelines of our local ethics committee. 

With permission, the requirement for written informed consent was waived. With the announcement 

of eligibility criteria in public, the potential participants were recruited for participating in the cohort 

study. The enrolled criteria were listed as follows: 1) right-handedness; 2) no symptoms or signs of 

any neurological diseases; 3) no history of craniocerebral surgery or trauma, hypertension, or heart 

disease; 4) no contraindications to MRI examination, such as the implantation of a pacemaker, 

non-removable denture and other metal implants in the body; 5) no impairment of brain; 6) no brain 

lesions verified by MRI scans. Moreover, the classification of young and old by age according to the 

World Health Organization and the National Bureau of Statistics of China was referenced [26]. And, 

the samples were verified for normal distributions and variance homogeneities or not. If not, the 

abnormal sample would be excluded from our study. A total of 60 healthy adults was ultimately 

included and divided into two groups of YA (14 men and 16 women; age range, 21–30 years; median 

age, 23 years) and OA (12 men and 18 women; age range, 60–72 years; median age, 64 years) and 

the demographics of the subjects are listed in Table 1. 

Table 1. Characteristics of the subjects (mean ± SD).  

Groups YA OA p 

No. of Subjects 30 30 — 

Sex (female/male) 14/16 12/18 0.604 

Age (year) 26.20 ± 6.94 64.27 ± 3.02 0.000* 

Education (year) 16.43 ± 0.46 15.27 ± 3.89 0.635 

* p < 0.05. 

2.2. MR scans 

All MRIs included 3D fat-suppressed post-contrast T1-weighted volumetric isotropic turbo 
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spin-echo (SE) and DTI acquisitions were performed using a 1.5 T GE Signa MR system 

(Department of Radiology, Shanghai Gamma Knife Hospital, Fudan University, Shanghai, China), 

with a standard 6-channel head coil. The imaging parameters of conventional SE sequence were 

mainly listed as follows: axial T1-weighted imaging (repetition time (TR)/echo time (TE) = 880 / 

7.864 msec; field of view (FOV) = 240 × 240 mm2; matrix size = 224 × 224; section thickness = 3 

mm, number of signal averages = 1, acquisition time = 1 minute 33 seconds. Accordingly, the 

imaging parameters of DTI sequence were also as follows: TR/TE = 10000/116.9 msec; b factors = 

1000 s/mm2; diffusion gradient = 15; section thickness = 3 mm with no gaps; FOV = 240 × 240 mm2; 

matrix = 128 × 128, number of signal averages = 1, acquisition time per direction = 1 minute 34 

seconds. The transverse views were acquired for all scans. 

2.3. DTI network construction 

The construction of DTI network pipeline was composed by three steps: data prepossessing, 

deterministic tractography and network construction. And it was performed using PANDA software 

(v.1.3.1; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 

Beijing, China, https: //www.nitrc.org/projects/panda/) [27].  

2.3.1. Prepossessing 

The data was prepossessed via data format conversion, sampling resolution, skull removal, cropping 

gap, local diffusion homogeneity, normalization, smoothing, and eddy current correction [28–30].  

2.3.2. Tracking of WM fibers 

The algorithm of fiber assignment by continuous tracking (FACT) was used to reconstruct WM 

tracts of the whole brain. The fiber tracking was initially tracked from the defined seed points along 

dual orientations with a fixable step size [31]. The termination criteria were as follows: the threshold 

of tracking angle was 45°, the threshold of FA was 0.2, and the interpolation was spline filter [32].  

2.3.3. Construction of DTI network 

In our experiment, undirected weighted DTI networks were constructed by defined nodes and 

node edges. Here, the nodes represent the corresponding brain regions and the node edges stand for 

the connections between two neighboring brain regions. The pipeline of network construction 

consisted of: 1) with the WM labeling atlas of rICBM_DTI, the individual T1 weighted images were 

co-registered to the space of the Montreal Neurological Institute (MNI); 2) the automated anatomical 

labeling (AAL) atlas of MNI space was inversely transformed to the standard space; 3) 90 cortical 

regions parcellated by AAL atlas were defined as brain network nodes [33]; 4) node edges were 

connected if the number of fibers between nodes was greater than three; 5) each element of the 90 × 90 

network connection matrix was computed by multiplying the mean FA by the number of fibers; 6) 

with the defined nodes, node edges and network connection matrix, DTI network was constructed. 
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2.4. DTI network characteristics 

As usual complex network analysis of graph theory, six network characteristics of Lp, Cp, Eglobal, 

Elocal, Sp and σ were evaluated [34]. Here, the DTI brain network characteristics of critical nodes, Lp, 

Cp, Eglobal, Elocal, Sp and σ, were defined as follows [35–38]: 1) critical nodes were selected by nodes 

with greater than averaged nodal betweenness centrality (BC); 2) Lp represented the shortest path 

length between nodes; 3) Cp indicated the degree of node clustering; 4) Eglobal quantified the 

efficiency of parallel information transfer for the whole brain network; 5) Elocal denoted the mean 

value of the sums of neighboring sub-networks from Eglobal(i); 6) Sp represented the extent of 

connectivity of the whole brain network was the averaged sums of edge weights Sp(i); 7) σ, small 

world attribute, reflected the transmission efficiency of brain networks. 

2.5. Experimental setup 

The DTI network characteristics of Lp, Cp, Eglobal, Elocal, Sp, and σ were compared across the 

three levels of the whole brain, bilateral hemispheres, and critical brain regions for YA and OA 

groups. In our study, the network characteristics were measured at the maximum sparse degree with 

the threshold of 0.4. If the sparse degree above 0.4, the σ would decrease below 1.1 and the network 

would lose the attribute of small world [39]. During the brain regions analyses, four network 

characteristics (Lp, Cp, Eglobal, and Elocal) of critical nodes were evaluated. Here, the network 

characteristics of Lp, Cp, Eglobal, Elocal, Sp, and σ were measured by the software of GRETNA (v.2.0; 

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 

China, https: //www.nitrc.org/projects/gretna) [40]. The nodes, node edges, and brain networks were 

visualized by BrainNet Viewer (v.1.7; State Key Laboratory of Cognitive Neuroscience and Learning, 

Beijing Normal University, Beijing, China, http: //www.nitrc.org/projects/bnv/) [41]. And the critical 

nodes and whole network configurations were visually inspected by two experienced radiologists.  

2.6. Statistical analyses 

For all network analysis, the independent sample t-tests were conducted to evaluate the 

statistical differences of network characteristics between the YA and OA groups, respectively. As the 

most stringent multiple hypothesis test correction method, the Bonferroni correction was used to 

control the family wise error rate, a two-tailed probability value of p < 0.05 was considered 

statistically significant. Moreover, the correlations between network characteristics and age were 

conducted by Pearson correlation. The correlation coefficient of r was used to define the degree of 

positive or negative correlation across the whole cohort (YA and OA). It was a linear correlation with 

the scope ranging from -1 to 1. Larger absolute r values indicate stronger correlation and vice versa. 

Here, 0 is the weakest correlation. The SPSS software (v.19.0; IBM Corp., Armonk, NY, USA) was 

used for all statistical analyses.  

3. Results 

3.1. Qualitative evaluation 
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3.1.1. Comparison of critical nodes in DTI networks 

In total, there were 15 critical nodes including 1 critical node of Fusiform gyrus Left (FFG.L) 

for the YA group, and 1 critical node of Superior temporal gyrus Right (STG.R) for the OA group, 13 

common critical nodes of Precuneus Left (PCUN.L), Precuneus Right (PCUN.R), Calcarine fissure 

and surrounding cortex Left (CAL.L), Calcarine fissure and surrounding cortex Right (CAL.R), 

Middle temporal gyrus Left (MTG.L), Middle temporal gyrus Right (MTG.R), Median cingulate  

and paracingulate gyri Left (DCG.L), Median cingulate and paracingulate gyri Right (DCG.R), 

Anterior cingulate and paracingulate gyri Left (ACG.L), Anterior cingulate and paracingulate gyri 

Right (ACG.R), Lingual gyrus Left (LING.L), Lingual gyrus Right (LING.R), Fusiform gyrus Right 

(FFG.R) for the YA and OA groups (Table 2).  

Among the 15 critical nodes, 7 nodes (PCUN.R, MTG.L, MTG.R, DCG.R, ACG.L, ACG.R, and 

FFG.L) become smaller, and another 8 nodes (PCUN.L, CAL.L, CAL.R, DCG.L, LING.L, LING.R, 

FFG.R, and STG.R) showed no significant changes. The critical nodes were mainly located in the 

prefrontal and occipital lobes, and part in the temporal lobe (Figure 1).  

Table 2. The common and different critical nodes for the YA and OA groups. 

Groups Common critical nodes Different critical nodes 

YA PCUN.L, PCUN.R, CAL.L, CAL.R, MTG.L, MTG.R, DCG.L, 

DCG.R, ACG.L, ACG.R, LING.L, LING.R, FFG.R 

FFG.L 

OA STG.R 

 

Figure 1. Comparison of critical nodes in DTI networks between the YA and OA groups. 

3.1.2. Comparison of node edges in DTI networks 

DTI networks of YA and OA groups represented similar node edges in network configurations 

(Figure 2). Compared to the DTI networks of YA, the DTI networks of OA demonstrated weak 

connections of node edges at the frontal and occipital lobes, as indicated by blue arrows. 
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Figure 2. Comparison of node edges in DTI networks between the YA and OA groups. 

(Red for strong edge connection, gray for weak edge connection.) 

3.2. Quantitative evaluation 

3.2.1. Comparison of network characteristics of the whole brain 

The whole-brain network characteristics measured are listed in Table 3. It showed that the 

network characteristics of Lp, Cp increased (p < 0.05, positive correlation), and Eglobal, Elocal, Sp 

decreased (p < 0.05, negative correlation). While there were no significant changes of δ between the 

YA and OA groups (p ≥ 0.05, non-correlation). 

Table 3. Comparison of DTI network characteristics of whole brain between the YA and 

OA groups. 

Groups Lp Cp Eglobal Elocal Sp σ 

YA 0.064 ± 0.009 0.036 ± 0.005 15.831 ± 2.259 28.069 ± 3.855 283.099 ± 41.925 4.165 ± 0.304 

OA 0.072 ± 0.011 0.039 ± 0.006 14.187 ± 2.232 25.258 ± 3.933 237.773 ± 37.402 4.066 ± 0.286 

p 0.004* 0.036* 0.007* 0.006* 0.017* 0.200 

r 0.380* 0.283* -0.359* -0.353* -0.318* -0.178 

*p < 0.05, r: Pearson correlation coefficient. 

3.2.2. Comparison of network characteristics of bilateral hemispheres 

Accordingly, the DTI network characteristics of bilateral hemispheres are listed in Table 4. It 

was clear that the Lp increased for bilateral hemispheres (p < 0.05, positive correlation), Eglobal and 

Elocal decreased for bilateral hemispheres (p < 0.05, negative correlation), Cp increased for right 

hemisphere (p < 0.05, positive correlation). While there were no significant changes for Cp of the left 

hemisphere between the YA and OA groups (p ≥ 0.05, non-correlation).
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Table 4. Comparison of DTI network characteristics of bilateral hemispheres between the YA and OA groups. 

Groups 
Left Hemisphere Right Hemisphere 

Lp Cp Eglobal Elocal Lp Cp Eglobal Elocal 

YA 0.068 ± 0.010 0.036 ± 0.006 16.000 ± 2.260 28.350 ± 3.930 0.069 ± 0.010 0.035 ± 0.006 15.680 ± 2.290 27.780 ± 4.128 

OA 0.080 ± 0.019 0.039 ± 0.007 14.120 ± 2.200 24.980 ± 3.780 0.077 ± 0.013 0.039 ± 0.007 14.250 ± 2.370 25.530 ± 4.433 

p 0.001* 0.065 0.002* 0.001* 0.010* 0.040* 0.022* 0.046* 

r 0.415* 0.262* -0.404* -0.416* 0.336* 0.266* -0.303* -0.265* 

*p < 0.05, r: Pearson correlation coefficient. 

Table 5. Comparison of DTI network characteristics of critical nodes between the YA and OA groups. 

Groups 
Lp Cp Eglobal Elocal 

YA OA p r YA OA p r YA OA p r YA OA p r 

ACG.L 0.05 ± 0.01 0.06 ± 0.01 * * 0.03 ± 0.01 0.03 ± 0.01 - - 20.01 ± 3.76 16.81 ± 2.93 * * 18.14 ± 3.83 15.69 ± 3.71 * * 

ACG.R 0.06 ± 0.01 0.06 ± 0.01 * * 0.03 ± 0.01 0.03 ± 0.01 - - 18.93 ± 3.46 16.52 ± 3.06 * * 19.37 ± 4.94 15.54 ± 3.68 * * 

DCG.L 0.05 ± 0.01 0.06 ± 0.01 * * 0.03 ± 0.01 0.03 ± 0.01 - - 20.65 ± 3.80 17.74 ± 4.11 * * 19.61 ± 7.05 15.42 ± 6.41 * * 

DCG.R 0.05 ± 0.01 0.06 ± 0.01 * * 0.03 ± 0.01 0.02 ± 0.01 - - 21.26 ± 3.69 18.25 ± 4.16 * * 21.22 ± 6.10 17.40 ± 5.67 * * 

CAL.L 0.05 ± 0.01 0.06 ± 0.01 * * 0.03 ± 0.01 0.03 ± 0.01 - - 18.89 ± 3.08 17.24 ± 3.10 * * 25.13 ± 5.56 19.46 ± 4.96 * * 

CAL.R 0.05 ± 0.01 0.06 ± 0.01 * * 0.03 ± 0.01 0.03 ± 0.01 - - 19.69 ± 3.72 17.62 ± 3.39 * * 25.83 ± 5.13 23.15 ± 6.73 - - 

LING.L 0.05 ± 0.01 0.06 ± 0.01 * * 0.03 ± 0.01 0.03 ± 0.01 - - 18.93 ± 2.76 16.68 ± 2.67 * * 25.59 ± 5.04 21.65 ± 5.46 * * 

LING.R 0.05 ± 0.01 0.06 ± 0.01 * * 0.03 ± 0.01 0.04 ± 0.01 - - 19.14 ± 3.27 17.42 ± 3.36 * * 26.31 ± 7.07 23.37 ± 5.66 - - 

FFG.R 0.05 ± 0.01 0.05 ± 0.01 * * 0.04 ± 0.01 0.05 ± 0.01 * * 21.32 ± 3.40 19.34 ± 3.40 * * 25.26 ± 7.03 21.80 ± 5.62 * * 

PCUN.L 0.05 ± 0.01 0.06 ± 0.02 * * 0.03 ± 0.01 0.03 ± 0.01 - - 19.33 ± 3.42 17.38 ± 3.95 * * 23.20 ± 4.89 19.73 ± 4.58 * * 

PCUN.R 0.05 ± 0.01 0.06 ± 0.01 * * 0.02 ± 0.01 0.02 ± 0.01 - - 20.84 ± 3.59 18.04 ± 4.14 * * 19.79 ± 4.85 17.53 ± 4.45 - * 

MTG.L 0.05 ± 0.01 0.06 ± 0.01 * * 0.04 ± 0.01 0.04 ± 0.01 - - 22.26 ± 3.29 18.77 ± 3.51 * * 23.95 ± 5.13 22.22 ± 5.20 - - 

MTG.R 0.05 ± 0.01 0.05 ± 0.01 * * 0.04 ± 0.01 0.04 ± 0.01 - - 21.51 ± 3.67 19.29 ± 3.41 * * 24.58 ± 6.98 24.36 ± 6.55 - - 

*p < 0.05, r: Pearson correlation coefficient.  
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3.2.3. Comparison of network characteristics of brain regions 

The network characteristics of the 13 critical nodes are listed in Table 5. It was evident that Lp 

increased (p < 0.05, positive correlation), Eglobal decreased (p < 0.05, negative correlation), Cp of 

FFG.R increased (p < 0.05, positive correlation), and Elocal of ACG.L, ACG.R, DCG.L, DCG.R, 

CAL.L, LING.L, FFG.R, and PCUN.R decreased (p < 0.05, negative correlation); other network 

characteristics showed no significant differences for the YA and OA groups (p ≥ 0.05). 

4. Discussion 

This study investigated the changes of DTI network characteristics across the whole brain, 

bilateral hemispheres, and specific brain regions for brain aging. Our study found that the brain 

networks showed distinct changes in network structures and information transmission capabilities. 

Our findings revealed that the networks of YA and OA groups had similar configurations except 

for 15 critical nodes. The changed critical nodes meant that the status of critical nodes could be 

altered during brain aging. The enlarged critical nodes represented the promotion of network status 

and vice versa. The analyses of network configuration proved that node edges also changed with 

brain aging. It could be explained that most microstructural changes of brain networks were 

observed in the prefrontal and temporal lobes accompanying by significant nonlinear changes for 

brain aging [23]. 

The increased Lp, Cp, and decreased Eglobal, Elocal, Sp across the whole brain demonstrated the 

decreased efficiency of information exchange and transmission with brain aging. The unchanged 

parameter σ suggested that the brain networks of YA and OA groups both kept small-world 

properties. It also meant that the DTI networks of OA still had the capability for information 

transformation. Similarly, the analyses of bilateral hemispheres showed almost the same trend as the 

whole brain analyses with the exception of the unchanged Cp of the left hemisphere for the YA and 

OA groups. It was correlated with the topological asymmetry of bilateral hemispheres, and the left 

hemisphere preserved more reliable network connectivity than the right hemisphere with brain 

aging [42]. The correlations between the DTI network characteristics and age were consistent with 

the comparison of network characteristics between groups. The brain topological structure was 

obviously damaged and accompanied by the declination in cognitive function. 

For critical brain regions, the measured network characteristics showed the same trend with the 

network analyses of the whole brain and bilateral hemisphere. This phenomenon hinted that some 

chosen critical nodes had consistent transmission capability [43]. While the increased Cp of FFG.R 

indicated that the reduction of the long-term fiber connections was obvious during brain aging [44]. 

During brain aging, the changes of Elocal of critical nodes, such as ACG.L, ACG.R, DCG.L, DCG.R, 

CAL.L, LING.L, FFG.R, and PCUN.R, were different. The decrease of Elocal stands for the reduction 

in transmission efficiency of local networks. 

The properties of network topology had close relations with WM changes. Once a previous 

study demonstrated that the loss of fiber connections between brain regions would lead to the 

decreased functional connectivity [45,46]. Brain aging was closely related to the disruptions of 

myelin sheaths, and it was assumed to be at least partly associated with WM degeneration [47]. The 

damage to neural axons would lead to the consequent decrease in FA. Moreover, the fiber tracts not 

only become shorter in average length but also reduced fiber number with brain aging [48]. 
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According to the construction of DTI networks, the statuses of critical nodes and node edges 

eventually changed during brain aging. 

Although this study has produced some useful findings, there are still two main limitations to be 

improved in the future. Firstly, there is no uniform standard for data acquisition and the processing of 

network construction. Especially, the fast and multiple directions of DTI acquisition are greatly 

affected by MR equipment, scanning protocols and post-processing approaches. Thus, the reliability 

or consistency for the DTI network analyses of brain aging needs to be verified by more experiments 

on a variety of MR scanners. The comparison of different approaches would be further conducted for 

more convincing results. Secondly, multiple modalities of brain networks should be considered to 

detect the network changes of brain aging. This would enhance our understanding of brain aging. 

5. Conclusions 

This work stated that DTI brain networks can be effectively used to evaluate WM changes in 

the human brain, and the chosen network characteristics provide valuable indications for WM 

degeneration. For brain aging, the efficiency of the overall brain network information transmission 

decreases and it accompanies by different trends for specific brain regions. 
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