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Abstract: In numerical computation, locating multiple roots of nonlinear equations (NESs) in a single
run is a challenging work. In order to solve the problem of population grouping and parameters settings
during the evolutionary, a clustering-based adaptive speciation differential evolution, referred to as
CASDE, is presented to deal with NESs. CASDE offers three advantages: 1) the clustering with
dynamic clustering sizes is used to set clustering sizes for different problems; 2) adaptive parameter
control at the niche level is proposed to enhance the search ability and efficiency; 3) re-initialization
mechanism motivates the algorithm to search new roots and saves computing resources. To evaluate
the performance of CASDE, we select 30 problems with different features as test suite. Experimental
results indicate that the speciation clustering with dynamic clustering sizes, niche adaptive parameter
control, and re-initialization mechanism when combined together in a synergistic manner can improve
the ability to find multiple roots in a single run. Additionally, our method is also compared with other
state-of-the-art methods, which is capable of obtaining better results in terms of peak ratio and success
rate. Finally, two practical mechanical problems are used to verify the performance of CASDE, and it
also demonstrates superior results.
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1. Introduction

Many real-world applications can be transformed into nonlinear equations (NESs), such as
physics [1], engineerings [2, 3], economics [4], and so on. Generally, a NES contains multiple roots.
Each root is equally important because it can provide multiple selections to the decision makers so
that they can make a better decision [5]. In recent years, solving NESs have received widespread
attention from researchers. However, it may cause the great challenge in mathematical field,
especially to locate multiple roots in a single run.

Evolutionary algorithms (EAs) draw lessons from the evolution of biological operations in
nature [6]. It includes the basic operations of population initialization, crossover mutation operator,
retention mechanism, and so on. Among them, differential evolution (DE) [7] is a famous
optimization technique and a versatile function optimizer. Due to its features of easy-to-implement
and robust adaptability, DE has been widely applied for many optimization problems [8, 9]. More
specifically, Li et al. presented an enhanced adaptive DE algorithm to extract the parameters of
photovoltaic models [10]. Mohanmed et al. designed a novel mutation strategy to enhance SHADE
and LSHADE algorithm to solve the global numerical optimization [11]. Pierezan et al. proposed a
modified self-adaptive differential evolution to deal with the static force capability optimization of
humanoids robots [12]. Santos Coelho et al. presented a self-adaptive chaotic differential evolution
algorithm using gamma distribution to solve unconstrained global optimization problem [13]. Li et al.
hybrid differential evolution algorithm with modified CoDE and JADE to improve the performance of
solving the global optimization problem [14]. Civicioglu et al. adopted bezier search differential
evolution algorithm to solve the numerical function optimization [15]. Zhao et al. proposed a
collaborative LSHADE algorithm with comprehensive learning mechanism to slove the non-separable
optimization problem and obtained the competitive results [16].

In recent years, DE is often used to solve NESs because it is insensitive to the characteristics of
NESs, such as non-convexity and discontinuity, it has been applied to solve NESs [17]. However, DE
encounters following two dilemma: 1) due to the lack of diversity preserving mechanism, it hardly
locates multiple roots in a single run; 2) although some DE variants can obtain multiple roots, they
have the problems of parameter settings, such as cluster size [18], repulsion radius [19].

To effectively solve NESs, it is important to maintain the population diversity during the
evolutionary process. Clustering is perceived to be an effective methods, which can pratition the
whole population into different species [20]. Thus, some clustering-based methods have been
developed to find the roots of NESs [18, 21]. It requires to give the number of cluster in advance. Too
small the number of clusters may lose some roots. In contrast, too large cluster number may obtain
the roots with low accuracy since the algorithm cannot make full use of computational resources to
exploit in each cluster. However, it is difficult to specify the appropriate number of clusters for
different NESs.

Parameter control in evolutionary computation plays an important role to the robustness of the
algorithm [22]. Recently, some adaptive or self-adaptive parameter control methods [23–25] have
been proposed to dynamically control the parameters according to different fitness landscapes of
optimization problems. These methods can significantly improve the search ability of DE, but most of
them focus on global optimum. Thus, how to develop a self-adaptive strategy suited for NESs is still a
problem to be solved.
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After clustering, each subpopulation might gradually converge to a narrow range of space during
the evolution process. If an individual fitness less than the threshold, it is considered as a candidate
solution. By this stage, continuous optimization in this subpoulation prefers the exploitation, which is
able to improve the quality of root. However, it is not conducive to the population diversity and wastes
more computational resource to seek the same root. Therefore, it is an urgent issue to deal with the
species contained the found root.

Based on the above considerations, we combine the species clustering with dynamic cluster sizes,
niche adaptive parameter control, and re-initialization mechanism to locate multiple roots of NESs. The
proposed method is referred as a clustering-based adaptive speciation differential evolution (CASDE).
In CASDE, species clustering with dynamic cluster sizes can alleviate the trivial task to set the cluster
number. Moreover, the adaptive parameter control is employed to dynamically adjust at the niche level,
thereby improving the search efficiency of the algorithm. To verify the performance of our method, we
select 30 NESs from the literature [26] as test suite. Experimental results demonstrate that our method
obtains highly competitive results compared with other state-of-the-art methods.

The major contributions of this paper are summarized as follows:

• The species clustering with dynamic cluster sizes, niche adaptive parameter control, and
re-initialization technique are combined together in a synergistic manner can greatly enhance the
problem-solving capability. Among them, the species clustering with dynamic cluster
sizes-maintaining the population diversity; niche adaptive parameter control-enhancing the
exploitation performance in each species and avoiding trivial task to set parameters; and
re-initiation technique-seeking the new roots with an reasonable using computational resource
reasonably.
• The niche parameter adaptive method is proposed to ensure that the parameters can be changed

according to different problem landscapes, so as to improve the efficiency of the algorithm.
• The effectiveness of the three different parts of components has been experimentally verified. The

results show that these three parts combined together in a synergistic manner can greatly enhance
the performance for solving NESs.
• To further evaluate the performance of CASDE, two cases of motor system are selected to measure

the performance of the proposed approach. The results have been confirmed the effectiveness of
CASDE on real-world problems.

The rest of this paper is summarized as follows. Section 2 introduces background knowledge about
the transformed optimization problem, different evolution. Section 3 reviews the related work for
solving NESs. In Section 4, the proposed CASDE is described in detail. The experimental results and
discussion are respectively given in Section 5, follow by the discussion in Section 6. In Section 7, two
practical problem are used to test the performance of the algorithm. Finally, Section 8 concludes this
paper.

2. Background

2.1. Problem statement

Generally, a NES can be expressed as follows:
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E(x) =


e1(x1, x2, . . ., xD) = 0
e2(x1, x2, . . ., xD) = 0

...

en(x1, x2, . . ., xD) = 0

(2.1)

where n is the number of equations, x = (x1, x2, . . ., xD) denotes a decision vector, x ∈ S, and S ⊆ RD

is the search space. Generally,
S = [xi, xi]m

where i = 1, · · · ,D, xi and xi are the lower and upper bound of xi, respectively.
Before solving a NES with optimization algorithm, it is commonly transformed into a

single-objective optimization problem:

minimize f (x) =

n∑
i=1

e2
i (x) (2.2)

Subsequently, solving NES is equivalent to find the global optimal of the transformed optimization
problem in Eq (2.2).

2.2. Differential evolution

Differential evolution (DE) adopts three operators, including mutation, crossover, and selection, to
deal with the population during the search process. Generally, a population contains NP real-valued
vectors: X = {x1, x2, ..., xNP}. NP is the population size.

2.2.1. Mutation

Mutation operator is used to generate a mutant vector vi according to the parent population. Two
well-known mutation strategies are shown below:

• ”DE/rand/1”

vi = xr1 + F · (xr2 − xr3) (2.3)

• ”DE/best/1”

vi = xbest + F · (xr2 − xr3) (2.4)

r1, r2 and r3 respectively represent different random indices selected from the population, and they are
distinct from the base index i. F is a scale factor that controls the size of difference vector. xbest is the
best individual in current population.

2.2.2. Crossover

The crossover operator generates the trial vectors by recomposing the current vector and the mutant
vector. The trial vector x′i( j) is generated as follow:
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x′i( j) =

{
vi( j), if rand j(0, 1) ≤ CRi, j or j = jrand

xi( j), otherwise
(2.5)

where CRi, j ∈ (0, 1) is the crossover rate; rand j(0, 1) is a random value within [0, 1]; j = {1, ...,D};
jrand ∈ {1, 2, ...,D} represents a random index.

2.2.3. Selection

In original DE algorithm, greedy selection operator is employed to select the individual with better
fitness value for a minimization problem. If the trial vector x′i is better than xi, xi is set to x′i ; otherwise,
xi keeps unchanged.

xi =

{
x′i , if f (x′i) ≤ f (xi)
xi, otherwise

(2.6)

where f (·) is the objective function to be minimized.

3. Algorithms for NES problems

Some stochastic approaches were proposed to solve NESs, which consist of three categories:
multiobjective-optimization-based ones, single-objective-optimization-based ones, and
constraint-optimization-based ones.

3.1. Multiobjective optimization based-methods

Multiobjective optimization can obtain a group of Pareto optimal solutions [27, 28], which is
similar to locate different roots of NESs. Therefore, more attention has been paid to the use of
multiobjective optimization to solve NESs. In [29], a NES was first transformed into a multiobjective
optimization problem, and then solve the optimization problem via a evolution algorithm. This kind
of transformation technique ensures that multiple roots can be found in a single run. However, it may
cause the curse of dimensionality if the number of equation is too large. To solve this problem,
In [30], a bi-objective transformation technique was proposed to transform a NES into multiobjective
optimization problems with two objectives. However, since only one decision variable is utilized to
design the location function, it may lose several roots. For this purpose, Gong et al. [31] presented a
weighted bi-objective transformation technique (A-WeB) for NESs. In [32], Naidu and Ojha
employed a hybrid cooperative multiobjective optimization IWO to solve NESs, where multiple
populations are used to deal with multiple objectives.

3.2. Single-objective optimization based-methods

In general, a NES is usually transformed into a single-objective optimization problem, as shown
in Eq (2.2). Two common methods are used to solve this problem: clustering-based methods and
repulsion-based methods.
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3.2.1. Clustering-based methods

Clustering [20] can divide the population into different subpopulations, thus enabling the algorithm
to search for more than one promising area. Clustering can maintain the diversity of population, so
several researchers put forward clustering-based methods to locate multiple roots of NESs. In [18], the
clustering technique was employed to separate the estimated locations of solutions, and then invasive
weed optimization was used to calculate the exact solution in each cluster. In [33], Fuzzy Clustering
Means combines Luus-Jaakola random search and the Nelder-Mead simplex method to solve NESs.
In [21], Multistart and Minfinder methods based on clustering were applied for locating multiple roots
of NESs.

3.2.2. Repulsion-based methods

The repulsion techniques can generate a repulsive regions around the obtained roots, which can
increase the variety of population. Based on the repulsion techniques, several methods have been
developed to solve NESs. In [34], repulsion technique combined with simulated annealing (SA) to
compute critical points in binary systems. Henderson et al. [35] designed a combination of continuous
SA and repulsion technique to locate multiple roots of double retrograde vaporization. In [18], a
two-phase root-finder was developed to find the roots of NESs, in which invasive weed optimization
located the exact roots while repulsion technique was used to preserve the population diversity. In [36],
a biased random-key genetic algorithm (BRKGA) was carried out many times to detect the roots.
In [19], the improved harmony search algorithm combined with the repulsion methods to solve NESs.
In [26], a new approach consisting of the repulsion technique, adaptive parameter control, and diversity
preserving mechanism, named RADE, was designed. Further, In [37], a general framework based on
the dynamic repulsion technique and evolutionary algorithms (DR-JADE) is presented.

3.3. Constraint-optimization-based methods

The third category is the constrained optimization transformation approach. It translates a NES into
a constrained optimization problem:{

min
∑n

i=1 |ei(x)|
subject to ei(x) ≥ 0, i = 1, 2, ..., n

(3.1)

Based on this translated optimization problem, Kuri-Morales [38] developed a penalty function to
handle constraints and used a genetic algorithm (GA) to locate the root. Pourrajabian et al. [39]
combined augmented lagrangian function with GA to find the optimal solution.

4. Our approach

4.1. Motivation

Generally, the number of clustering should be given before the algorithm runs. However, it is
difficult to set appropriate clustering number for NESs. Besides, after clustering, there are different
subpopulations in the search space. Different subpopulations represent multiple promising regions that
may have roots. Thus, how to improve the search ability in each subpopulation also needs further
research. Moreover, as the search proceeds, each subpopulation will converge to a narrow range as the
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Algorithm 1: Speciation clustering with dynamic cluster sizes
Input: population P, cluster size set C
Output: a set of species
Sort P in ascending order according to fitness value;
while P is not empty do

Random select a cluster size M from C;
Select the best individual in P as a new seed;
Find M − 1 individuals closest to the species seed and combine them as a species;
Remove these M individuals from P

end

number of iterations increases. If a root is found in the subpopulation, continuous optimization of the
subpopulation will result in loss of diversity and waste of computing resources. In addition, several
researchers have adopted improved DE algorithm to solve NESs, which has gained extensive attention
and improved the performance of problem solving [26, 37]. For this reason, this paper still focuses on
enhancing the DE algorithm by integrating other techniques in order to obtain satisfactory results.

Based on the above considerations, a re-initialization clustering-based adaptive differential
evolution, named CASDE, is presented to solve NESs. In CASDE, a dynamical cluster sizing
technique is employed to solve the problem that the number of clusters is difficult to set. Meanwhile,
niche adaptive parameter setting is applied to improve the search ability in each subpopulation and
avoid the trivial task of parameter settings. Moreover, the re-initialization mechanism will be
triggered if a root has found in a subpopulation. For one thing, it can preserve the population
diversity; for another, it is a benefit for exploration ability of the search algorithm and increases the
probability to find new roots in other promising regions.

4.2. Dynamic clustering size

In [40], a speciation clustering was proposed to divide the population into different subpopulations.
To reduce the sensitivity of the cluster size, dynamic cluster sizing technique [41] was introduced into
speciation clustering. The effectiveness of this simple scheme was verified by experiments.

The process of dynamic clustering size (DCS) is outlined in Algorithm 1. First, the population is
sorted according to fitness value in ascending order. Second, a random integer M is selected from the
cluster size set C. Based on such integer, M − 1 individuals that is close to species seed are combined
with the species seed to form a species. Finally, the algorithm divides the whole population into a
number of species with M individuals. It is noted that M is a random integer selected from C.

4.3. Niche adaptive parameter control

After clustering, different subpopulations contain different promising regions, which have different
landscape characteristics in the search space. To improve the search ability and avoid the trivial task
of parameter settings in the subpopulations , a niche adaptive differential evolution is proposed in this
section.

At each generation, the crossover rate CRi, j of each individual xi in cluster j is independently
generated according to a normal distribution of mean CR j and standard deviation 0.1
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CRi, j = randn(µCR, 0.1) (4.1)

and truncated to [0,1], µCR is updated as follows:

µCR = (1 − c) · µCR + c ·meanL(S CR j) (4.2)

where c is constant number between 0 and 1; S CR j is the set of the crossover rates CRi, j in each species.
meanL(.) is the Lehmer mean

meanL(S CR j) =

∑
S 2

CR j∑
S CR j

(4.3)

Similarly, the mutation factor Fi, j of each individual xi in species j is independently generated
according to a Cauchy distribution.

Fi, j = randc(µF , 0.1) (4.4)

It is regenerated if Fi, j ≤ 0 or truncated to be 1 if Fi, j ≥ 1. The parameter µF updates as follow:

µF = (1 − c) · µF + c ·meanA(S F j) (4.5)

where meanA(.) is the arithmetic mean; and S F j is the set of mutation factor Fi, j at each species.
Comparison with JADE [24], we modify the parameter adaptive method to some extent. S F j does

update via arithmetic mean whereas S CR j is used Lehmer mean to revise. The reasons are two-fold:
i) the adaptation S F j put a greater emphasis on normal mutation factor by using the arithmetic mean
instead of a Lehmer mean. The arithmetic mean is helpful to propagate average mutation factors, which
improve the exploitation ability in each species; ii) to improve population diversity in the species and
avoid trapping in local optima, Lehmer mean is used to update S CR j .

4.4. Reinitialization mechanism

As the algorithm proceeding, the candidate solution can be found in the subpopulation.
Continuous optimization in such subpopulation may pays more attention to exploitation rather than
exploration. It may lead to loss of population diversity and waste of computational resource.
Therefore, the reinitialization mechanism is used to solve this problem.

If a subpopulation locates a root, it is considered as convergence during the run. The root is stored
into a archive A. Subsequently, all of the individuals in the subpopulation will reinitialize for
maintaining population diversity. Additionally, F and CR of each individual are respectively set to 0.5
and 0.9.

It is worth mentioning that our approach may find the same root during the run. Thus, a method to
update the archive is employed to avoid encountering this dilemma. Algorithm 2 outlines the process
of updating the archive. In Algorithm 2, x∗ is one of the root inA, and ε is a small fixed value to avoid
storing the same root inA. In this paper, ε is set to 0.01.

In reinitialization mechanism, we initialize the entire subpopulation instead of the found root,
which has two advantages. On the one hand, it can use computational resource efficiently and benefit
population diversity. On the other hand, to some extent, this mechanism prevents the remaining
individuals in the subpopulation from continuing to locate the same root.
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Algorithm 2: Archive updating
Input: Solution x and ε > 0
Output: The updated archiveA
if sA = 0 then // The archive is empty

if f (x) < τ then
A = A∪ x;
sA = sA + 1;

end
end
else

if f (x) < τ then
Find the closest root x∗ to x inA
if ‖ x − x∗ ‖< ε and f (x∗) < f (x) then // Update the found root

x = x∗;
end
else if ‖ x − x∗ ‖> ε then // A new root is found

A = A∪ x;
sA = sA + 1;

end
end

end

4.5. The proposed framework: CASDE

The framework of CASDE is outlined in Algorithm 3. One iteration in CASDE includes following
steps:

Step 1: Dividing population (in line 7). Algorithm 1 partitions the population into multiple
subpopulations.

Step 2: Generating new individuals (in lines 9–20). Each individual generates new offspring based
on three operations: mutation, crossover, and selection.

Step 3: Updating the information (in line 21). µF and µCR in j-th species are modified through Eqs
(4.5) and (4.2).

Step 4: Updating the archive (in line 24). If a root is located, it will be stored in the archive.

Step 5: Reinitializating the subpopulation (in lines 25, 26). All individuals in such subpopulation
are reinitialized; Fi, j and CRi, j of each individual are also respectively set to 0.5 and 0.9.

The above iteration is repeated until the termination criterion was met.

It is worth mentioning that a hybrid mutation strategy ( ”DE/rand/1” and ”DE/best/1” ) is used to
generate the mutation vectors (in lines 12–15). The reason is that the hybrid strategy can balance the
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ability of exploration and exploitation to some extent and improve the search ability of the algorithm.

Algorithm 3: The framework of CASDE
Input: Control parameters: NP, NFE, NFEsmax

Output: The final archiveA
Set NFE = 0 and the archiveA = ∅;
Randomly generate the population P;
F and CR of each individual in P are set to 0.5 and 0.9 ;
Calculate the fitness value of x via Eq (2.2);
NFE = NFE + NP;
while NFE < NFEsmax do

Partition the whole population into different species via Algorithm 1
for j-th species do

Implement Eqs (4.4) and (4.1) to produce Fi, j and CRi, j.
for each individual in j-th species do

Select r1, r2, r3 from the j-th species
if rand < 0.5 then

Generate mutation vector using Eq (2.3)
else

Generate mutation vector using Eq (2.4)
Produce the trial vector u′i, j via Eq (2.5).
Evaluate offspring u′i, j using Eq (2.2).
if f (u′i, j) < f (ui, j) then

ui, j = u′i, j
Respectively update Fi, j and CRi, j in S F j and S CR j

Update µF and µCR via Eqs (4.5) and (4.2);
end
Find the minimal fitness value f (min) in j-th species
if f (min) < τ then

Record the corresponding individual in the archive via Algorithm 2
Re-initialize the individuals in j-th species
Reset the Fi, j and CRi, j to 0.5 and 0.9 in j-th species

end
NFE = NFE + NP;

end

5. Experiment results and analysis

In this section, we mainly focuses on experimental results and analysis, including the impact of
different parts in CASDE, comparing CASDE with state-of-the-art methods.

5.1. Test problems

To evaluate the performance of different methods, frequently-used NESs (F01–F30) benchmark
problems are selected as a test suite. They have different characteristics, and some derive from
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real-world applications, such as multiple steady states problem (F08) [42], robot kinematics problem
(F17) [43], and molecular conformation (F23) [44]. The test problems are briefly introduced in
Table 1.

Table 1. Brief information of the test problems, where D is the number of decision variables,
LE is the number of linear equations, NE is the number of nonlinear equations, NoR is the
number of the known roots, and NFEsmax is the maximum number of fitness evaluations.

Prob. D LE NE NoR NFEsmax

F01 20 0 2 2 50,000
F02 2 1 1 11 50,000
F03 2 0 2 15 50,000
F04 2 0 0 13 50,000
F05 10 0 10 1 50,000
F06 2 1 1 8 50,000
F07 2 0 2 2 50,000
F08 2 0 2 7 50,000
F09 5 4 1 3 100,000
F10 3 0 3 2 50,000
F11 2 0 2 4 50,000

F12 2 0 2 10 50,000
F13 3 0 3 12 50,000
F14 2 0 2 9 50,000
F15 2 0 2 2 50,000
F16 2 0 2 13 50,000
F17 8 1 7 16 100,000
F18 2 0 2 6 50,000
F19 20 19 1 2 200,000
F20 3 0 3 7 50,000
F21 2 0 2 4 50,000
F22 2 0 2 6 50,000
F23 3 0 3 16 500,000
F24 3 0 3 8 100,000
F25 3 0 3 2 50,000
F26 2 0 2 2 50,000
F27 2 0 2 3 50,000
F28 2 0 2 2 50,000
F29 3 0 3 5 50,000
F30 2 0 2 4 50,000

5.2. Performance metrics for NESs

To evaluate the effectiveness of algorithms, two performance Metrics in [26, 37] : (Root ratio (RR)
and Success Rate (SR)), are employed in this paper.
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• Root ratio (RR): It is the ratio of found roots number to total roots number over multiple runs
within NFEsmax:

RR =

∑Nr
i=1 N f ,i

NoR · Nr
(5.1)

where Nr is the number of runs; N f ,i is the found roots number in the i-th run; NoR is the total
roots number of a NES.
• Success rate (S R): It is the ratio of successful runs∗ to total runs :

S R =
Nr,s

Nr
(5.2)

where Nr,s is the number of successful runs.

5.3. Influence of different parts in CASDE

CASDE contains three parts, i.e., dynamic clustering sizes, niche adaptive parameter control, and
the re-initialization mechanism. This subsection mainly dedicates to discuss the impact of different
parts of CASDE on performance of solving NESs.

1) CASDE. The dynamic clustering sizes, niche adaptive parameter control, and the re-initialization
mechanism were combined.

2) DCS-DE. It is the algorithm that DE combines with dynamic clustering sizes.
3) CASDE/DA. The re-initialization mechanism was removed from CASDE;
4) CASDE/DR. The niche adaptive parameter control was removed from CASDE. F and CR were

respectively set to 0.5 and 0.9;
5) CASDE/AR. The dynamic clustering sizes were not used in CASDE. The clustering size were

set to 5.
The detailed experiment result in terms of RR and S R is shown in Table A1. It is obvious that

CASDE obtained the best average RR value, i.e., 0.9951 and the best average S R value, i.e., 0.9556.
Additionally, CASDE successfully solves 26 out of 30 NESs over 30 independent runs. In contrast,
CASDE/AR, CASDE/DR, CASDE/DA and DCS-DE. successfully solve 23, 20, 15, 13 NESs over 30
independent runs, respectively.

The statistical test results acquired by the multiple-problem Wilcoxon’s test are showed in Table 3.
In addition, the ranking results obtained from the Friedman’s test are shown in Table 2. From Table 3,
CASDE consistently offers significantly better results than CASDE/DR, CASDE/DA, and DCS-DE
due to the fact that p-values are less than 0.05 in all the cases. Additionally, CASDE also obtains the
best ranking as shown in Table 2. In what follows, we try to analyze the influence of different parts of
CASDE on the performance of solving NESs.

• DCS-DE: from Table A1, DCS-DE can successfully solve 13 out of 30 NESs, i.e., F01, F05, F06,
F09-F11, F18, F20, F21, F26-F30. However, one feature of them is that they contain a small
number of the known roots. For example, the known roots of this kind of NESs are no more than
8. Thus, DCS-DE is more suitable for solving these NESs.

∗A successful run is considered as a run where all known optima of a NES are found.
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• CASDE/DA: The combination of dynamic clustering size and niche adaptive parameter control
can improve the performance of the algorithm to some extent. As shown in Table A1, RR and S R
values obtained by CASDE/DA were higher than DCS-DE.
• CASDE/DR: From Table A1, the re-initialization method can improve the performance of the

algorithm. For example, RR and S R values obtained by CASDE/DR were 0.9365 and 0.8156,
respectively, significantly higher than those obtained by DCS-DE.
• CASDE/AR: Similarly, the combination of niche adaptive parameter control and re-initialization

mechanism can also improve the performance of the algorithm.
• CASDE: It obtains the best RR and S R values. The reasons are as follows: 1) dynamic clustering

size can reduce the sensitivity of clustering number and maintain population diversity; 2) niche
adaptive parameter control reduces the tedious task of parameter settings and improves the search
ability of the algorithm; 3) the re-initialization mechanism can improve the population diversity
and detect the new roots.

Table 2. Average rankings of CASDE, CASDE/CA, CASDE/C, AND DCS-DE obtained by
the Friedman test for both RR and S R criteria.

Algorithm Ranking (RR) Ranking (S R)
CASDE 2.3667 2.3500
CASDE/AR 2.5500 2.5333
CASDE/DR 3.0667 3.0333
CASDE/DA 3.3167 3.3667
DCS-DE 3.7000 3.7167

Table 3. Results obtained by the wilcoxon test for algorithm CASDE in terms of RR and S R
compared with CASDE/AR, CASDE/DR, CASDE/DA and DCS-DE.

VS
RR S R

R+ R− p-value R+ R− p-value
CASDE/AR 265.5 199.5 4.90E-01 260.5 204.5 5.57E-01
CASDE/DR 337.0 128.0 3.07E-02 345.0 120.0 1.42E-02
CASDE/DA 378.5 86.5 1.36E-03 378.5 86.5 1.28E-03
DCS-DE 393.0 72.0 4.99E-04 394.5 70.5 2.93E-04

5.4. Comparison with other state-of-the-art methods

CASDE is compared with the following state-of-the-art algorithms:

• Decomposition-based differential evolution with reinitialization: DDE/R.
• A weighted biobjective transformation technique for NESs: A-WeB [45].
• Repulsion-based adaptive differential evolution: RADE [26].
• Dynamic repulsion-based evolutionary algorithms: DREA [37].
• Fuzzy neighborhood-based DE with orientation: FONDE [46].
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• Evolutionary multiobjective optimization-based multimodal optimization: EMO-MMO [47].
• Niching technique integrated with CMA-ES [48]: N-CMA-ES.
• Niching integrated with JADE [24]: N-JADE.
• Niching integrated with coyote algorithm [49]: N-COA.

The parameter settings are given in Table 4. All experiments are run 30 times for fair comparison.
In addition, the advantage of CMA-ES, JADE and COA are to find the global optimal. In order to
improve the performance of solving NESs, we combine niche techniques with these algorithms.

Table 4. Parameter settings for different methods.

Method Parameter settings
CASDE NP = 100, F = 0.5,CR = 0.9,C = {5, 6, 7, 8, 9, 10}
DDE/R NP = 100, F = 0.5,CR = 0.9, t = 20, ` = 20
MONES NP = 100,Hm = NP
A-WeB NP = 100,Hm = NP
RADE NP = 100,Hm = 200
DREA NP = 10, uCR = 0.5, uF = 0.5, c = 0.1
MODFA NP = 100, α = 0.23, β0 = 1, δ = 0.98, γ = 1
FONDE NP = 100, F = 0.5,CR = 0.9,m = 11
Self-CCDE NP = 100,CRm = 0.5
Self-CSDE NP = 100,CRm = 0.5
EMO-MMO NP = 100, η = 0.1,m = 20, φ = 0
ANDE NP = 100, F = 0.9,CR = 0.1
CMA-ES µ = 5, λ = 10
JADE uCR = 0.5, uF = 0.5, c = 0.1
COA Np = 20,Nc = 5

Tables A2 and A3 in 8 show the detailed results of RR and S R. Additionally, the statistical results
obtained by the Friedman test and the Wilcoxon test give in Tables 5 and 6, respectively. It is obvious
that CASDE obtains the highest average values in both RR (0.9951) and S R (0.9556). Moreover,
compared with other methods, it also achieves the highest ranking in Table 5. Meanwhile, from Table 6
obtained by the Wilcoxon test, CASDE significantly exceeds other methods in terms of RR and S R
except DDE/R and FONDE since all p−values are less than 0.05.

Moreover, the results† obtained by Nemenyi test are listed in Table 7. We can observe the results of
the best classified algorithms in the competition, like CASDE, we see that there are significant
differences with algorithms like A-WeB, RADE, EMO-MMO,N-CMA-ES, N-JADE and N-COA but
this difference is not significant for DDE/R, RADE, DREA, FONDE, and ANDE. More specific,
CASDE has better performance than DDE/R, RADE, DREA, FONDE, and ANDE according to the
results achieved by the Friedman test and the Wilcoxon test.

†In order to save space, we will only list the comparison between CASDE and other methods
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Table 5. Average rankings of different algorithms obtained by the Friedman test for both RR
and S R.

Algorithm Ranking (RR) Ranking (S R)
CASDE 4.1500 4.1167
DDE/R 4.4667 4.6500
A-WeB 8.2333 8.1333
RADE 6.1500 6.3500
DREA 6.1167 6.5833
FONDE 4.6333 4.5833
EMO-MMO 9.9167 10.6167
N-CMA-ES 11.1333 10.6167
N-JADE 9.8667 9.7667
N-COA 9.8833 10.1833

Table 6. Results obtained by the Wilcoxon test for algorithm CASDE in terms of RR and S R
compared with state-of-the-art algorithms.

VS
RR S R

R+ R− p-value R+ R− p-value
DDE/R 275.5 189.5 3.46E-01 242.0 193.0 3.85E-01
A-WeB 426.0 39.0 6.30E-05 411.0 54.0 1.04E-04
RADE 375.0 90.0 3.19E-03 377.0 88.0 2.78E-03
DREA 332.5 132.5 3.87E-02 345.0 120.0 1.42E-02
FONDE 321.0 144.0 5.42E-02 319.0 149.0 5.92E-02
EMO-MMO 436.5 28.5 5.01E-06 447.0 18.0 1.02E-06
N-CMA-ES 439.5 25.5 7.01E-06 439.5 25.5 0.00E+00
N-JADE 437.5 27.5 1.90E-05 437.5 27.5 0.00E+00
N-COA 437.5 27.5 2.3E-04 437.5 27.5 0.00E+00

Table 7. Nemenyi test for comparison between different algorithms in terms of RR.

CASDE DDE/R A-WeB RADE DREA FONDE EMO-MMO N-CMA-ES N-JADE N-COA
CASDE 7.65E-01 2.67E-04 4.28E-02 7.67E-02 5.91E-01 0.00E+00 0.00E+00 3.00E-06 0.00E+00
DDE/R 7.65E-01 8.16E-04 8.41E-02 1.42E-01 8.14E-01 1.00E-06 0.00E+00 1.20E-06 2.01E-06
A-WeB 2.67E-04 8.16E-04 1.05E-01 6.06E-02 1.86E-03 1.35E-01 2.51E-02 3.06E-01 1.65E-01
RADE 4.28E-02 8.41E-02 1.05E-01 7.98E-01 1.35E-01 1.85E-03 1.14E-04 8.20E-03 2.64E-03
DREA 7.67E-02 1.42E-01 6.06E-02 7.98E-01 2.16E-01 7.56E-04 3.90E-05 3.73E-03 1.10E-03
FONDE 5.91E-01 8.14E-01 1.86E-03 1.35E-01 2.16E-01 4.00E-06 0.00E+00 3.50E-05 7.01E-06
EMO-MMO 0.00E+00 1.00E-06 1.35E-01 1.85E-03 7.56E-04 4.00E-06 4.55E-01 6.31E-01 9.15E-01
N-CMA-ES 0.00E+00 0.00E+00 2.51E-02 1.14E-04 3.90E-05 0.00E+00 4.55E-01 2.24E-01 3.9E-01
N-JADE 3.00E-06 1.20E-06 3.06E-01 8.20E-03 3.73E-03 3.50E-05 6.31E-01 2.24E-01 7.17E-01
N-COA 0.00E+00 2.01E-06 1.65E-01 2.64E-03 1.10E-03 7.01E-06 9.15E-01 3.9E-01 7.17E-01
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6. Discussion

As shown in Section 5.2, the superior performance of CASDE has been evaluated. In this section,
the influence of fixed clustering size, the impact of different parameter settings, and different mutation
operators are studied.

6.1. Influence of fixed clustering size

An important aspect concerning CASDE is the clustering size. Therefore, this section mainly
discusses the impact of different clustering sizes on CASDE.

To make it simple, we respectively set the fixed sizes as 5, 10, 20, which is for the precise division.
They are employed to replace the dynamic clustering size previously used in CASDE. Therefore, three
CASDE variants, i.e., CASDE-5, CASDE-10 and CASDE-20, are developed‡.

The detailed experiment results are shown in Table A4 for both RR and S R in the supplementary
file. From Table A4, compared with CASDE-5, CASDE-10, and CASDE-20, CASDE also obtains the
best average RR and S R values. Furthermore, the case where the fixed clustering size is equal to 20
is worth discussing. This large clustering size leads to a small number of species. Therefore, it is not
conductive to solving the NESs contained many roots. From Table A4 , it can be seen that CASDE-20
successfully solve 16 out of 30 NESs over 30 independent runs. One characteristic of these NESs is
that they contain few roots. In contrast, if the NESs has many roots, such as F03, F04, F13, F16, F17 ,
F23, and F24, CASDE-20 is difficult in locating all the roots in a single run.

The statical results from the Friedman test and Wilcoxon test are shown in Tables 8 and 9. We
can see clearly that CASDE achieves the best ranking value from Table 8. Meanwhile, from Table 9,
CASDE significantly outperforms CASDE-20 at α = 0.05 for RR and S R.

Based on the above analysis, comparison with the fixed clustering size, the dynamic clustering size
is able to improve the performance of algorithm. Besides, dynamic clustering sizes alleviates the trivial
task to give the proper clustering size for different NESs problems.

Table 8. Average ranking of CASDE, CASDE-5, CASDE-10, and CASDEE-20 obtained by
the Friedman test for both RR and SR criteria.

Algorithm Ranking (RR) Ranking (S R)
CASDE 2.1500 2.1500
CASDE-5 2.4000 2.3833
CASDE-10 2.3300 2.3500
CASDE-20 3.1167 3.1167

‡The only difference between CASDE and CASDE-5 (CASDE-10, CASDE-20) is the clustering size, all other settings remain the
same.
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Table 9. Results obtained by the wilcoxon test for CASDE in terms of RR and S R compared
with CASDE-5, CASDE-10, and CASDE-20.

VS
RR S R

R+ R− p-value R+ R− p-value
CASDE-5 265.5 199.5 4.91E-01 260.5 204.5 5.57E-01
CASDE-10 285.0 150.0 1.41E-01 285.0 150.0 1.41E-01
CASDE-20 397.0 68.0 6.89E-04 397.0 68.0 4.95E-04

Table 10. Average rankings of casde and different parameter setting obtained by the friedman
test for both RR and S R criteria.

Algorithm Ranking (RR) Ranking (S R)
CASDE 4.3333 4.2667
F=0.1,CR=0.1 7.3000 6.4333
F=0.1,CR=0.5 4.8833 4.8833
F=0.1,CR=0.9 4.6833 4.6167
F=0.5,CR=0.1 6.4167 6.2833
F=0.5,CR=0.5 4.6500 4.8333
F=0.5,CR=0.9 4.3500 4.6000
F=0.9,CR=0.1 7.8500 7.6330
F=0.9,CR=0.5 5.4167 5.4000
F=0.9,CR=0.9 5.1167 5.2833

6.2. Study on different parameter settings

To improve the search ability and avoid the trivial tasks of parameter setting, niche adaptive
parameter setting is used in CASDE. In this subsection, we verify the effect of the static parameter
settings (F and CR) on the performance of CASDE. Therefore, the adaptive parameter setting is
removed from the CASDE, and nine diverse sets of parameters are used in CASDE, i.e.,
(F = 0.1,CR = 0.1), (F = 0.1,CR = 0.5), (F = 0.1,CR = 0.9), (F = 0.5,CR = 0.1),
(F = 0.5,CR = 0.5), (F = 0.5,CR = 0.9), (F = 0.9,CR = 0.1), (F = 0.9,CR = 0.5), and
(F = 0.9,CR = 0.9). For fair comparison, all parameters are consistent with CASDE.

The detailed results based on RR and S R values are respectively shown in Tables A5 and A6 in the
supplementary material. Additionally, the average ranking obtained by the Friedman test are reported
in Table 10 and the results derived from the Wilcoxon test are shown in Tabel 11.

From Tables A5 and A6, we can see that (F = 0.1,CR = 0.9) get the higher average RR and
S R values over 30 independent runs. Besides, different parameters can influence the performance
of RCDE for solving NESs. For example, three sets of parameters, such as (F = 0.1,CR = 0.1),
(F = 0.5,CR = 0.1), and (F = 0.9,CR = 0.1) obtain poor results due to a small CR value. Therefore,
we can conclude that the parameter settings has significant impact on the CASDE. Its optimal value is
difficult to give in advance and problem-dependent.
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From Table 10, CASDE get the highest ranking for RR and S R via the Friedman test. Moreover,
Table 11 shows that CASDE is better than the static parameter settings, because it can obtain higher
R+ than R− values in all cases. In general, the proposed niche adaptive parameter setting is effective.
More importantly, it can avoid setting the proper values of F and CR for different NESs.

Table 11. Results obtained by the willcoxon test for algorithm casde in terms of RR and S R
compared with casde-5, casde-10, and casde-20.

VS
RR S R

R+ R− p-value R+ R− p-value
F=0.1,CR=0.1 396.0 39.0 1.04E-04 413.0 52.0 1.13E-04
F=0.1,CR=0.5 261.5 173.5 3.35E-01 282.5 152.5 1.55E-01
F=0.1,CR=0.9 260.0 175.0 3.52E-01 288.0 177.0 2.49E-01
F=0.5,CR=0.1 367.0 68.0 1.14E-03 367.0 68.0 7.49E-04
F=0.5,CR=0.5 260.0 175.0 3.52E-01 288.0 177.0 2.49E-01
F=0.5,CR=0.9 233.0 202.0 7.29E-01 263.0 202.0 5.23E-01
F=0.9,CR=0.1 407.5 27.5 3.01E-05 407.5 27.5 1.13E-05
F=0.9,CR=0.5 311.5 153.5 1.01E-01 317.0 148.0 7.80E-02
F=0.9,CR=0.9 283.0 152.0 1.53E-01 317.0 148.0 7.80E-02

6.3. On different mutation operators

In CASDE, ”DE/rand/1” and ”DE/best/1” as shown in Eqs (2.3) and (2.4) are selected randomly
during the search process. The hybrid mutation strategy can contribute to the balance of exploration and
exploitation. In this subsection, we replace the hybrid mutation strategy with single mutation operator
to evaluate the effectiveness of CASDE . To this end, we focus on two CASDE variants: 1) CASDE-1,
i.e., CASDE with ”DE/rand/1”; 2) CASDE-2, i.e., CASDE with ”DE/best/1”. The parameter settings
are remained the same for two CASDE variants.

The detailed experiment results are shown in Table A7 in the supplement file. Compared with
CASDE-1 and CASDE-2, CASDE obtains the highest average RR and S R values. In addition, several
interesting phenomena appear in the experiment results. For F04, F12, and F23, CASDE obtains better
RR and S R values than CASDE-1; for F13, CASDE-1 gets the best result; whereas CASDE-2 shows
the best performance for F16. Therefore, different test instances require reasonable use of mutation
operators to improve the effectiveness of algorithm. Hence, this hybrid strategy is used to remedy the
drawback to some extent.

The statistical results derived from Friedman and Wilcoxon test are reported in Tables 12 and 13.
We can observe that CASDE achieves the best ranking from Table 12. Meanwhile, from Table 13,
CASDE is better than CASDE-1 and CASDE-2. settings, because it can obtain higher R+ than R−

values in all cases.
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Table 12. Average rankings of casde, casde-1, and casde-2 obtained by the friedman test for
both RR and S R criteria.

Algorithm Ranking (RR) Ranking (S R)
CASDE 1.9167 1.916
CASDE-1 2.1333 2.1333
CASDE-2 1.9500 1.9500

Table 13. Results obtained by the willcoxon test for algorithm casde in terms of RR and S R
compared with casde-1, and casde-2.

VS
RR S R

R+ R− p-value R+ R− p-value
CASDE-1 286.0 179.0 ≥ 0.2 287.0 178.0 ≥ 0.2
CASDE-2 232.5 202.5 ≥ 0.2 232.5 202.5 ≥ 0.2

7. Solving real-world NES problems

In the previous experimental results, the superiority of CASDE is verified. In this section, the
effectiveness of CASDE on real-world problems is studied. Two cases of motor system [50] are
selected to measure the performance of CASDE.

7.1. Test cases

1) Case-1. This case mainly focuses on the solution of internal variables in steady-state operation
of synchronous generator with magnetic saturation. For example, saturation characteristics of a
synchronous generator, s = 0.047 6E12

q , synchronous reactance xd = xq = 2.264, reactance of
armature reaction xad = xaq = 2.104, field winding self-inductance xF = 2.209, field winding
resistance rF = 0.0008, stator resistance r = 0.02, steady state operation active power P = 0.8,
whereas reactive power Q = 0.4, terminal voltage U = 1.0∠0. It needs to calculate the internal
variables of the unit.

Firstly, the following equation can be derived from the relationship between the internal variables
during the steady-state operation of the synchronous generator and the saturation factor of the magnetic
circuit: 

tg δ =
P·xq−Q·r

U+P·r+Q·xq

Uq = U cos δ
id = I sin (δ + ϕ)

iq = I cos (δ + ϕ)

i f =
Uq+iq·r+id ·xd

xad

I
∑

=

√
(i f − id)2 + i2

q

s = 0.047 6E12
q

xad(sa) (1 + s) = xad(un)

xad(sa)I
∑

= Eq

(7.1)
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where δ is power angle; ϕ denotes power factor angle; Eq is the air gap voltage; xad(sa) and xad(un)

respectively illustrate saturated direct axis armature reactive reactance and Unsaturated direct axis
armature reactive reactance; I

∑
is resultant current, and s is saturation factor.

Let: x1 = tg δ
2 , x2 = I

∑
, x3 = xad(sa), x4 = id, x5 = Uq, x6 = iq, x7 = i f , x8 = Eq. Thus, the motor

problem can be transformed into a NES:

e1(x) = 0.8(x2
1 + x1 − 1)x3 + 0.12x2

1 + 2.16x1 − 0.12 = 0
e2(x) = (1 + x2

1)x4 + 0.4x2
1 − 1.6x1 − 0.4 = 0

e3(x) = (1 + x2
1)x5 + x2

1 − 1 = 0
e4x) = (1 + x2

1)x6 + 0.8(x2
1 + x1 − 1) = 0

e5(x) = x3x7 − 0.02x6 − x5 − x3x4 − 0.16x4 = 0
e6(x) = x2

7 − 2x4x7 + x2
6 + x2

4 − x2
2 = 0

e7(x) = x8 − x2x3 = 0
e8(x) = 0.0476x3x12

8 + x3 − 2.104 = 0

where xi min = [−3,−1,−2,−1,−1,−0.5,−1.5,−1.5]; xi max = [1, 1, 2, 1, 1, 0.5, 1.5, 1.5]; i denotes i-th
dimension; xi min and xi max are the lower and upper bounds of xi. It has four roots as shown in Table 14.

Table 14. Roots of Case 1.

x1 x2 x3 x4 x5 x6 x7 x8

1 0.378136 0.583102 1.863559 0.829251 0.749801 0.335176 1.306394 1.086646
2 0.378136 -0.583102 1.863559 0.829251 0.749801 0.335176 1.306394 -1.086646
3 -2.644550 0.583102 1.863559 -0.829251 -0.749801 -0.335176 -1.306394 1.086646
4 -2.644550 -0.583102 1.863559 -0.829251 -0.749801 -0.335176 -1.306394 -1.086646

2) Case-2. It is used to solve the circuit model parameters of synchronous generator d-axis
equivalent circuit. Several known parameters of a synchronous generator are described as follows:
xd = 1.803, x′d = 0.442, x∗d = 0.328 , T ′d = 1.497s, T ∗d = 0.035s, rF = 0.000856, xe = 0.232. The work
is to calculate the parameters of D - axis equivalent circuit model (Canay model). Follow this, the
equations can be obtained according to equivalent circuit model:

xde = xd − xe

x∗de = x∗d − xe

T
′

deT
∗
dexde = x∗de

(
T
′

doT ∗do

)
x
′

de

[
x∗de

(
T
′

do + T ∗do

)
− T ∗de

(
xde + x∗de

)]
=

xdex∗de

(
T
′

de − T ∗de

)
bxad = xd − xe

rFb2 = r
′

Fce

x
′

Foe

(
xde − x

′

de

)
= xdex

′

de

r
′

Foe

(
T
′

deω0

)
= x

′

Foe(
T
′

de + T
′

de

)
xde = xd

(
T
′

d + T ∗d
)
− xe

(
T
′

do + T ∗do

)

(7.2)
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Let: x1 = x′de, x2 = T ′de, x3 = T ∗de, x4 = xe, x5 = xde, x6 = x∗de, x7 = b, x8 = r′Fce, x9 = x′Fce.
Application Case-2 can be transformed into a NES as follow:



e1(x) = x5 + x4 − 1.803 = 0
e2(x) = (x2 + x3)x5 + 6.19116x4 − 1.803(1.497 + 0.035) = 0
e3(x) = x6 + x4 − 0.328 = 0
e4(x) = 0.28801x6 − x2x3x5 = 0
e5(x) = (−6.19116x1 + x1x3 + x2x5 − x3x5)x6 + x1x3x5 = 0
e6(x) = 1.571x7 + x4 − 1.803 = 0
e7(x) = x8 − 0.000856x2

7 = 0
e8(x) = (x5 − x1)x9 − x1x5 = 0
e9(x) = x9 − 377x2x8 = 0

where xi min = [−0.5,−1,−1,−1, 1,−1,−1, 0,−1], xi max = [0.5, 1, 1, 1, 2, 1, 1, 1, 1]; i denotes i-th
dimension; xi min and xi max are the lower and upper bounds of xi. It has two roots as shown in
Table 15.

Table 15. Roots of Case-2.
x1 x2 x3 x4 x5 x6 x7 x8 x9

1 0.128764 0.495929 0.000000 0.328000 1.475000 0.000000 0.938892 0.000755 0.141080
2 -0.100030 -0.427811 0.097650 0.514846 1.288154 -0.186846 0.819958 0.000576 -0.092822
3 0.138229 0.528951 0.003490 0.318482 1.484517 0.009517 0.944950 0.000764 0.152422
4 0.000000 0.000000 0.495929 0.328000 1.475000 0.000000 0.938892 0.000754 0.000000

7.2. Results

In this subsection, CASDE is compared with the above ten methods, the parameter settings shown
in Table 4. To make a fair comparison, each method is executed over 30 runs. For the two problems,
NFEsmax = 200, 000.

The detailed results are reported in Tables 16 and 17, where the best results are listed in bold. It can
be observed that CASDE obtains the highest average RR values, i.e., 0.9750 and the highest average
S R values, i.e., 0.9000. Thus, comparison with other ten methods, our proposed approach, CASDE, is
effective and efficient for solving the two motor systems problems.

Table 16. Comparison between DDE/R and other state-of-the-art methods with respect to
root ratio.

Prob. CASDE DDE/R A-WeB RADE DREA MODFA FONDE Self-CCDE Self-CSDE EMO-MMO ANDE
F01 0.9500 0.5333 0.5250 0.5333 0.5000 0.0000 0.5000 0.5625 0.5250 0.3000 0.5333
F02 1.0000 0.6667 0.3667 0.9583 0.3750 0.0000 0.9250 0.9125 0.7125 0.0750 0.2667
Avg. 0.9750 0.6000 0.4459 0.7458 0.4375 0.0000 0.7125 0.7375 0.6188 0.1875 0.4000
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Table 17. Comparison between DDE/R and other state-of-the-art methods with respect to
success rate.

Prob. CASDE DDE/R A-WeB RADE DREA MODFA FONDE Self-CCDE Self-CSDE EMO-MMO ANDE
F01 0.8000 0.0000 0.0333 0.1000 0.0000 0.0000 0.0000 0.1000 0.0500 0.0667 0.0667
F02 1.0000 0.2667 0.0667 0.8667 0.0000 0.0000 0.7667 0.8500 0.3000 0.0000 0.0000
Avg. 0.9000 0.1333 0.0500 0.4833 0.0000 0.0000 0.3833 0.4750 0.1750 0.0333 0.0000

8. Conclusions and future work

Solving NESs is a very challenging task due to the fact that it needs to locate multiple roots of
NESs in a single run. To address this issue, we propose a re-initialization clustering-based adaptive
differential evolution, named CASDE, in which the dynamic clustering sizes, niche adaptive
parameter control, and re-initialization mechanism were combined together to solve NESs effectively.
The performance of CASDE was verified by 30 NESs selected from the literature. Experimental
results demonstrated that CASDE is able to locate multiple roots in a single run. In addition,
comparison with other state-of-the-art methods, our approach also obtains significant performance.
Moreover, we execute extensive experiments to analyze the performance of our approach, as well as
the effectiveness of different parts of CASDEand the influence of different parameter settings. From
the experiments, we can testify that CASDE can be considered as an effective alternative to solve
NESs.

In the near future, we plan to use the fusion of reinforcement learning and evolutionary algorithm
to solve NESs. By evaluating the actions using different strategies and parameters in a certain
environment, the algorithm will have the characteristic of autonomous decision. Moreover, we will
employ CASDE to solve other complex re-world NESs.
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Appendix: Detailed results

Table A1. Influence of different parts in CASDE with respect to the peak ratio and success
rate.

Prob.

RR SR

CASDE CASDE/AR CASDE/DR CASDE/DA DCS-DE CASDE CASDE/AR CASDE/DR CASDE/DA DCS-DE

F01 1.0000 0.8667 1.0000 0.9667 1.0000 1.0000 0.7333 1.0000 0.9333 1.0000

F02 1.0000 1.0000 1.0000 0.9515 0.9273 1.0000 1.0000 1.0000 0.6667 0.4667

F03 1.0000 1.0000 1.0000 0.9911 0.9733 1.0000 1.0000 1.0000 0.8667 0.6000

F04 1.0000 1.0000 0.7538 0.8103 0.7949 1.0000 1.0000 0.0000 0.0000 0.0667

F05 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F06 1.0000 1.0000 0.9667 0.9667 0.8833 1.0000 1.0000 0.7333 0.7333 0.3333

F07 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F08 1.0000 1.0000 1.0000 0.9905 0.9619 1.0000 1.0000 1.0000 0.9333 0.7333

F09 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F12 0.9867 0.9933 0.9467 0.8667 0.8667 0.9333 0.9667 0.7333 0.2000 0.2000

F13 0.9167 0.9778 0.9333 0.9500 0.9556 0.4667 0.7667 0.4667 0.6667 0.6000

F14 1.0000 1.0000 0.9926 0.9481 0.9259 1.0000 1.0000 0.9333 0.5333 0.4000

F15 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000

F16 0.9744 1.0000 0.7026 0.9128 0.9641 0.6667 1.0000 0.0000 0.0667 0.6000

F17 1.0000 0.6125 0.9542 0.8750 0.7417 1.0000 0.0000 0.4667 0.0667 0.0000

F18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F19 1.0000 0.8833 1.0000 1.0000 0.4333 1.0000 0.7667 1.0000 1.0000 0.3333

F20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F22 1.0000 1.0000 1.0000 1.0000 0.9889 1.0000 1.0000 1.0000 1.0000 0.9333

F23 0.9750 0.8979 0.2583 0.4000 0.3875 0.6000 0.0333 0.0000 0.0000 0.0000

F24 1.0000 1.0000 1.0000 0.8917 0.9167 1.0000 1.0000 1.0000 0.1333 0.3333

F25 1.0000 0.9667 0.6000 1.0000 0.9333 1.0000 0.9333 0.2000 1.0000 0.8667

F26 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F27 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F28 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F29 1.0000 1.0000 0.9867 0.9867 0.9867 1.0000 1.0000 0.9333 0.9333 0.9333

F30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Avg 0.9951 0.9733 0.9365 0.9169 0.8880 0.9556 0.9067 0.8156 0.7244 0.6800
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Table A2. Comparison between DDE/R and other state-of-the-art methods with respect to
root ratio.

Prob CASDE DDE/R A-WeB RADE DREA FONDE EMO-MMO N-CMA-ES N-JADE N-ACO
F01 1.0000 0.9333 0.6200 1.0000 0.0000 1.0000 0.5000 0.2667 1.0000 1.0000
F02 1.0000 1.0000 1.0000 0.9900 0.9970 1.0000 0.8455 1.0000 0.8545 0.8909
F03 1.0000 1.0000 0.9573 0.9960 0.9578 1.0000 0.9267 0.9511 0.9156 0.7067
F04 1.0000 1.0000 1.0000 0.9015 1.0000 0.9600 0.7500 0.1333 0.2103 0.7795
F05 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F06 1.0000 1.0000 0.9400 0.9900 0.9583 0.9975 0.3625 0.0083 0.2250 0.9750
F07 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F08 1.0000 1.0000 0.8371 0.9971 1.0000 1.0000 0.8500 0.5333 0.6095 0.7905
F09 1.0000 0.9778 0.8933 0.9700 1.0000 1.0000 0.1167 0.8667 0.9778 0.4222
F10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.3250 1.0000 1.0000 1.0000
F11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9750 0.4167 1.0000 1.0000
F12 0.9867 1.0000 0.8880 0.6310 0.8767 0.8640 0.8000 0.2267 0.2800 0.6067
F13 0.9167 0.7278 0.0933 0.8908 0.9167 0.7383 0.5167 0.3056 0.2778 0.5944
F14 1.0000 1.0000 0.9733 0.9867 1.0000 1.0000 0.4333 0.0296 0.2296 0.9185
F15 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000 1.0000 0.9333 0.5000 0.5000
F16 0.9744 1.0000 1.0000 0.9954 1.0000 1.0000 1.0000 0.5846 0.6205 0.3744
F17 1.0000 1.0000 0.6688 0.9444 1.0000 0.9850 0.5406 0.0833 0.7458 0.0000
F18 1.0000 1.0000 0.9433 1.0000 1.0000 1.0000 0.9917 0.9778 0.9778 1.0000
F19 1.0000 0.9000 0.6200 0.7950 0.0000 0.9300 0.3250 0.4333 1.0000 0.6667
F20 1.0000 1.0000 0.9514 1.0000 1.0000 1.0000 0.9571 0.9905 0.7714 0.5714
F21 1.0000 1.0000 0.9950 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F22 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9833 0.9889 0.9778 1.0000
F23 0.9750 0.9417 0.1563 0.5619 0.7979 0.9100 0.5219 0.1250 0.1250 0.1250
F24 1.0000 1.0000 0.8550 0.9988 0.9125 1.0000 0.8063 1.0000 0.9917 0.7583
F25 1.0000 1.0000 0.2360 0.8350 1.0000 1.0000 0.3500 0.0000 0.2667 0.0000
F26 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F27 1.0000 1.0000 1.0000 0.9967 1.0000 1.0000 0.8667 0.6667 0.7556 0.6889
F28 1.0000 1.0000 0.9400 1.0000 1.0000 1.0000 0.9250 0.0333 1.0000 1.0000
F29 1.0000 1.0000 0.9320 0.9940 0.9533 0.9960 0.2000 0.9067 0.9733 0.6000
F30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9833 1.0000 0.6333
Avg. 0.9951 0.9827 0.8500 0.9491 0.8957 0.9794 0.7290 0.6148 0.7429 0.7201
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Table A3. Comparison between DDE/R and other state-of-the-art methods with respect to
success rate.

Prob. casde DDE/RA-WeBRADE DREA FONDEEMO-MMON-CMA-ESN-LSHADEN-ACO
F01 1.0000 0.8667 0.3600 1.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000
F02 1.0000 1.0000 1.0000 0.9000 0.9300 1.0000 0.2000 1.0000 0.2000 0.2000
F03 1.0000 1.0000 0.5800 0.9500 0.4600 1.0000 0.3000 0.4000 0.2667 0.0000
F04 1.0000 1.0000 1.0000 0.3100 1.0000 0.5200 0.3500 0.0000 0.0000 0.0000
F05 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F06 1.0000 1.0000 0.6000 0.9300 0.6600 0.9800 0.1000 0.0000 0.0000 0.8000
F07 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F08 1.0000 1.0000 0.1200 0.9800 1.0000 1.0000 0.2000 0.0000 0.0000 0.0000
F09 1.0000 0.9333 0.6800 0.9100 1.0000 1.0000 0.0000 0.6000 0.9333 0.0000
F10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000
F11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9500 0.0667 1.0000 1.0000
F12 0.9333 1.0000 0.2800 0.0000 0.0300 0.2800 0.2000 0.0000 0.0000 0.0000
F13 0.4667 0.0000 0.0000 0.1900 0.2600 0.0200 0.0000 0.0000 0.0000 0.0000
F14 1.0000 1.0000 0.7600 0.8900 1.0000 1.0000 0.2000 0.0000 0.0000 0.4000
F15 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.8667 0.0000 0.0000
F16 0.6667 1.0000 1.0000 0.9400 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
F17 1.0000 1.0000 0.0000 0.4300 0.0300 0.7600 0.0000 0.0000 0.0000 0.0000
F18 1.0000 1.0000 0.6600 1.0000 1.0000 1.0000 0.9500 0.8667 0.8667 1.0000
F19 1.0000 0.8000 0.2400 0.6900 0.0000 0.8600 0.1500 0.2667 1.0000 0.5333
F20 1.0000 1.0000 0.7000 1.0000 1.0000 1.0000 0.7500 0.9333 0.0667 0.0000
F21 1.0000 1.0000 0.9800 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F22 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9500 0.9333 0.8667 1.0000
F23 0.6000 0.3333 0.0000 0.0000 0.0000 0.2800 0.0000 0.0000 0.0000 0.0000
F24 1.0000 1.0000 0.1400 0.9900 0.4300 1.0000 0.0000 1.0000 0.9333 0.0000
F25 1.0000 1.0000 0.0200 0.6700 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000
F26 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F27 1.0000 1.0000 1.0000 0.9900 1.0000 1.0000 0.7000 0.2667 0.2667 0.0667
F28 1.0000 1.0000 0.8800 1.0000 1.0000 1.0000 0.9000 0.0000 1.0000 1.0000
F29 1.0000 1.0000 0.6600 0.9700 0.7600 0.9800 0.0000 0.5333 0.8667 0.0000
F30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9333 1.0000 0.0667
AVG.0.9556 0.9311 0.6553 0.8247 0.7187 0.8893 0.4633 0.4556 0.5089 0.4022
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Table A4. Influence of different fixed clustering size inCASDE with respect to the peak ratio
and success rate.

Prob.
RR S R

CASDE CASDE-5 CASDE-10 CASDE-20 CASDE CASDE-5 CASDE-10 CASDE-20
F01 1.0000 0.8667 1.0000 1.0000 1.0000 0.7333 1.0000 1.0000
F02 1.0000 1.0000 1.0000 0.9879 1.0000 1.0000 1.0000 0.8667
F03 1.0000 1.0000 1.0000 0.7533 1.0000 1.0000 1.0000 0.0000
F04 1.0000 1.0000 0.9974 0.7103 1.0000 1.0000 0.9667 0.0000
F05 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F06 1.0000 1.0000 1.0000 0.8417 1.0000 1.0000 1.0000 0.0667
F07 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F08 1.0000 1.0000 1.0000 0.9952 1.0000 1.0000 1.0000 0.9667
F09 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F12 0.9867 0.9933 0.9733 0.8567 0.9333 0.9667 0.8667 0.2000
F13 0.9167 0.9778 0.8667 0.5472 0.4667 0.7667 0.1333 0.0000
F14 1.0000 1.0000 1.0000 0.8185 1.0000 1.0000 1.0000 0.0333
F15 1.0000 1.0000 1.0000 0.9167 1.0000 1.0000 1.0000 0.8333
F16 0.9744 1.0000 0.7487 0.4513 0.6667 1.0000 0.0000 0.0000
F17 1.0000 0.6125 1.0000 0.7750 1.0000 0.0000 1.0000 0.0000
F18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F19 1.0000 0.8833 1.0000 1.0000 1.0000 0.7667 1.0000 1.0000
F20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F22 1.0000 1.0000 1.0000 0.9667 1.0000 1.0000 1.0000 0.8000
F23 0.9750 0.8979 0.9417 0.7875 0.6000 0.0333 0.1667 0.0000
F24 1.0000 1.0000 1.0000 0.1875 1.0000 1.0000 1.0000 0.0000
F25 1.0000 0.9667 1.0000 1.0000 1.0000 0.9333 1.0000 1.0000
F26 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F27 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F28 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F29 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Avg. 0.9951 0.9733 0.9843 0.8865 0.9556 0.9067 0.9044 0.6589
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Table A5. Influence of different parameter setting in CASDE with respect to the peak ratio.

Prob.
F = 0.1 F = 0.5 F = 0.9

CR = 0.1 CR = 0.5 CR = 0.9 CR = 0.1 CR = 0.5 CR = 0.9 CR = 0.1 CR = 0.5 CR = 0.9
F01 0.4667 0.9333 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
F02 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F03 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F04 0.7282 1.0000 1.0000 0.5692 1.0000 1.0000 0.4872 0.9897 1.0000
F05 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F06 0.9833 1.0000 1.0000 1.0000 1.0000 1.0000 0.9333 0.9833 0.9917
F07 0.7000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F08 1.0000 1.0000 1.0000 0.9810 1.0000 1.0000 0.9810 1.0000 1.0000
F09 0.0000 0.9667 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000
F10 0.9667 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F11 0.5833 1.0000 1.0000 0.9167 1.0000 1.0000 0.8000 1.0000 1.0000
F12 0.9533 0.9933 0.9867 0.8800 0.9667 1.0000 0.8667 1.0000 1.0000
F13 0.4722 0.5333 0.5778 0.8056 0.8500 0.8444 0.8778 0.9500 0.9944
F14 1.0000 1.0000 1.0000 0.9852 1.0000 1.0000 0.9111 0.9926 1.0000
F15 0.8333 1.0000 1.0000 1.0000 1.0000 1.0000 0.9333 1.0000 0.9667
F16 0.9744 1.0000 1.0000 0.9026 0.9897 1.0000 0.7641 0.7897 0.7692
F17 0.9917 1.0000 1.0000 0.9917 1.0000 1.0000 0.8875 0.9542 0.9583
F18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F19 0.0000 0.7000 0.9667 0.0000 0.4667 0.4667 0.0000 0.0000 0.0333
F20 0.9905 1.0000 1.0000 1.0000 1.0000 1.0000 0.9714 1.0000 1.0000
F21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F22 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9889 1.0000 1.0000
F23 0.4458 0.7417 0.8917 0.2792 0.7458 0.7458 0.2167 0.5292 0.8583
F24 1.0000 1.0000 0.9250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F25 0.2333 1.0000 1.0000 0.2667 0.9667 0.9667 0.1333 0.9667 1.0000
F26 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F27 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F28 0.5000 1.0000 1.0000 0.5000 1.0000 1.0000 0.5000 1.0000 1.0000
F29 0.9600 1.0000 1.0000 1.0000 1.0000 1.0000 0.9333 1.0000 1.0000
F30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9833 1.0000 1.0000
Avg. 0.7928 0.9623 0.9783 0.8359 0.9662 0.9675 0.8056 0.9385 0.9191
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Table A6. Influence of different parameter setting in CASDE with respect to the success rate.

Prob.
F=0.1 F=0.5 F=0.9

CR = 0.1 CR = 0.5 CR = 0.9 CR = 0.1 CR = 0.5 CR = 0.9 CR = 0.1 CR = 0.5 CR = 0.9
F01 0.2000 0.9333 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
F02 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F03 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F04 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 0.8667 1.0000
F05 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F06 0.8667 1.0000 1.0000 1.0000 1.0000 1.0000 0.6000 0.8667 0.9333
F07 0.4000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F08 1.0000 1.0000 1.0000 0.8667 1.0000 1.0000 0.8667 1.0000 1.0000
F09 0.0000 0.9333 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000
F10 0.9333 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F11 0.0667 1.0000 1.0000 0.6667 1.0000 1.0000 0.3333 1.0000 1.0000
F12 0.6667 0.9333 0.9333 0.4000 0.8000 1.0000 0.4000 1.0000 1.0000
F13 0.0000 0.0000 0.0000 0.1333 0.0667 0.0667 0.2000 0.5333 0.9333
F14 1.0000 1.0000 1.0000 0.8667 1.0000 1.0000 0.4000 0.9333 1.0000
F15 0.7333 1.0000 1.0000 1.0000 1.0000 1.0000 0.8667 1.0000 0.9333
F16 0.6667 1.0000 1.0000 0.1333 0.8667 1.0000 0.0000 0.0000 0.0000
F17 0.8667 1.0000 1.0000 0.8667 1.0000 1.0000 0.0667 0.4000 0.4000
F18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F19 0.0000 0.6000 0.9333 0.0000 0.2000 0.2000 0.0000 0.0000 0.0000
F20 0.9333 1.0000 1.0000 1.0000 1.0000 1.0000 0.8000 1.0000 1.0000
F21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F22 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9333 1.0000 1.0000
F23 0.0000 0.0000 0.1333 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
F24 1.0000 1.0000 0.4000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F25 0.0667 1.0000 1.0000 0.0667 0.9333 0.9333 0.0000 0.9333 1.0000
F26 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F27 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F28 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000
F29 0.8000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6667 1.0000 1.0000
F30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9333 1.0000 1.0000
Avg. 0.6400 0.9133 0.9133 0.7000 0.8956 0.9067 0.6022 0.8511 0.8400
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Table A7. Influence of different mutation operators on CASDE in terms of the peak ratio
and success rate.

Prob.
RR S R

CASDE CASDE-1 CASDE-2 CASDE CASDE-1 CASDE-2
F01 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F02 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F03 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F04 1.0000 0.9897 1.0000 1.0000 0.8667 1.0000
F05 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F06 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F07 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F08 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F09 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F12 0.9867 0.9667 0.9867 0.9333 0.8000 0.9333
F13 0.9167 0.9833 0.8778 0.4667 0.8000 0.1333
F14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F16 0.9744 0.9538 0.9897 0.6667 0.4000 0.8667
F17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F19 1.0000 0.6000 1.0000 1.0000 0.6000 1.0000
F20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F22 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F23 0.9750 0.9125 0.9292 0.6000 0.0667 0.2000
F24 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F26 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F27 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F28 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F29 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Avg. 0.9951 0.9802 0.9928 0.9556 0.9178 0.9378
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