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Abstract: In this paper, we focus on spreading speed of a reaction-diffusion SI epidemic model with
vertical transmission, which is a non–monotone system. More specifically, we prove that the solution
of the system converges to the disease-free equilibrium as t → ∞ if R0 6 1 and if R0 > 1, there exists
a critical speed c� > 0 such that if ‖x‖ = ct with c ∈ (0, c�), the disease is persistent and if ‖x‖ > ct
with c > c�, the infection dies out. Finally, we illustrate the asymptotic behaviour of the solution of the
system via numerical simulations.
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1. Introduction

The work is devoted to the study of spreading speed of the following reaction–diffusion SI epidemic
model with vertical transmission

∂S (t,x)
∂t = ∆S (t, x) − βS (t, x)I(t, x) + bS (t, x) + θbI I(t, x)

− (m + kS (t, x) + kI(t, x)) S (t, x), t > 0, x ∈ RN ,
∂I(t,x)
∂t = ∆I(t, x) + βS (t, x)I(t, x) + (1 − θ)bI I(t, x) − αI(t, x)

− (m + kS (t, x) + kI(t, x)) I(t, x), t > 0, x ∈ RN ,

S (0, x) = S 0(x) > 0, I(0, x) = I0(x) > 0, x ∈ RN ,

(1.1)

where S (t, x) and I(t, x) represent the densities of the susceptible individuals and the infective individ-
uals, respectively, 0 < θ < 1 denotes the proportion of offspring born from an infective individual that
is susceptible at birth, β represents the incidence rate, b and bI stand for the birth rate of the susceptible
individuals and the infective individuals, respectively, m defines the mortality rate of the individuals,
1
α

is the average infection cycle. Without loss of generality, we can assume that the birth rate of the
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susceptible individuals is not less than the infective individuals, and the death rate of the infective in-
dividuals is less than the birth rate of the infective individuals, that is, 0 < m + α < bI 6 b. In addition,
we consider system (1.1) associated with logistic growth, precisely speaking, 1

k expresses the carrying
capacity of the country. Consequently, the following assumptions are made.

(A) We assume that α, β, b, bI , θ, m and k are nonnegative constants. In addition, let 0 < m+α < bI 6 b,
0 < θ < 1, β − k > 0, (β − k)(b − m) 6 θkbI , K̂ = b−m

k , the two critical speeds c∗ = 2
√

b − m and
c∗∗ = 2

√
bI − m − α and S 0(x) and I0(x) be non-trivial, non-negative, uniformly continuous and

bounded functions on RN .

In the paper, with regard to the basic reproduction number R0 =
βK̂

b+α−(1−θ)bI
and the minimal wave

speed c� = 2
√

(β − k)K̂ + (1 − θ)bI − m − α, which have been defined in [1], we investigate the spread-
ing properties of the corresponding solution of system (1.1). More precisely, we firstly prove some
properties of the solution of system (1.1), which can be used to complete the proof of asymptotic be-
haviour of the solution for system (1.1). Secondly, we show that the solution of the system converges
to the disease-free equilibrium as t → ∞ if R0 6 1. Thirdly, if R0 > 1, there exists the minimal speed c�

such that if ‖x‖ = ct with c ∈ (0, c�), the disease is persistent and if ‖x‖ > ct with c > c�, the infection
dies out is established. Finally, we illustrate the asymptotic behaviour of the solution of system (1.1)
via numerical simulations.

In fact, the definition of spreading speed was firstly introduced by Aronson and Weinberger [2,3] for
scalar reaction-diffusion equations and then applied by Aronson [4] to an integro–differential equation,
that is, Aronson [4] established that there exist two speed c1 and c2 with c1 < c < c2 satisfying if
‖x‖ > c2t, then I(t, x) in the system can convergence to zero and I(t, x) in the system can be more than
zero if ‖x‖ 6 c1t, where c is asymptotic speed of spread of the model and I(t, x) represents density of the
infective individuals. After that, Weinberger [5, 6] established asymptotic behavior of the solution of
a discrete-time population model by using translation-invariant order-preserving operator. In addition,
there have been other literatures studying the asymptotic speed of spread of the monotone reaction–
diffusion equations or systems, see [2, 7–10] and the cited reference therein.

Let us mention that a major difficulty encountered when studying (1.1) is the lack of comparison
principle. Recently, there have been some results on spreading speed of some non–monotone reaction–
diffusion systems, which lack the comparison principle. Ducrot et al. [11] investigated spreading speed
of a large class of two–component reaction–diffusion systems, including prey–predator systems as a
special case. Their conclusions includes the two cases, that is, the prey invades the environment faster
than the predator and the predators population grows fast enough to always catch up with the prey.
After that, Ducrot et al. [34] established spreading speed and the minimal wave speed of a predator-
prey system with nonlocal dispersal. Furthermore, Ducrot et al. [12] took into account the large time
behaviour of solutions of a three species reaction–diffusion system, modelling the spatial invasion of
two predators feeding on a single prey species. For prey-predator systems, we refer to Ducrot [13] ,
Lin [14] and Pan [15] and so on. Liu et al. [16] analyzed spreading speed of a competition-diffusion
model with three species by using the Hamilton-Jacobi approach. In addition, Ducrot [17] established
some conclusions for spreading speed of the SIR epidemic model with external supplies on the whole
space Rn.

In system (1.1), we consider the vertically transmitted infection. That is, it can be transmitted di-
rectly from the mother to an embryo, fetus, or baby during pregnancy or childbirth, such as rubella

Mathematical Biosciences and Engineering Volume 18, Issue 5, 6012–6033.



6014

virus, cytomegalovirous, hepatitis B, HIV etc. ( [18, 19]). In fact, it is obvious that the infectious
disease can be transmitted through not only contact between the susceptible individuals and the in-
fective individuals, but also vertical transmission in model (1.1). In other word, even in the absence
of infected hosts, the disease can be also transmitted by vertical transmission. In addition, the mini-

mal speed c� = 2
√

(β − k)K̂ + (1 − θ)bI − m − α of model (1.1) without vertical transmission (namely,
θ = 1) is less than that with vertical transmission (that is, θ ∈ (0, 1)), indicating that compared with
infectious diseases without vertical transmission, infectious diseases with vertical transmission spread
faster. Up to now, investigation of spreading speed of a reaction–diffusion epidemic model with ver-
tical transmission is seldom. However, the existence of traveling waves for system (1.1) has been
established ( [1]). They firstly summarized the dynamics of the corresponding kinetic system for (1.1)
and then analyzed the threshold dynamics of system (1.1) on the bounded domain Ω ⊂ Rn. In particu-
lar, they investigated the existence of traveling waves of system (1.1) which connects the disease-free
equilibrium with the endemic equilibrium. After that, Ducrot et al. [20] also analyzed the existence of
traveling waves of system (1.1) under the situation of dS = 1 and α = 0 connecting the trivial equi-
librium and the interior equilibrium by using center-unstable manifold around the interior equilibrium.
Let us also mention that the existence of traveling wave solutions of other reaction-diffusion epidemic
models have been extensively studied, see Anderson and May [21], Aronson [4], Brown and Carr [22],
Diekmann [23], Hosono and Ilyas [24], Kenndy and Aris [25], Murray [26], Rass and Radcliffe [27],
Ruan and Wu [28], Wang et al. [29–31] and the cited references therein.

The rest of the paper is organized as follows. In section 2, we state the main results of this work,
namely, the solution of the system converges to the disease-free equilibrium as t → ∞ if R0 6 1
and if R0 > 1, there exists the minimal speed c� > 0 such that if ‖x‖ = ct with c ∈ (0, c�), the
disease is persistent and if ‖x‖ > ct with c > c�, the infection dies out. Section 3 deals with uniform
boundedness of the solution of system (1.1) dedicated to the proof of the main theorems in the paper.
Section 4 is concerned with the proof of the main results in section 2 describing the spatial spread of
the infectious disease. In section 5, we illustrate the asymptotic behaviour of the solution of system
(1.1) via numerical simulations.

2. Main results

In this section, the main conclusions which shall be proved and discussed in the paper can be stated.
Before stating our conclusions, let us introduce thatX = BUC(RN ,R2) be the Banach space of bounded
and uniformly continuous functions from RN to R2, which is endowed with the usual supremum norm.
Its positive cone X+ consists of all functions in X with both nonnegative components.

Firstly, asymptotic behavior of the solution of system (1.1) if R0 6 1 is investigated.

Theorem 1. Let (A) be satisfied and N(0, x) = S (0, x)+I(0, x) on RN . If R0 6 1, then the corresponding
solution (S , I)(t, x) of system (1.1) satisfies the following properties:

(1)
lim sup

t→∞
sup
x∈RN

S (t, x) 6 K̂ and lim
t→∞

I(t, x) = 0

uniformly with x ∈ RN .
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(2) If N(0, x) > δ, ∀x ∈ RN , then

lim inf
t→∞

inf
x∈RN

S (t, x) >
bI − m − α

k
;

(3) Assume that S 0(x) and I0(x) are compactly supported on RN . Then

lim
t→∞

sup
|x|>ct

S (t, x) = 0, ∀c > c∗,

lim
t→+∞

sup
|x|6ct

S (t, x) >
bI − m − α

k
, ∀c ∈ (0, c∗∗)

and
lim

t→+∞
sup
|x|6ct

S (t, x) 6 K̂, ∀c ∈ (c∗∗, c∗).

Theorem 1 shows that the solution I of the system converges to zero as t → ∞ if R0 6 1, implying
that the infection tends to dying out if R0 6 1.

Next, we take into account asymptotic behavior of the solution of system (1.1) if R0 > 1. The
situation with R0 > 1 is much more delicate. As mentioned above, the epidemic is sustained and
persistent case R0 > 1 under the semiflow associated to the corresponding kinetic system of system
(1.1) [1]. In the spatially structured situation, we aim at describing the spatial spread of the epidemic.
Now, let us turn to asymptotic behavior of the solution of system (1.1) case R0 > 1 and c ∈ (0, c�),

where c� = 2
√

(β − k)K̂ + (1 − θ)bI − m − α. Due to (β − k)(b − m) 6 θkbI and α > 0 of (A), it has
c� 6 c∗∗ 6 c∗. Note that system (1.1) does not satisfy the parabolic comparison principle, that turns out
to be one of the major difficulty to overcome.

Theorem 2. Assume that (A) is satisfied, R0 > 1 and w is a positive constant. Let c ∈ (−c�, c�),
e ∈ SN−1, S 0(x) be compactly supported such that 0 6 S 0(x) 6 w, 0 6 I0(x) 6 w and U0 = (S 0, I0). Let
{tn}n>0 be a given sequence such that tn → ∞ as n→ ∞. Then one has

lim
n→∞

(S , I)(t + tn, x + c(t + tn)e; U0) = (S∞, I∞)(t, x − cet)

locally uniformly for (t, x) ∈ R × RN , where (S∞, I∞) is a bounded entire solution of (1.1) such that
inf(t,x)∈R×RN I∞(t, x) > 0.

Remark 1. A bounded entire solution (S∞, I∞) of system (1.1) is said to be uniformly persistence if

inf
(t,x)∈R×RN

I∞(t, x) > 0.

In order to obtain a rather complete picture of the solution, Theorem 2 provides information on the
long term asymptotic of uniformly persistent entire solutions (S∞, I∞) of the Cauchy problem (1.1) and
more particularly on the quantity (S , I)(t, cet) for |c| < c�, e ∈ SN−1 and large time, implying that when
R0 > 1 and ‖x‖ = ct with c ∈ [0, c�), the disease is persistent.

Based on the above arguments, we get the following proposition.
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proposition 1. Assume that (A) is satisfied and R0 > 1. Let (S∞, I∞) be a uniformly persistent entire
solution of system (1.1). Then one has S∞ ≡ S ∗ and I∞ ≡ I∗, where S ∗ and I∗ have been defined in [1].

As discussed above the properties of uniformly persistent entire solutions provides that when R0 > 1
then the set of uniformly persistent entire solutions only consists in the unique endemic equilibrium
point (S∞, I∞).

Next, we analyze asymptotic behavior of the solution of system (1.1) case R0 > 1 and c > c�. The
results are as follows.

Theorem 3. Assume that (A) holds and R0 > 1. Let both S 0(x) and I0(x) be compactly supported on
RN . Then for each c2 > c1 > c0 > c�, one has

lim
t→∞

sup
|x|>c1t

I(t, x) = 0,

lim
t→∞

sup
c1t6|x|6c2t

S (t, x) >
bI − m − α

k
, ∀c1 < c2 < c∗∗, (2.1)

lim
t→∞

sup
c1t6|x|6c2t

S (t, x) 6
b − m

k
, ∀c∗∗ < c1 < c2 < c∗ (2.2)

and
lim
t→∞

sup
|x|>c1t

S (t, x) = 0, ∀c1 > c∗. (2.3)

Theorem 4. Let (A) be satisfied and R0 > 1. In addition, suppose that there exists a positive constant
η such that S 0(x) > η, ∀x ∈ RN and I0(x) is compactly supported on RN . Then the following result
holds true for each c > c0 > c�,

lim
t→∞,|x|>ct

I(t, x) = 0 and lim inf
t→∞,|x|>ct

S (t, x) >
bI − m − α

k
.

Theorems 3 and 4 can express that the critical minimal speed c� becomes sharp in the sense that
ahead the front, namely if R0 > 1 and |x| > ct for any c > c�, the infection dies out.

3. Preliminary

In the section, we state some conclusions on the uniformly boundedness for the solution of the
Cauchy problem (1.1) as t → ∞, which can be used to prove Theorem 1–4. To solve it, we use
parabolic estimates and the profile of propagation of the solution of Fisher-KPP reaction-diffusion
equation, precisely speaking, consider the following Fisher-KPP equationut − ∆u = f (u), t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,
(3.1)

where the initial datum u0 is assumed to satisfy non-trivial, continuous and compactly supported and
f : [0, 1] → R is of the class C1 and f satisfies f (0) = f (1) = 0, f ′(0) > 0 > f ′(1), f (u) > 0 for all
u ∈ (0, 1), together with the so-called KPP assumption

f (u) 6 f ′(0)u, ∀u ∈ [0, 1].
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The problem has a long history, which was introduced in the pioneer works of Fisher [32] and Kol-
mogorov, Petrovskii and Piskunov [33] to model some problems in population dynamics. Aronson and
Weinberger in 1970s proved that the solution u = u(t, x) of system (3.1) together with f (u) = u(1 − u)
owns the so-called asymptotic speed of spread property:

lim
t→∞

sup
‖x‖>ct

u(t, x) = 0, ∀c > cν,

lim
t→∞

sup
‖x‖6ct

|1 − u(t, x)| = 0, ∀c ∈ [0, cν),
(3.2)

where the speed cν = 2
√

f ′(0), ‖ · ‖ denotes the Euclidean norm on Rn and 0 and 1 are two equilibria
of the system.

lemma 1. Let (A) be satisfied. For each initial data U0 = (S 0, I0) ∈ X+, the solution (S , I)(t, x; U0) =

(S , I)(t, x) of system (1.1) satisfies the following properties:

(i) (S , I) ∈ C([0,∞);X+);

(ii) Let N(t, x) = S (t, x) + I(t, x). Then we get the following conclusions:

(1)
lim sup

t→+∞

sup
x∈RN

N(t, x) 6 K̂;

(2) Let both S 0(x) and I0(x) be compactly supported on RN . Then

lim
t→+∞

sup
|x|6ct

N(t, x) >
bI − m − α

k
, ∀c ∈ (0, c∗∗),

lim
t→+∞

sup
|x|6ct

N(t, x) 6 K̂, ∀c ∈ (c∗∗, c∗)

and
lim

t→+∞
sup
|x|>ct

N(t, x) = 0, ∀c > c∗.

(3) For each a positive constant δ, one has

lim inf
t→+∞

inf
x∈RN

N(t, x) >
bI − m − α

k
, ∀N(0, x) > δ.

Proof. It is easy to see that conclusion (i) holds and we only prove (ii). Obviously, according to bI 6 b
in (A), N(t, x) satisfies

∂N(t,x)
∂t = ∆N(t, x) + bS (t, x) + bI I(t, x) − αI(t, x) − (m + kN(t, x))N(t, x)
6 ∆N(t, x) + (b − m − kN(t, x))N(t, x), ∀t > 0, x ∈ RN ,

N(0, x) = S 0(0, x) + I0(0, x) . 0, ∀x ∈ RN .

Consequently, N(t, x) can be dominated bydN̂(t)
dt = N̂(t)

(
b − m − kN̂(t)

)
, ∀t > 0,

N̂(0) = ‖N0‖∞ := η.
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By a directly computation, one gets
lim sup

t→∞
N̂(t; η) = K̂.

It follows from the parabolic maximum principle that

lim sup
t→+∞

sup
x∈RN

N(t, x) 6 K̂, ∀x ∈ RN .

Secondly, N(t, x) also satisfies
∂N(t,x)
∂t = ∆N(t, x) + bS (t, x) + bI I(t, x) − αI(t, x) − (m + kN(t, x))N(t, x)
> ∆N(t, x) + (bI − m − α − kN(t, x))N(t, x), ∀t > 0, x ∈ RN ,

N(0, x) = S 0(0, x) + I0(0, x) . 0, ∀x ∈ RN .

(3.3)

Consequently, the parabolic maximum principle implies that

0 6 N(t, x) 6 N(t, x) 6 Ñ(t, x), ∀t > 0, x ∈ RN ,

which N(t, x) and Ñ(t, x) are solutions of the following systems∂N(t,x)
∂t = ∆N(t, x) + (bI − m − α − kN(t, x))N(t, x), ∀t > 0, x ∈ RN ,

N(0, x) = S 0(0, x) + I0(0, x) . 0, ∀x ∈ RN
(3.4)

and ∂Ñ(t,x)
∂t = ∆Ñ(t, x) + (b − m − kÑ(t, x))Ñ(t, x), ∀t > 0, x ∈ RN ,

Ñ(0, x) = S 0(0, x) + I0(0, x) . 0, ∀x ∈ RN ,
(3.5)

respectively. It is easy to see that system (3.4) and (3.5) are of the usual Fisher-KPP form. Similar to
the conclusion (3.2) of system (3.1) together with f (u) = u(1 − u), one has

lim
t→+∞

sup
|x|6ct

N(t, x) =
bI − m − α

k
, ∀c ∈ (0, c∗∗)

for (3.4) and
lim

t→+∞
sup
|x|6ct

Ñ(t, x) = K̂, ∀c ∈ (0, c∗)

and
lim

t→+∞
inf
|x|>ct

Ñ(t, x) = 0, ∀c > c∗

for (3.5), which indicates that conclusion (2) of (ii) holds true.
At last, we consider the following system dN(t)

dt = N(t) + (bI − m − α − kN(t))N(t), ∀t > 0,
N(0) = δ.

A straightforward computation yields

lim
t→∞

N(t; δ) =
bI − m − α

k
.
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Using the parabolic maximum principle associated with (3.3), we obtain

lim inf
t→+∞

inf
x∈RN

N(t, x) > lim inf
t→∞

N(t; δ) =
bI − m − α

k
, ∀N(0, x) > δ.

It completes the proof.
�

4. Proof of the main results

4.1. Proof of Theorem 1

Now, using Lemma 1 together with usual limiting arguments and parabolic estimates, we are able
to complete the proof of Theorem 1.

Proof of Theorem 1 Let N(t, x) = S (t, x) + I(t, x) for every (t, x) ∈ R+ × RN . Due to

lim sup
t→∞

sup
x∈RN

N(t, x) 6 K̂

in Lemma 1, it has that for every ε > 0, there exists a positive constant T large enough such that
N(t, x) 6 K̂ + ε, ∀t > T, x ∈ RN , which means that for each (t, x) ∈ (T,+∞) × RN , we can obtain

(∂t − ∆)I(t, x) =
[
βS (t, x) + (1 − θ)bI − α − m − kS (t, x) − kI(t, x)

]
I(t, x)

=
[
(β − k)S (t, x) + (1 − θ)bI − α − m − kI(t, x)

]
I(t, x)

6
[
(β − k)(K̂ + ε) + (1 − θ)bI − α − m − kI

]
I(t, x)

6
[
β(K̂ + ε) − b + (1 − θ)bI − α − kI

]
I(t, x),

by using β − k > 0 of (A).
Furthermore, consider the following equation du

dt =
(
β(K̂ + ε) − b + (1 − θ)bI − α − ku(t)

)
u(t), ∀t > T,

u(T ) = K̂ + ε := η1.

By the straightforward computation and R0 6 1, we can get

lim
t→∞

u(t; η1) = ε.

In addition, the parabolic maximum principle implies that I(t, x) 6 u(t; η1), ∀t > T, x ∈ RN . Thus, it
has

lim sup
t→∞

sup
x∈RN

I(t, x) 6 ε.

It follows from the arbitrariness of ε > 0 that

lim sup
t→∞

sup
x∈RN

I(t, x) = 0. (4.1)

In addition, (1) of (ii) in Lemma 1 implies that

lim sup
t→∞

sup
x∈RN

N(t, x) = lim sup
t→∞

sup
x∈RN

(S (t, x) + I(t, x)) 6 K̂.
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In view of (4.1), we have
lim sup

t→∞
sup
x∈RN

S (t, x) 6 K̂.

Furthermore, according to (3) of (ii) in Lemma 1, that is, if N(0, x) > δ, ∀x ∈ RN , then one has

lim inf
t→∞

inf
x∈RN

N(t, x) >
bI − m − α

k
, (4.2)

According to (4.1) and (4.2), one has

lim inf
t→∞

inf
x∈RN

S (t, x) >
bI − m − α

k
.

Similarly, (2) of (ii) in Lemma 1 can deduce conclusion (3). This completes the proof.

4.2. Proof of Theorem 2

The aim of this section is to prove Theorem 2. The proof of Theorem 2 will depend on uniform
persistence like arguments. The section is divided into the following three subsections: (1) we devote
to the proof of weak uniform persistence property, (2) we focus on the proof of uniform persistence
property, (3) Theorem 2 is proved.

4.2.1. Weak uniform persistence

Before proving a weak uniform persistence property of solution of system (1.1), let us first state the
following results that will be used in the proof of a weak uniform persistence property.

lemma 2. Let a ∈ R be given and e ∈ SN−1. For each L > 0, c ∈ R and B(0, L) be a sphere with radius
L, consider the principle elliptic eigenvalue problem [17, Lemma 5.2]

−∆u(x) + ce · ∇u(x) + au(x) = λL[c, e]u(x), ∀x ∈ B(0, L),
u(x) = 0, ∀x ∈ ∂B(0, L),
u(x) > 0, ∀x ∈ B(0, L).

Then λL[c, e] does not depend upon e ∈ SN−1, it is denoted by λL[c] and one has

lim
L→∞

λL[c] = a +
c2

4
locally uniformly for c ∈ R.

lemma 3. Fix c0 ∈ [0, c�). Let S 0(x) be compactly supported on RN such that 0 6 S 0(x) 6 w and
0 6 I0(x) 6 w(w is a positive constant). Assume that for each n > 0, there exist some initial values
Un

0 = (S n
0, I

n
0), xn ∈ R

N , cn ∈ [−c0, c0] and en ∈ S
N−1 so that the solution of system (1.1), defined by

(S n, In), satisfies

lim sup
t→∞

In(t, xn + cnten; Un
0) 6

1
n + 1

.

Let {tn}n>0 be a given sequence such that tn → ∞ as n→ ∞. Then one has

lim
n→∞

(S n, In)(t + tn, xn + x + c(t + tn)e; U0) = (
b − m

k
, 0)

uniformly for t > 0 and x in a bounded sets.
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Proof. Obviously, it has

In(t, xn + cnten) 6
2

n + 1
, ∀t > tn. (4.3)

Consider the sequence of functions un and vn defined by

un(t, x) = S n(t + tn, xn + x + cn(tn + t)en)
and vn(t, x) = In(t + tn, xn + x + cn(tn + t)en), ∀t > 0, x ∈ RN .

(4.4)

In view of (4.3), one has

vn(t, 0) 6
2

n + 1
, ∀t > 0, n > 0. (4.5)

Due to the uniformly boundedess of the solution of system (1.1) provided by Lemma 1 and parabolic
estimates, possibly up to subsequence, one may assume that (un, vn) → (u∞, v∞) locally uniformly for
(t, x) ∈ R × RN . According to {cn}n>0 ∈ [−c0, c0], one may also assume that cn → c ∈ [−c0, c0] as
n→ ∞. Next, the function (u∞, v∞) satisfies

0 6 u∞(t, x), u∞(t, x) + v∞(t, x) 6 K̂,
(∂t + ce.∇ − ∆) u∞ = −βu∞v∞ + bu∞ + θbIv∞ − (m + ku∞ + kv∞)u∞,
(∂t + ce.∇ − ∆) v∞ = βu∞v∞ + (1 − θ)bIv∞ − αv∞ − (m + ku∞ + kv∞)v∞.

(4.6)

Furthermore, (4.5) leads to v∞(t, 0) = 0 for any t > 0, which implies that v∞(t, x) ≡ 0 by the parabolic
maximum principle.

Let L > 0 be given. Let us assume by contradiction that vn → 0 as n → ∞ but not uniformly
on [0,∞) × B̄(0, L), which means that there exists a sequence (tn, xn) ∈ [0,∞) × B̄(0, L) such that
vn(tn, xn) > ε, ∀t > 0 for some ε > 0. Without loss of generality, we assume that xn → x∞ ∈ B̄(0, L)
and tn → ∞ as n → ∞. Consider the function sequence wn(t, x) = vn(t + tn, x). According to the
parabolic estimates, one has wn → w∞ as n → ∞ locally uniformly for (t, x) ∈ R × RN . In particular,
w∞(0, x∞) > ε. Moreover, using (4.4) and (4.5), one has that w∞ satisfiesw∞(0, 0) = 0,

(∂t + ce.∇ − ∆) w∞(t, x) = a(t, x)w∞(t, x),

where a ≡ a(t, x) is some given bounded function. Here again, it follows from the parabolic maximum
principle that w∞(t, x) ≡ 0. There is a contradiction with w∞(0, x∞) > ε. Consequently, one obtains

lim sup
n→∞,t>0,x∈B(0,L)

vn(t, x) = 0, ∀L > 0. (4.7)

Now, we show that un → K̂ uniformly for t > 0 and locally in x ∈ RN by using the contradiction
way. Let L > 0 be given and assume that there exist a ε > 0 and a sequence (tn, xn) ∈ (0,∞) × B(0, L)
such that

|K̂ − un(tn, xn)| > ε. (4.8)

Let xn → x∞ ∈ B(0, L), then one has un(tn + ·, ·) → u∞ as n → ∞ locally uniformly by using the
parabolic estimates. Thus, (4.8) implies that

|K̂ − u∞| > ε, (4.9)
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where u∞ is a bounded entire solution of

(∂t + ce.∇ − dS ∆) u∞ = ((b − m) − ku∞) u∞.

Obviously, the right side of the above equation u∞ satisfies Fisher-KPP hypothesis. Consider the
following equations pt − ∆p = ((b − m) − kp) p, t > 0, x ∈ RN ,

p(0, x) := N0(x) = S 0, x ∈ RN .

From conclusion (3.2) of system (3.1) together with f (u) = u(1 − u), it follows that

lim
t→∞

sup
‖x‖6ct

|K̂ − p(t, x)| = 0, ∀c ∈ [0, c∗).

Due to c� 6 c∗, one has u∞(t, x) ≡ K̂, which causes to a contradiction with the inequality (4.9). This
completes the proof. �

Now, we discuss the proof of a weak uniform persistence property.

Theorem 5. Assume that (A) is satisfied, R0 > 1 and w is a positive constant. Fix c0 ∈ [0, c�). Let
S 0(x) be compactly supported on RN such that 0 6 S 0(x) 6 w and 0 6 I0(x) 6 w. Then there exists
ε = ε(w, c0) > 0 such that for each x ∈ RN , for each e ∈ SN−1, for each c ∈ [−c0, c0] and any
U0 = (S 0, I0), it holds that

lim sup
t→∞

I(t, x + cte; U0) > ε,

where (S (t, x; U0), I(t, x; U0)) denotes the solution of system (1.1) with initial value U0.

Proof. We prove the result by contradiction. Assume that for each n > 0, there exist some initial values
Un

0 = (S n
0, I

n
0), xn ∈ R

N , cn ∈ [−c0, c0] and en ∈ S
N−1 so that the solution of system (1.1), defined by

(S n, In), satisfies

lim sup
t→∞

In(t, xn + cnten; Un
0) 6

1
n + 1

.

Let the sequence of functions un and vn be defined by

un(t, x) = S n(t + tn, xn + x + cn(tn + t)en)
and vn(t, x) = In(t + tn, xn + x + cn(tn + t)en), ∀t > 0, x ∈ RN .

(4.10)

Due to Lemma 3, it has
lim
n→∞

un(t, x) = K̂ and lim
n→∞

vn(t, x) = 0

uniformly on t > 0 and x ∈ B(0, L), where B(0, L) is a sphere with radius L and L > 0 is a constant.
Therefore, there exist η > 0(it will be determined later) and nη > 0 such that

K̂ −
η

2
6 un(t, x) 6 K̂ +

η

2
, 0 6 vn(t, x) 6

η

2
, ∀t > 0, x ∈ B(0, L), n > nη.

Let Nn(t, x) = un(t, x) + vn(t, x). Then the function vn satisfies for each n > nη, t > 0 and x ∈ B(0, L),

(∂t + cnen∇ − ∆) vn(t, x) =
[
βun(t, x) + (1 − θ)bI − α − m − kNn(t, x)

]
vn(t, x)
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>
[
β(K̂ − η) + (1 − θ)bI − α − m − k(K̂ + η)

]
vn(t, x)

=
[
(β − k)K̂ + (1 − θ)bI − α − m − (β + k)η

]
vn(t, x),

which implies that(
∂t + cnen∇ − ∆ + aη

)
vn(t, x) > 0, ∀n > nη, t > 0, x ∈ B(0, L),

where aη := −[(β − k)K̂ + (1 − θ)bI − α − m − (β + k)η].
Based on R0 > 1 and c0 < c�, let η > 0 be given small enough such that

(c0)2

4
+ (β + k)η < (

c�

2
)2. (4.11)

Consider the principle eigenvalue of the following problem
−∆u(x) + cnen∇u(x) + aηu(x) = λLu(x), ∀x ∈ B(0, L),
u(x) = 0, ∀x ∈ ∂B(0, L),
u(x) > 0, ∀x ∈ B(0, L).

(4.12)

Furthermore, the principle eigenvalue of (4.12) is denoted by λL. According to Lemma 2, it is obvious
that λL satisfies

lim
L→∞

λL =
(cn)2

4
− [(β − k)K̂ + (1 − θ)bI − α − m − (β + k)η]

=
(cn)2

4
− [(β − k)K̂ + (1 − θ)bI − α − m] + (β + k)η

=
(cn)2

4
+ (β + k)η − (

c�

2
)2, ∀n > 1.

It further follows from (4.11) that
lim
L→∞

λL < 0,

indicating that there exists a sufficiently large constant L0 > 0 such that

λL < 0, ∀L > L0.

Let n > nη be given and the function Θ0 : B(0, L) → [0,∞) be defined as a principle eigenfunction of
(4.12). Consider δ > 0 small enough such that vn(0, x) > δΘ0(x), ∀x ∈ B(0, L). In addition, it is clear
that the function v(t, x) = δe−λLtΘ0(x) satisfies(

∂t + cnen∇ − ∆ + aη
)

v(t, x) = 0, ∀t > 0, x ∈ B(0, L).

Since there are

v(0, x) = δΘ0(x) 6 vn(0, x) for x ∈ B(0, L) and
v(t, x) = 0 6 vn(t, x) for t > 0 and x ∈ ∂B(0, L),

we infer from the parabolic maximum principle that

v(t, x) = δe−λLtΘ0(x) 6 vn(t, x), ∀t > 0, ‖x‖ 6 L.

Due to λL < 0, we obtain vn(t, x) → ∞ as t → ∞, which leads to a contradiction with (4.5). This
completes the proof of the result. �
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4.2.2. Uniform persistence

Secondly, we show the uniform persistence of the solution of model (1.1) by using dynamical
system arguments, namely, parabolic regularity and weak dissipativity.

proposition 2. Assume that (A) is satisfied, R0 > 1 and w is a positive constant. Fix c0 ∈ [0, c�). Let
S 0(x) be compactly supported on RN such that 0 6 S 0(x) 6 w and 0 6 I0(x) 6 w. Then there exists
ε = ε(w, c0) > 0 such that the initial value U0 = (S 0, I0), each c ∈ [−c0, c0], each x ∈ RN and e ∈ S N−1,
then it has

lim inf
t→∞

I(t, x + cte; U0) > ε.

Proof. Let us argue by contradiction. Assume that there exists a sequence of initial data {Um
0 =

(S m
0 , I

m
0 )}m>0, {xm}m>0 ∈ R

N and {em}m>0 ∈ S
N−1 such that the sequence of solution of system (1.1)

defined by (S m, Im) satisfies

lim inf
t→∞

Im(t, xm + ctem; Um
0 ) 6

1
m + 1

, ∀m > 0.

Let ε = ε(w, c0) > 0 be the constant provided by Theorem 5. Then one has

lim sup
t→∞

I(t, x + cte; U0) > ε

for each U0, x ∈ RN and e ∈ SN−1.
Set Um = S m(t, xm + x + ctem; Um

0 ) and Vm(t, x) = Im(t, xm + x + ctem; Um
0 ) for t > 0 and x ∈ RN . Then

there exist a sequence {tm}m>0 tending to ∞ and a sequence {am}m>0 ∈ (0,∞) such that for each m > 0,
it holds that

Vm(tm, 0) =
ε

2
, Vm(t, 0) 6

ε

2
, ∀t ∈ (tm, tm + am),

Vm(tm + am, 0) 6
1

m + 1
.

Up to a subsequence, one may assume that Vm(t + tm, x) → V∞(t, x) and Um(t + tm, x) → U∞(t, x)
locally uniformly for (t, x) ∈ R×RN , and L̃ = lim infm→∞ am and lim infm→∞ em = e. Then, the function
V∞ satisfies

V∞(0, 0) =
ε

2
, V∞(t, 0) 6

ε

2
, ∀t ∈ [0, L̃).

In addition, (U∞,V∞) satisfies the following system(∂t + ce · ∇ − ∆) U∞ = −βU∞V∞ + bU∞ + θbIV∞ − (m + kU∞ + kV∞)U∞,
(∂t + ce · ∇ − ∆) V∞ = βU∞V∞ + (1 − θ)bIV∞ − αV∞ − (m + kU∞ + kV∞)V∞.

If L̃ < ∞, one obtains V∞(L̃, 0) = 0, indicating that V∞(t, x) ≡ 0 for (t, x) ∈ R × RN by the parabolic
maximum principle. Consequently, it contradicts the fact V∞(0, 0) = ε

2 . If L̃ = ∞ which means that
am → ∞ as m→ ∞, one has

V∞(t, 0) 6
ε

2
, ∀t ∈ [0,∞). (4.13)

Now recall that the function (Ŝ∞, Î∞) defined by

Ŝ∞(t, x) = U∞(t, x − cet) and Î∞(t, x) = V∞(t, x − cet)
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satisfies the system(∂t − dS ∆) Ŝ∞ = −βŜ∞ Î∞ + bŜ∞ + θbI Î∞ − (m + kŜ∞ + kÎ∞)Ŝ∞,
(∂t − ∆) Î∞ = βŜ∞ Î∞ + (1 − θ)bI Î∞ − αÎ∞ − (m + kŜ∞ + kÎ∞)Î∞.

It further follows from Theorem 5 that

lim sup
t→∞

Î∞(t, cet) > ε,

implying that lim supt→∞ V∞(t, 0) > ε. As a consequence, it contradicts the fact (4.13). This completes
the proof. �

Proof of Theorem 2 Let {tn}n>0 be a given sequence such that tn → ∞ as n→ ∞ and

Un(t, x) = S (t + tn, x + c(t + tn)e), Vn(t, x) = I(t + tn, x + c(t + tn)e).

Using the standard parabolic estimates, one may assume that {(Un,Vn)} converges towards some func-
tion pair {(U,V)} which is an entire solution of the following system(∂t + ce.∇ − ∆) U = −βUV + bU + θbIV − (m + kU + kV)U,

(∂t + ce.∇ − ∆) V = βUV + (1 − θ)bIV − αV − (m + kU + kV)V

locally uniformly for (t, x) ∈ R × RN . In view of Proposition 2, one obtains that there exists a ε > 0
satisfying

inf
(t,x)∈R×RN

V(t, x) > ε.

Note that (S∞, I∞)(t, x) ≡ (U,V)(t, x + cet) is an entire solution of (1.1). It completes the proof.

4.2.3. Proof of Theorem 1

We now consider the uniformly persistent entire solutions of system (1.1). The following classifi-
cation holds true.

lemma 4. Let (A) be satisfied and R0 > 1. Let (S∞, I∞) be a given uniformly persistence entire solution
of system (1.1). Then there exists a ε ∈ (0, 1) such that

ε 6 S∞(t, x) 6 ε−1, ε 6 I∞(t, x) 6 ε−1, ∀(t, x) ∈ R × RN .

Proof. By Lemma 1, there exists a ε0 ∈ (0, 1) such that S∞(t, x) 6 ε−1
0 and I∞(t, x) 6 ε−1

0 for any
(t, x) ∈ R × RN . Let

inf
(t,x)∈R×RN

I∞(t, x) > ε1

for some ε1 > 0. Next, it is sufficient to show

inf
(t,x)∈R×RN

S∞(t, x) > ε2
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for some ε2 > 0 by using a contradiction way. Assume that there exists (tn, xn) ∈ R × RN such that
S∞(tn, xn)→ 0 as n→ ∞. Let

S∞n (t, x) = S∞(t + tn, x + xn) and I∞n (t, x) = I∞(t + tn, x + xn).

Then S∞n → S̄ and I∞n → Ī in C1,2
loc(R × RN). (S̄ , Ī) satisfies 0 6 S̄ , ε1 6 Ī 6 ε−1

0 , S̄ (0, 0) = 0 and

(∂t − ∆)S̄ = −βS̄ Ī + bS̄ Ī + θbI Ī − (m + kS̄ + kĪ)S̄ .

Plugging the point (0, 0) into the above equation, we can obtain θbI Ī(0, 0) 6 0, which leads to a
contradiction. As a consequence, there exists a ε2 > 0 such that inf(t,x)∈R×RN S∞(t, x) > ε2. The proof is
completed. �

Based on the above arguments, Theorem 1 can be proved.
Proof of Theorem 1 Consider the positive maps g : (0,∞)→ R defined by g(x) = x − 1 − ln x and

let us define the function W : R × RN → [0,∞) by

W(t, x) = VS S ∗g
(
S∞(t, x)

S ∗

)
+ VI I∗g

(
I∞(t, x)

I∗

)
,

where VS and VI are two constants and satisfy

−VS
βK̂ + kK̂ − θbI

K̂
+ VI(β − k) = 0.

By a straightforward computation together with (A), for (t, x) ∈ R × RN , one has

(∂t − ∆)W = −VS θbI I∞
(S∞ − S ∗)2

S∞
− VS

|∇S∞(t, x)|2S ∗

S∞(t, x)
− VI I∗

|∇I∞(t, x)|2

I∞(t, x)
. (4.14)

Due to Lemma 4, W is uniformly bounded. Let (tn, xn) ∈ R × RN be a given sequence satisfying

lim
t→∞

W(tn, xn) = sup
R×RN

W(t, x).

Consider the sequences un(t, x) = S∞(t+tn, x+xn), vn(t, x) = I∞(t+tn, x+xn) and Wn(t, x) = W(t+tn, x+

xn). Up to a subsequence, assume that un → u and vn → v locally uniformly on R×RN . Consequently,
one gets that

Wn(t, x)→ Ŵ(t, x),

where Ŵ(t, x) satisfies
(∂t − ∆)Ŵ 6 0 and Ŵ(0, 0) = sup

R×RN
W(t, x).

The parabolic maximum principle implies that Ŵ(t, x) ≡ supR×RN Ŵ(t, x) ≡ Ŵ(0, 0). From system
(4.14), one obtains

∇u = ∇v ≡ 0 and u(t, x) ≡ S ∗,

which implies that v(t, x) ≡ I∗ and thus Ŵ ≡ 0. It further follows that W(t, x) ≡ 0, expressing that
S∞(t, x) ≡ S ∗ and I∞(t, x) ≡ I∗. It completes the proof.
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4.3. Proof of Theorems 3 and 4

In this section, the outer spreading property stated in Theorems 3 and 4 can be proved.
Proof of Theorem 3 By Lemma 1 and (A), there exists a Tδ > 0 such that

(∂t − ∆) I(t, x)
= βS (t, x)I(t, x) + (1 − θ)bI I(t, x) − αI(t, x) − (m + kS (t, x) + kI(t, x))I(t, x)

6
[
(β − k)(K̂ + δ) + (1 − θ)bI − α − m

]
I(t, x)

for any t > Tδ and x ∈ RN . It further follows from Lemma 4.5 in [1] that the map Ī(ξ) = e−λ(|x|−c0t), ∀ξ :=
|x| − c0t ∈ R satisfies the following equation

Ī′′ + c0 Ī′ +
[
(β − k)(K̂ + δ) + (1 − θ)bI − α − m

]
Ī = 0.

Let u(t, x) = δe−λ(|x|−c0t), ∀(t, x) ∈ R+ × RN , where δ satisfies u(Tδ, x) > I(Tδ, x), ∀x ∈ R+. Using the
parabolic maximum principle, we have

u(t, x) > I(t, x), ∀t > Tδ, x ∈ RN .

Due to |x| > c1t, c1 > c0 and λ > 0 (Lemma 4.5 in [1]), we get

I(t, x) 6 δe−λ(c1−c0)t → 0 as t → ∞.

At last, by using the similar arguments to conclusion (3) of Theorem 1 associated with the second
conclusion in Lemma 1, we obtain Eqs (2.1), (2.2) and (2.3). The proof is completed.

Proof of Theorem 3 Similar to Theorem 3, we can get

lim
t→∞,|x|>ct

I(t, x) = 0, ∀c > c�.

In addition, based on (3) of Lemma 1, it has

lim inf
t→∞,|x|>ct

S (t, x) >
bI − m − α

k
.

This completes the proof.

5. Numerical simulations and discussion

In this section, we provide some numerical simulations to confirm the long-term temporal dynamics
of system (1.1).

Firstly, the case when R0 6 1 is described in Theorem 1. Our results are divided into three parts:
(1) solution I of the system converges to zero as t → ∞, implying that the infection tends to dying out
if R0 6 1. In addition, solution S of the system is not larger than K̂ as t → ∞. (2) if the initial value
of the individuals is greater than 0, then the susceptible individuals are not tending to 0 at larger time.
(3) if the initial value of the individuals is compactly supported, then there is a single propagating front
with a critical speed c∗ defined in (A), ahead of which the solution S of the system converges to zero,
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Figure 1. Numerical simulations of solutions for system (1.1) if R0 < 1.
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Figure 2. Numerical simulations of solutions for system (1.1) if R0 < 1.

and behind the front it perhaps does not converges to 0. To illustrate conclusion (3), we take some
parameters of the model as below:

b = 2, θ = 0.6, bI = 2, α = 0.3, β = 0.35,m = 1.6, k = 0.1, (5.1)

which satisfies (A). Using these parameters, we obtain the basic reproduction number R0 =
βK̂

b+α−(1−θ)bI
≈

0.93 < 1 and a critical speed c∗ = 2
√

b − m ≈ 0.6. Furthermore, we truncate the spatial domain R
by [0, 1500] and the time domain R+ by [0, 40] and use the following piecewise functions as initial
conditions:

S (0, x) =


0, 0 6 x 6 730,
1, 730 < x < 770,
0, 770 6 x 6 1500.

(5.2)

and

I(0, x) =


0, 0 6 x 6 730,
1, 730 < x < 770,
0, 770 6 x 6 1500.

(5.3)
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Figure 3. Numerical simulations of solutions for system (1.1) if R0 > 1 and ‖x‖ = ct with
c ∈ (0, c�).

0 500 1000 1500
0

5

10

15

space x

S
(x

,t
)

(A)

 

 

0 500 1000 1500
0

0.5

1

1.5

2

space x

I(
x,

t)

(B)

 

 

t=0
t=20
t=40

t=0
t=20
t=40

Figure 4. Numerical simulations of solutions for system (1.1) if R0 > 1 and ‖x‖ > ct with
c > c�.

In addition, we take Neumann boundary condition for system (1.1). Consequently, Figure 1 illus-
trates the simulation result on the solution of (1.1) with the given parameters, which shows the above
conclusions (1) and (3) with Theorem 1.

Now, we discuss conclusion (2), namely, if the initial value of the individuals is greater than 0,
then the susceptible individuals are not tending to 0 at larger time. To the aim, we choose the same
parameters as (5.1) and the following piecewise functions as initial conditions:

S (0, x) =


0, 0 6 x 6 730,
1, 730 < x < 770,
0, 770 6 x 6 1500.

and

I(0, x) =


1, 0 6 x 6 730,
0, 730 < x < 770,
1, 770 6 x 6 1500.
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Figure 5. Numerical simulations of solutions for system (1.1) if R0 > 1 and ‖x‖ > ct with
c > c�.

In addition, we also take Neumann boundary condition for system (1.1). Figure 2 shows that the above
conclusion (2), implying that the infection tends to dying out if R0 6 1. It is worth noting that the
solution S of the system converges to K̂ = b−m

k = 4 in Figure 2.
Secondly, we focus on the case when R0 > 1 and ‖x‖ = ct with c ∈ (0, c�), which can be described

in Theorems 2 and 1. In order to simulate it, the following parameters are taken:

b = 4, θ = 0.6, bI = 4, α = 0.5, β = 0.35,m = 1.6, k = 0.25, (5.4)

which also satisfies (A). Based on these parameters, we obtain the basic reproduction number

R0 ≈ 1.16 > 1, a critical speed c� = 2
√

(β − k)K̂ + (1 − θ)bI − m − α ≈ 1.36 and the disease equi-
librium (S ∗, I∗) = (8.0926, 1.2385). In addition, we choose the following conditions for the initial
value problem:

S (0, x) =


0, 0 6 x 6 40,
1, 40 < x < 60,
0, 60 6 x 6 100.

and

I(0, x) =


0, 0 6 x 6 40,
1, 40 < x < 60,
0, 60 6 x 6 100.

We further truncate the spatial domain R by [0, 100] and the time domain R+ by [0, 100]. Figure 3
expresses that if R0 > 1 and ‖x‖ = ct with c ∈ (0, c�), the solution of system (1.1) tends to (S ∗, I∗) as
t → ∞.

At last, the case with if R0 > 1 and ‖x‖ > ct with c > c� is stated in Theorems 3 and 4. In order
to showing Theorem 3, we take the same parameters and initial conditions as (5.4), (5.2) and (5.3),
respectively. We also use the spatial domain R by [0, 1500] and the time domain R+ by [0, 40]. Figure
4 indicates Theorem 3, precisely speaking, there are the following three zones: (1) If ‖x‖ 6 ct with
c ∈ (0, c�), then the solution of system (1.1) tends to (S ∗, I∗) = (8.0926, 1.2385); (2) The zones roughly
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between c�t and c∗t, where the solution of the system converges to (b−m
k , 0) = (9.6, 0); (3) Ahead of the

moving frame with speed c∗, where both the susceptible and infective individuals “die out“.
Next, we choose the same parameters as (5.4) and the following conditions for the initial value

problem£o

S (0, x) =


1, 0 6 x 6 40,

0.3, 40 < x < 60,
1, 60 6 x 6 100.

and

I(0, x) =


0, 0 6 x 6 730,
1, 730 < x < 770,
0, 770 6 x 6 1500.

In addition, we truncate the spatial domain R by [0, 1500] and the time domain R+ by [0, 100]. As a
consequence, Figure 5 illustrates Theorem 4, namely, there is a single propagating front with a critical
speed c� ≈ 1.36, ahead of which the solution of the system converges to ( b−m

k , 0) = (9.6, 0), and behind
the front the solution of the system tends to (S ∗, I∗) = (8.0926, 1.2385).
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