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Abstract: The traditional signature-based detection method requires detailed manual analysis to
extract the signatures of malicious samples, and requires a large number of manual markers to maintain
the signature library, which brings a great time and resource costs, and makes it difficult to adapt to
the rapid generation and mutation of malware. Methods based on traditional machine learning often
require a lot of time and resources in sample labeling, which results in a sufficient inventory of
unlabeled samples but not directly usable. In view of these issues, this paper proposes an effective
malware classification framework based on malware visualization and semi-supervised learning. This
framework includes mainly three parts: malware visualization, feature extraction, and classification
algorithm. Firstly, binary files are processed directly through visual methods, without assembly,
decompression, and decryption; Then the global and local features of the gray image are extracted, and
the visual image features extracted are fused on the whole by a special feature fusion method to
eliminate the exclusion between different feature variables. Finally, an improved collaborative learning
algorithm is proposed to continuously train and optimize the classifier by introducing features of
inexpensive unlabeled samples. The proposed framework was evaluated over two extensively
researched benchmark datasets, i.e., Malimg and Microsoft. The results show that compared with
traditional machine learning algorithms, the improved collaborative learning algorithm can not
only reduce the cost of sample labeling but also can continuously improve the model performance
through the input of unlabeled samples, thereby achieving higher classification accuracy.
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1. Introduction

Malware has become a major threat to network security [1]. Traditional signature-based methods
extract binary signatures from malware to build a huge feature library, which provides comprehensive
information of malicious samples but requires much time and effort [2]. Meanwhile, the enormous
malware variations also brought great challenges to signature-based detection methods.

In recent years, many new malware detection methods have been proposed, ranging from multi-
signature methods to static analysis, dynamic detection and heuristic detection. However, the anti-
detection technology also constantly improved. Malware has learned to change their feature through
object-code obfuscation, code refactoring and etc. According to the report of Symantec and McAfee,
approximately 69 new instances of malware are generated per minute, and more than 50% of them are
variants of existing malware [3]. The traditional feature extraction method cannot afford the huge cost
brought by manually marking new samples. These new variants usually have the same malicious
intentions and characteristics as the original malware [4,5]. Such a group of malware samples with
similar attacking patterns is called a malware family. Recognition of malware families relies on quickly
analyzing the behaviors and functions of malware.

In face of the new challenges, some researchers try to explore malware features using machine
learning technologies [4—6]. Nataraj proposed to categorize the malware family by visualizing
malware [7]. The method not only shows the visual similarity between different samples in the same
family but also adapts to the common fuzzy coding techniques. Accordingly, neural networks are also
utilized to analyze visual malware and achieved promising results [8,9]. However, due to the
complexity of the neural network, the huge cost of the training process makes it hard to catch up with
the rapid growth of malware variants [10—12]. Besides, most of the active neural networks need
supervised learning, requiring human experts and special tools to abstract the malware features and
labels of new samples, which is an extremely expensive and inefficient process [13].

Regarding these problems, we proposed a malware detection model based on malware
visualization and collaborative learning. In the model, firstly the malware binaries are visualized to
gray graphs, and then the malware family features are automatically extracted from the graphs using
image feature extractors, such as LBP extractor. Finally, the features are sent to the cooperative learning
models with multiple classifiers to recognize malware. Furthermore, noise learning theory is
incorporated into the training process to exclude noise in the unlabeled samples to ensure that the
model’s error classification rate could be continuously reduced.

The contributions in this paper are summarized as follows:

* We proposed a malware classification framework, which integrated malware visualization,
automatic feature extraction, and collaborative learning. The framework directly processes malware
binaries without disassembly, decompression, and decryption.

* This framework continuously improved the classification ability of the model through the
introduction of unlabeled samples, which solved the issue of lack of labeled malicious samples in
actual scenes.

* Comparative experiments were conducted on two widely studied imbalanced benchmark
datasets, Malimg and Microsoft. Experimental results show that the proposed framework can achieve
excellent classification performance, with the accuracy of 0.98 and 0.94, respectively. Compared with
the state-of-the-art methods, our method is more resistant to the effects of data imbalance.
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2. Related work

2.1. Development of malware detection

With the development of machine learning and visualization technology, researchers have begun
to draw on the visualization ideas in the field of computer forensics and network monitoring to
visualize and classify malware [7]. First, the raw binary data in the malware is converted to grayscale
images, in which each byte is represented as a grayscale pixel of the image. These byte sequences are
then combined into a 2D array, and feature extraction is performed through texture analysis to convert
the malware detection into an image classification task. In such a way, not only the characteristic
information of software can be visualized, but also the detection efficiency of malware is improved
compared with the traditional methods [ 14—16]. Furthermore, in contrast with traditional static analysis
methods, malware visualization is more suitable for malicious samples adapted by obfuscation
technology [17].

Recently, quantities of visual detection methods based on malware have been proposed [18,19].
However, these methods still have some shortages, including the lack of available labeled samples in
real applications, the great gap between feature extraction algorithms and visual feedback, and etc. [20]
Therefore, we apply a semi-supervised learning algorithm to alleviate the issue of insufficient samples
and continuously improves the classification performance through the utilization of unlabeled samples
along with noise learning theory.

2.2. Semi-supervised learning algorithm

Supervised algorithms have achieved promising performance of malware detection, however,
they rely on plenty of labeled samples for training, which is difficult to be satisfied in real
applications [20,21]. On the other hand, unsupervised learning can employ unlabeled samples for
training but often gets lower accuracy [22]. Compared with these two types of classification algorithms,
the semi-supervised learning algorithm only needs a small number of labeled samples in the training
stage and can continuously enhance detection performance through the use of a large number of
unlabeled samples [23,24]. Consequently, semi-supervised learning is more suitable for the
applications of malware detection.

The semi-supervised learning algorithm co-training [25] assumes that we have two redundant and
independent feature views to deal with data. And then, at the initial training stage, some labeled
samples are summited to two basic classifiers in different feature views. After initial training, unlabeled
samples with high label confidence are selected and these "pseudo-label" samples are put into the
updating set for further training. Through the process of "learning from each other and making progress
together", the classifiers iteratively updating in each training round until their performances are stable.
However, the conditional independence of the two feature views is difficult to satisfy. S. Goldman and
Y. Zhou proposed to improve the classifiers by collaborative learning [26]. Although this method has
removed the requirement of redundant feature views, it still restricts the types of base classifiers, and
the repeated ten-fold cross-validation in the updating process results in an overwhelming cost. In
response to this problem, Zhi-Hua Zhou et al. proposed a Tri-training algorithm that neither requires
sufficient redundant views nor restricts the type of classifiers [27]. The algorithm easily handles the
problem of labeling confidence estimation and predictive classification of unknown samples by using
three collaborative classifiers.
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In this paper, the idea of noise learning theory [28] is utilized to improve the collaborative learning
based on the original Tri-training algorithm. In each iteration stage, parts of “pseudo-label” samples
are extracted for error rate calculations and threshold evaluation to reduce the tag error rate of "pseudo-
label". For a detailed description of the model, see Section 3.
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Figure 1. The overall process of malware detection for collaborative learning.

3. Methodology

The work of this paper focuses on the detection of malware. Figure 1 shows the architecture of
our malware classification model, which mainly consists of three major components: malware
visualization, feature extraction, and the tri-training classification algorithm.

3.1. Malware visualization
As shown in the first stage in Figure 1, The malware visualization transforms the binary codes
into images with certain characteristic information [7,14]. For a given binary file, each 8-bit is

transformed into one unsigned integer, and the result of these variables is reorganized into a two-
dimensional matrix. The corresponding value in the matrix can be expressed as the gray value of the
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generated image in the range of [0, 255], where 0 and 255 represent black and white respectively.
Figure 2 shows the visualization process of a binary malware file into a grayscale image.

Malware Binary
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Figure 2. Process of malware visualization.

The images converted from malware have the same width and different heights. The widths of
images of different sizes are required to be pondered carefully, in case the generated images are
extremely high or too wide, which degrades the performance of feature extraction [7]. Table 1 gives
some recommended image widths for the malicious samples.

Table 1. Image width for various sizes.

File size Optional width
<10KB 32
10KB-30KB 64
1000KB—-2000KB 1024
2000KB—4000KB 1280
4000KB—8000KB 1536
8000KB-10MB 1792
10MB-15MB 2048
15SMB-20MB 2560
20MB-25MB 3072
25MB-30MB 4096
>30MB 5120

3.2. Feature extraction

Take the obfuscated code technologies into consideration, such as fragment encryption and
instruction substitution in consideration, the texture features of the generated gray-scale image may be
disturbed and deformed. Hence, to ensure that the image features utilized in the training are stable and
robust, both the local texture features and global features of the images are extracted and fused through
the canonical correlation analysis (CCA) method [29].

3.2.1. Feature selection

Before feature extraction, the SIFT feature [30], HOG feature [31], and LBP feature [32] are
analyzed and compared for the local feature extraction of malicious samples’ gray images [33]. SIFT
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features can keep the rotation, brightness, and scale of the image unchanged, but demand enormous
computation. Since the characteristic gamma correction is performed at the end of the image grayscale
calculation, the feature extracted by HOG can reduce the negative impact of local shadow and light
changes. Nevertheless, the HOG extraction has some defects, such as the prolix generation process
and sensitivity to noise points, which leads to high-risk costs. Thus, a more steady and efficient feature
extraction method is required.

Many malicious samples are derived from some classic malware. Source from the structure
similarity of the malware family, the pixels of the converted gray images have some equal proportions
on the whole or in some local areas [7,20]. Similarly, for the LBP feature extraction, the relative size
of the central pixel and the overall gray level of the neighborhood remain unchanged even if they
change simultaneously [34,35]. Furthermore, The LBP descriptor has benign adaptability to the effect
of image rotation. Depending on the nature of this event, the LBP method has high adaptability and
robustness for the detection of different groups of malicious samples.

Therefore, LBP is utilized to extract the local features. It employs a descriptor window as a
circular area, for a neighborhood with p pixels containing a one-pixel set{go, g1,...,gp-1} , and the
encoding method of LBP is as:

x=0

- 1’
LBPpg = Y5255(9p — 9c) 2P, s(x) = {0, x<0

(1)

where g. and g, represent the gray value of the central pixel and circular neighborhood pixel
respectively, and R is the radius of the neighborhood. For such a circular LBP operator, the relative
position of the center pixelgcand g, changes with the image rotation, resulting in various LBP values.
Consequently, we adopt the uniform rotation invariant LBP operator, which can adapt to image rotation
and has anti-noise property for a large number of modes generated in the circular neighborhood of
different sizes, defined by:

LRI _ {zg;gs(gp —g.) if ULBPpg) <2 @
P.R P+1 otherwise

1x=0

where s(x) = {O <0

and U represents the LBP uniformity space conversion times (the

transition between binary bits 0/1), expressed as:
U(LBPP,R) = £=1 |S(gp —9c) — S(gp—l = 9gc)l (3)

The LBP feature has the advantage of stability and noise anti-interference for the regional feature
description, which mainly focuses on the local feature while lacking the global feature description of
the images. Therefore, after extracting the LBP features of the malicious sample image, the global
feature of the image was also extracted, this reduced the noise through Gaussian fuzzy processing. The
image is divided into grids by the average size of 16 x 16. And the global image feature computes the
mean value and average variance of pixel intensity in each grid of image where the two-dimensional
Gaussian function is employed to calculate the weight of each pixel shown in (4).

G(x,y) = ooz e T2 4

o2
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where o is the variance of x.

3.2.2. Feature fusion

To enhance the correlation between features and images, canonical correlation analysis (CCA) is
applied to the fusion of image features after extracting the global and local features. CCA is an effective
multi-data processing method [36], which can mine the potential association relationship between two
sets of variables to obtain more representative data. The general idea of CCA is to obtain the maximum
correlation coefficient between the linear combination of two groups of variables through a large
number of matrix calculations, to establish the relationship between the two groups of variables [37].
The CCA feature fusion produces a structure containing D null hypothesis (HO) and related
information after the fusion of the two features X(local) and Y(global), which D takes the minimum
values of the ranks of the two feature matrices X and Y: D = min(rank(X),rank(Y)). Relevant
information statistics of fusion are shown in Table 2.

Table 2. Statistics on CCA fusion methods.

Wilks chisq pChisq F pF df1 df2
Wilks Approximate The right-tail Approximate The right- The The
Lambda chi-squared  significance  chi-squared tail numerator denominator
statistic for  level for statistic for ~ significance degrees of degrees of
HO chisq HO K level for F  freedom freedom for
for F F

3.3. Tri-Training algorithm based on Noise learning judgment

The Tri-training algorithm contains three basic classifiers: C;,C,, C5. C;(i € {1,2,3}). A small
number of labeled samples L along with a large number of unlabeled samples U are applied to the
training process to carry out co-training [25] of the basic classifiers.

For the three classifiers C;,C;,C, (where i,j,k € {1, 2, 3} and j,k # i) in each round of co-

training, C; and C, are used to randomly select samples from the unlabeled sample set U to make
predictions, where the samples {x|predict,(x) = predict;(x)} labeledby C; and C, are considered to
have higher labeling confidence, and then they are taken as new labeled data and put into the updating
set L; of the classifier C;. L; along with the known labeled sample set L to update the classifier C;.
After each round of updating, the newly labeled samples are put back in U to start a new round of
iteratively training until all the classifiers do not change. As shown in formula (5), after the iterative
training, the class of the sample is predicted through a voting mechanism.

h(x) = argmax Y1 (5)
y€label ihi(x)=y
If the prediction of C; and C, onxis correct, C;will get a valid new example for further training;
otherwise, C;will get a noise example with an incorrect label. ~ According to the noise learning [28]
theory of Angluin and Laird, for a training sequence y; containing m samples, if the sample size m
is:
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2

2N
m = mln(y) (6)

where ¢ is the upper limit of the classifier error and 7 is the classification error of the training
set rate, N is the number of categories, § is the confidence parameter, then the PAC (probably
approximately correct identification) judgment for the real classification h* is:

P.d(hj,h") =2 €] <6 (7
where d(h;,h*) represents the sum of the probabilities of the elements of the symmetric
difference between the hypothesis (classifier) 4 and the real situation /4 . Given the confidence

parameter § and the upper limit of classification error ¢, formula (8) can be transformed into formula (9):

o2 > 2 2N
(1 -2m)? > () ®)
Expand the left side of formula (8), we can get:
2 2N
1-—==In(5) 24 —n*) = 4 €)
Thus
2 2N

That is, for the given confidence parameter § and the upper limit of classification error e, We
need to guarantee that:

2 2N
n < 1—mln(7) (11)
- 4

To simplify the calculation of equation (10), letc = Zuln(%), where pthe coefficient that makes
equation (11) is equal, and then we can get:

C

= =m(1—4n) (12)

It can be seen from formula (12) that the square term of the upper limit of error ¢ is inversely
proportional to m(1 — 4n). Samples that are temporarily marked by two of the classifiers in each round
can be called pseudo-marked samples. Since the number of unlabeled examples selected for each round
of tri-training is not fixed, let L* be the pseudo-sample set labeled ¢; for the t** round, and the error
rate of sample detection is 7;, then for the sample size of this round M, = |L| + |L*|. Compared with
the previous round, if the training result of this round is improved, it is necessary to ensure that the
(13) must be satisfied:

(IL]+ LD = 4n") > (IL] + [T DA — 4nH) (13)

That is, updating the classifier by the |Lf| unknown samples introduced in this round can
continue to improve the classification performance, because the upper limit error eof the training result
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of the t* round is lower than that of thet — 1% round; otherwise, the newly-labeled samples of this
round are abandoned and start re-sample training in U. For equation (13), the sample detection error

. HlL|+el Lt .
rateis nt = %, where ef and e! represent the error rate of the classifier on the labeled sample
u

set L and the unlabeled sample set L, during the t* round of training respectively. To ensure that
the training process can continuously reduce the upper limit of classification error &, substituting the
n, expression into equation (13), we can get:

|L%] — 4(eL|L] + eg|Ly]) > |L ] — 4(e ™ L] + ey ML M) (14)

In most cases, for the classification error rate of the model on the labeled samples, ef << ef, thus
ef can be ignored. So equation (14) can be simplified as (15).

|LE| — (1 — 4el) > |L5Y(1 — 4el™), that is

ILLl o 1-4ef™"
I T 1-4ef

(15)

Therefore, in the tri-training process of the classifiers C;,C;, C (i, ), k € {1,2,3}, and j, k # i), for

the two adjacent rounds of training, when the size and error rate of the new labeled samples meet
equation (15), the new labeled samples with the same labels from C; and Cj are submitted to C; for
updating; otherwise, the newly labeled samples in this round are discarded, and unlabeled samples are
re-selected from U for training. For the classification error rate e} of the “pseudo-labeled” samples
that cannot be directly calculated, this paper adopts the idea of ten-fold cross-validation. In each round

of the iterative training, 1—10 of the labeled samples are randomly selected from L as the test set to

estimatee!, the remaining samples in L are combined with U for trained together. The Tri-training
training with noise judgment is listed in Table 3.

4. Experiment
4.1. Dataset

To evaluate the performance of the proposed method, we carried a group of comparisons based
on the Malimg data set [7] and the Microsoft Malware Classification Challenge data set [38] (referred
to as the Microsoft data set). The description of The Microsoft and Malimg datasets are shown in Table
4 and Table 5, respectively.

Tables 4 and 5 show that the distribution proportions of malicious samples in the Malimg dataset
and the Microsoft dataset are imbalanced, and the proportions of different sample groups are different.
For example, in the Malimg data set, these two sample families of ALLAPLE in the 25 sample families
accounted for 48.6% of the total, while the remaining 23 samples only accounted for 51.4%; in the
Microsoft data set, the Simda samples in the 9 sample families only accounted for 0.4% of the total.
For traditional supervised learning algorithms, the imbalanced distribution of malicious samples often
leads to overfitting and poor classification performance.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5995-6011.
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Table 3. Improved Tri-training algorithm based on noise learning theory.

Algorithm 1: Periodic tri-training with noise judgment

Input: 4: Confidence o: Error rate threshold N: Class Number

£e¢: Upper limit of expected error L: Labeled sample set
U: Unlabeled sample set Learn: Learning algorithm
Vote: Vote algorithm Random: Random sampling algorithm
el: Error rate of round i

Output: argmax Y 1

yelabel i:c;(x)=y
1 Initialize s« 095, o« 01, N8, = <05 € 1
2 while N>Ee do
3 T+ Random(0.1L), L « L—T, e 1

4 for icp,...3 do

5 C; = Learn(ci!L’)

6 update; — FALSE

7 endfor

8 while i<3 do

9 for every ¢ € UT do

10 if cj(z) is equal to cp(x) then
11 Li + Li U{(z,cj(z))}
12 end

13 endfor

14 ¢; = Learn(c;,L)

15 nt « 1 — accurency(c;,L,T)

16 if Tjt>% - ?lm ln(zé\r) then
17 conlinue

18 end

19 ¢; = Learn(c;, L), ef7 !« el ef « l-accurency(e;,L;,T)
20 if fp<=''%" then

21 conlinue

22 end

23 if |ef, — el !|>o then

24 conlinue

25 end

26 ¢ = Lear-n-(clg(L’ U L))

27 update; + TRUE, i+« i+1

28 end

29 n = Vote(cy,c2,03,L1,L2,L3)

30 end

Mathematical Biosciences and Engineering
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Table 4. Sample distribution of malware for the Malimg dataset.

Class ID Class Family Sample size Population
1 Adialer.C Dialer 122 1.3%
2 Agent.FYI Backdoor 116 1.2%
3 Allaple. A Worm 2949 31.6%
4 Allaple.L Worm 1591 17.0%
5 Alueron.gen!J Trojan 198 2.1%
6 Autorun.K Worm: AutolT 106 1.1%
7 C2Lop.gen!G Trojan 200 2.1%
8 C2Lop.P Trojan 146 1.6%
9 Dialplatform.B Dialer 177 1.9%
10 Dontovo.A Trojan downloader 162 1.7%
11 Fakerean Rogue 381 4.1%
12 Instantaccess Dialer 431 4.6%
13 Lolyda.AA 1 PWS 213 2.3%
14 Lolyda.AA 2 PWS 184 2.0%
15 Lolyda.AA 3 PWS 123 1.3%
16 Lolyda.AT PWS 159 1.7%
17 Malex.gen!J Trojan 136 1.5%
18 Obfuscator.AD Trojan downloader 142 1.5%
19 Rbot!gen Backdoor 159 1.7%

20 Skintrim.N Trojan 80 0.9%
21 Swizzor.gen!E Trojan downloader 128 1.4%
22 Swizzor.gen!l Trojan downloader 132 1.4%
23 VB.AT Worm 408 4.4%
24 Wintrim.BX Trojan downloader 97 1.0%
25 Yuner. A Worm 800 0.086

Table 5. Sample distribution of malware for the Microsoft dataset.

Class ID Class Sample size Population
1 Ramnit 1541 14.2%
2 Lollipop 2478 22.8%
3 Kelihos ver3 2942 27.1%
4 Vundo 475 4.4%
5 Simda 42 0.4%
6 Tracur 751 6.9%
7 Kelihos verl 398 3.7%
8 Obfuscator. ACY 1228 11.3%
9 Gatak 1013 9.3%

4.2. Feature fusion methods analysis
Firstly, the LBP feature and the average grid gray intensity of the malicious sample images in the
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Malimg data set are extracted. And then CCA fusion is carried out for these two features. Finally, the
fusion results are submitted to a co-learning model for the training of classifiers. The results of the
classifications are shown in Figure 3. It can be seen that as the proportion of training data increases,
the classification results on CCA are better, which is attributed to the suppression of the repellency
between the two variables by the CCA method. By calculating the correlation coefticient of the two
one-dimensional data obtained by linear transformation projection, the CCA method maximizes the
correlation between the two dimensions, thus obtaining more discriminative data characteristics.
Moreover, after CCA fusion the dimensionality of the data is reduced, which greatly saved the training
cost of co-learning. The time comparison between traditional serial fusion and CCA fusion in different
sample sizes (in seconds) is shown in Table 6. And from the table, we can see that, after CCA fusion,
the time cost is dramatically reduced.

Table 6. Time cost for fusion methods.

M.ethod Serial Fusion CCA Fusion
Sample size
4000 378.15s 54.04s
5000 589.81s 106.16s
6000 846.73s 319.62s
100+ ) .
-o— Serial fusion
957 =~ PCA+CCA
Q\O, 90
oy
© 857
o
8 80_
<
754
70 | T T T T 1

3500 4000 4500 5000 5500 6000 6500

Sample numbers

Figure 3. Accuracy for fusion methods.

4.3. Algorithm performance analysis

5 alternative linear classifiers are employed for collaborative learning. To ensure the degree
of divergence among the cooperative learning classifiers, we eventually selected random forest,
KNN, and LR as the three candidate classifiersC;,C, and Csfor tri-training. In the experiment, the
three classifiers are initialized with differentiated sample characteristics at first. Then the three
classifiers are trained by a cooperative learning algorithm periodically. After the training, different

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5995-6011.
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types of malicious samples are predicted on the test set and compared with traditional machine
learning classifiers.

We have conducted an experimental effect analysis of the collaborative learning algorithm on the
Malimg data set, as shown in Figure 4. In the experiment, C;,C, and C; respectively represent the
selected single classical classifier, and T represents the cooperative learning algorithm satisfying the
noise learning theory. As shown in Figure 4, due to the low sample size at the beginning, the
classification performance of all training algorithms is poor. With the continuous learning from
unlabeled samples, the classifier is continuously improved, while the classification performance of
collaborative learning has raised more obviously; when the number of unlabeled samples reaches 3000,
the accuracy of fusion classification can exceed 95%, and the accuracy is raised until the number
reaches 3400. The results demonstrated that the collaborative learning algorithm can continuously
improve classification accuracy through a continuous utilization of unlabeled samples.

100
-o- ¢l

90— - C2
@ c3
< 80-
e -+ T
o
§ 70
<

60—

50 | | | 1

1
1600 2000 2400 2800 3200 3600

Number of unlabeled sample numbers

Figure 4. Accuracy of each algorithm.

However, for such a data set with imbalanced samples, simply calculating the correct rate of the
model cannot comprehensively reflect the advantages of the proposed model. Consequently, in
addition to calculating the accuracy of the overall model, the Precision, Recall, and F1- score of the
model are also calculated to further evaluate our model. The P (precision), R (recall) and F (F1-
score) of each given class are calculated first, and then average the F1 scores of all classes to calculate

the weighted-average F1 score. The calculation formulas of P, R and F are shown in Equations
(16)—(19).

TP;

Pi =, (16)
TP;
Ri=3. (17)

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5995-6011.
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__ 2XPiXR;

F; _PLTRi (18)

and

weighted — averaged F1 = % rF (19)
where TP; is the number of samples that are correctly classified in the i** category, FP; is the
number of samples that are misclassified into the i** category, and FN; indicates how many samples
belonging to the i* class are misclassified to other classes.
The evaluation results based on Malimg and Microsoft are shown in Table 7 and Table 8. The
Malimg dataset has an F1-score of up to 97.23%, while the accuracy rate of the Microsoft dataset can
reach 94.09%. Therefore, compared with other classic classification algorithms, our method can not

only reduce the input cost of labeled samples but also has better detection accuracy.

Table 7. Classification representation of different approaches on the Malimg dataset (%).

Approach Accuracy Precision Recall F1-Score
RandomForest 95.06 99.48 93.00 96.16
SVM 93.38 1 95.37 96.57
KNN 93.31 99.87 93.31 96.48
LogisticRegression 92.69 98.39 92.68 95.43
GBDT 93.37 1 93.57 96.57
Our method 97.95 99.95 95.06 97.23

Table 8. Classification representation of different approaches on the Microsoft dataset (%).

Approach Accuracy Precision Recall F1-Score
RandomForest 92.72 99.69 92.74 96.08
SVM 93.93 99.69 93.93 96.73
KNN 93.78 99.37 92.66 96.50
LogisticRegression 93.63 99.06 93.45 96.27
GBDT 92.42 96.19 92.42 94.24
Our method 94.09 1 94.09 96.96

5. Conclusions and future work

We propose a new malware classification model based on malware visualization, and co-training
of classifiers, and shows that combining the malware visual method with tri-training can provide a
better discriminative pattern of malware families. In this framework, the malware is transformed into
grayscale images by visual methods, then a fusion method based on CCA is utilized to fuse the local
and global features extracted from the gray image to reduce time cost and improve feature relevance;
finally, three basic classifiers are collaboratively training based on the tri-training schemes. In each
round of collaborative learning, the new labeled samples are filtered by noise learning theory which
ensures a continuous improvement of the overall performance of the co-learning results and alleviates
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the problem that the labeled samples are difficult to obtain in practical applications through the
incorporate of unlabeled data into the training process.

The advantages of our method are manifold. Firstly, the experimental results show that the
proposed method achieves good classification performances of 0.98 and 0.94 on Malimg dataset and
Microsoft dataset, respectively. Second, our approach is more resistant to data imbalances. Thirdly, the
tri-training algorithm improves the classification ability of the model through the introduction of a
large number of cheap unlabeled samples and reduces the noise impact caused by the lack of labeled
samples. Although the accuracy of the collaborative learning algorithm is improved after iterative
training, it increases the time overhead. In future work, the iterative updating efficiency of the
collaborative learning algorithm needs to be further improved, such as introduce some more complex
models which are more suitable for image classification.

Acknowledgments

We would like to thank you for following the instructions above very closely in advance. It will
definitely save us lot of time and expedite the process of your paper's publication.

Conflict of interest

The authors have no conflict of interest.

References

1. A.P. Namanya, A. Cullen, I. U. Awan, J. P. Disso, The world of Malware: An overview, in 2018
IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud), 2018, pp.
420427, doi: 10.1109/FiCloud.2018.00067.

2. A. Martin, H. D. Menéndez, D. Camacho, MOCDroid: Multi-objective evolutionary classifier for
Android malware detection, Soft. Comput., 21 (2017), 7405-7415.

3. P. Foran, Of digital reliance, risk and resilience, Progres. Railro., 62 (2019), 30-30,32-33.

4. K. Rieck, P. Trinius, C. Willems, T. Holz, Automatic analysis of malware behavior using machine
learning, J. Comput. Secur., 19 (2011), 639-668.

5. F. Touchette, The evolution of malware, Network Security, 1 (2016), 11-14.

6. D. Gavrilut, M. Cimpoesu, A. Dan, L. Ciortuz, Malware detection using machine learning, Int.
Multiconfer. Comput. Sci. Inform. Tech., 2010.

7. L. Nataraj, S. Karthikeyan, G. Jacob, B. S. Manjunath, Malware images: Visualization and
automatic classification, Proceedings of the 8th International Symposium on Visualization for
Cyber Security (VizSec), 2011, Available from: https://doi.org/10.1145/2016904.2016908.

8. W. Huang, J. W. Stokes, MtNet: A multi-task neural network for dynamic Malware classification,
International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
2016.

9. J. Saxe, K. Berlin, Deep neural network based Malware detection using two dimensional binary
program features, 2015 10th International Conference on Malicious and Unwanted Software
(MALWARE), (2015), 11-20.

10. E. David, N. S. Netanyahu, DeepSign: Deep learning for automatic malware signature generation
and classification, Internat. Joint Confer. Neural Networks, (2015), 1-8.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5995-6011.



6010

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, G. Giacinto, Novel feature extraction,
selection and fusion for effective Malware family classification, 6th ACM Conference on Data and
Applications Security and Privacy (CODASPY), 2016.

Z. A. Geng G. Lenzini, P. Y. A. Ryan, Next Generation Cryptographic Ransomware, (2018), 385—
401.

J. Sahs, L. Khan, A machine learning approach to Android Malware detection, Intelligence and
Security Informatics Conference (EISIC), (2012), 141-147.

X. G. Han, W. Qu, X. X. Yao, C. Y. Guo, F. Zhou, Research on malicious code variants detection
based on texture fingerprint, J. Commun., 2014.

K. S. Han, J. H. Lim, B. Kang, E. G. Im, Malware analysis using visualized images and entropy
graphs, Int. J. Inf. Secur., 14 (2015), 1-14.

J. Y. Kim, S. J. Bu, S. B. Cho, Zero-day malware detection using transferred generative adversarial
networks based on deep autoencoders, Inform. Ences, (2018), 83—102.

S. Shang, N. Zheng, X. Jian, M. Xu, H. P. Zhang, Detecting malware variants via function-call
graph similarity, /nternational Conference on Malicious & Unwanted Software, (2010), 113—-120.
B. Anderson, C. Storlie, T. Lane, Improving malware classification: Bridging the static/dynamic
gap, ACM Workshop on Security & Artificial Intelligence, 2012.

P. Zhang, B. Sun, R Ma, A Li, A novel visualization Malware detection method based on Spp-Net,
2019 IEEFE 5th International Conference on Computer and Communications (ICCC), (2019), 510-
514.

G. Xiao, J. L1, Y. Chen, K. Li, MalFCS: An effective malware classification framework with
automated feature extraction based on deep convolutional neural networks, J. Parall. Distribut.
Comput., 141 (2020), 49-58.

J. E. Engelen, H. H. Hoos, A survey on semi-supervised learning, Mach. Learn., 109 (2020), 373—
440.

K. Nigam, A. Mccallum, T. Mitchell, Semi-supervised text classification Using EM, MIT Press,
(2006), 33-55.

F. D. Frumosu, M. Kulahci, Outliers detection using an iterative strategy for semi-supervised
learning, Quality Reliab. Eng., 35 (2019).

Z. H. Zhou, M. Li, Tri-training: Exploiting unlabeled data using three classifiers, /[EEE Trans.
Knowl. Data Eng., 17 (2005), 1529-1541.

A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, Proceed Conference
Computer Learning, (1998), 92—100.

Y. Zhou, S. Goldman, Democratic co-learning, Proc. 16th IEEE Int. Conf. Tools Artif. Intell.,
(2004), 594-602.

D. G. Kong, G. H. Yan, Discriminant malware distance learning on structural information for
automated malware classification, Performance Evaluation Review, 41 (2013), 347-348.

D. Angluin, P. Laird, Learning from noisy examples, Mach. Learn., 4 (1988), 343370, Available
from: https://doi.org/10.1007/BF00116829

M. J. Sullivan, Distribution of edaphic diatoms in a mississippi salt marsh: A canonical correlation
analysis, J. Phycol., (1982), 130-133.

D. G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vision., 60
(2004), 91-110.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5995-6011.


https://doi.org/10.1007/BF00116829

6011

31. N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, IEEE Computer Society
Conference on Computer Vision & Pattern Recognition (CVPR), 2005.

32. T. Ojala, M. Pietikdinen, T. Mienpdd, Gray scale and rotation invariant texture classification with
local binary patterns, European Conference on Computer Vision (ECCV), (2000), 404—420.

33.J. Ma, X. Jiang, A. Fan, J. Jiang, J. Yan, Image matching from Handcrafted to deep features: A
survey, Int. J. Comput. Vision, 1 (2020), 1-57.

34. T. Ahonen, J. Matas, H. Chu, M. Pietikdinen, Rotation invariant image description with local binary
pattern histogram fourier features, Image Analys., (2009), 61-70.

35. H. Ran, W. Qi1, Z. Guo, Feature reduction of multi-scale LBP for texture classification, 2015
International Conference on Intelligent Information Hiding and Multimedia Signal Processing
(IIH-MSP), (2015), 397-400.

36. 1. H. Witten, E. Frank, Data mining: Practical machine learning tools and techniques, Second
Edition, ACM Sigmod. Record., 31 (2005), 76-77.

37. M. Haghighat, M. Abdel-Mottaleb, W. Alhalabi, Fully automatic face normalization and single
sample face recognition in unconstrained environments, Expert Syst Appl., 47(2016), 23-34.

38. R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, M. Ahmadi, Microsoft Malware Classification
Challenge, CORR, 2018.

ﬁtéﬂ ©2021 the Author(s), licensee AIMS Press. This is an open access
aivis AIMS Press article distributed under the terms of the Creative Commons
[ Attribution License (http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5995-6011.



