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Abstract: The traditional signature-based detection method requires detailed manual analysis to 

extract the signatures of malicious samples, and requires a large number of manual markers to maintain 

the signature library, which brings a great time and resource costs, and makes it difficult to adapt to 

the rapid generation and mutation of malware. Methods based on traditional machine learning often 

require a lot of time and resources in sample labeling, which results in a sufficient inventory of 

unlabeled samples but not directly usable. In view of these issues, this paper proposes an effective 

malware classification framework based on malware visualization and semi-supervised learning. This 

framework includes mainly three parts: malware visualization, feature extraction, and classification 

algorithm. Firstly, binary files are processed directly through visual methods, without assembly, 

decompression, and decryption; Then the global and local features of the gray image are extracted, and 

the visual image features extracted are fused on the whole by a special feature fusion method to 

eliminate the exclusion between different feature variables. Finally, an improved collaborative learning 

algorithm is proposed to continuously train and optimize the classifier by introducing features of 

inexpensive unlabeled samples. The proposed framework was evaluated over two extensively 

researched benchmark datasets, i.e., Malimg and Microsoft. The results show that compared with 

traditional machine learning algorithms, the improved collaborative learning algorithm can not 

only reduce the cost of sample labeling but also can continuously improve the model performance 

through the input of unlabeled samples, thereby achieving higher classification accuracy.  
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1. Introduction  

Malware has become a major threat to network security [1]. Traditional signature-based methods 

extract binary signatures from malware to build a huge feature library, which provides comprehensive 

information of malicious samples but requires much time and effort [2]. Meanwhile, the enormous 

malware variations also brought great challenges to signature-based detection methods. 

In recent years, many new malware detection methods have been proposed, ranging from multi-

signature methods to static analysis, dynamic detection and heuristic detection. However, the anti-

detection technology also constantly improved. Malware has learned to change their feature through 

object-code obfuscation, code refactoring and etc. According to the report of Symantec and McAfee, 

approximately 69 new instances of malware are generated per minute, and more than 50% of them are 

variants of existing malware [3]. The traditional feature extraction method cannot afford the huge cost 

brought by manually marking new samples. These new variants usually have the same malicious 

intentions and characteristics as the original malware [4,5]. Such a group of malware samples with 

similar attacking patterns is called a malware family. Recognition of malware families relies on quickly 

analyzing the behaviors and functions of malware. 

In face of the new challenges, some researchers try to explore malware features using machine 

learning technologies [4–6]. Nataraj proposed to categorize the malware family by visualizing 

malware [7]. The method not only shows the visual similarity between different samples in the same 

family but also adapts to the common fuzzy coding techniques. Accordingly, neural networks are also 

utilized to analyze visual malware and achieved promising results [8,9]. However, due to the 

complexity of the neural network, the huge cost of the training process makes it hard to catch up with 

the rapid growth of malware variants [10–12]. Besides, most of the active neural networks need 

supervised learning, requiring human experts and special tools to abstract the malware features and 

labels of new samples, which is an extremely expensive and inefficient process [13]. 

Regarding these problems, we proposed a malware detection model based on malware 

visualization and collaborative learning. In the model, firstly the malware binaries are visualized to 

gray graphs, and then the malware family features are automatically extracted from the graphs using 

image feature extractors, such as LBP extractor. Finally, the features are sent to the cooperative learning 

models with multiple classifiers to recognize malware. Furthermore, noise learning theory is 

incorporated into the training process to exclude noise in the unlabeled samples to ensure that the 

model’s error classification rate could be continuously reduced. 

The contributions in this paper are summarized as follows: 

• We proposed a malware classification framework, which integrated malware visualization, 

automatic feature extraction, and collaborative learning. The framework directly processes malware 

binaries without disassembly, decompression, and decryption. 

• This framework continuously improved the classification ability of the model through the 

introduction of unlabeled samples，which solved the issue of lack of labeled malicious samples in 

actual scenes. 

•  Comparative experiments were conducted on two widely studied imbalanced benchmark 

datasets, Malimg and Microsoft. Experimental results show that the proposed framework can achieve 

excellent classification performance, with the accuracy of 0.98 and 0.94, respectively. Compared with 

the state-of-the-art methods, our method is more resistant to the effects of data imbalance. 
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2. Related work 

2.1. Development of malware detection 

With the development of machine learning and visualization technology, researchers have begun 

to draw on the visualization ideas in the field of computer forensics and network monitoring to 

visualize and classify malware [7]. First, the raw binary data in the malware is converted to grayscale 

images, in which each byte is represented as a grayscale pixel of the image. These byte sequences are 

then combined into a 2D array, and feature extraction is performed through texture analysis to convert 

the malware detection into an image classification task. In such a way, not only the characteristic 

information of software can be visualized, but also the detection efficiency of malware is improved 

compared with the traditional methods [14–16]. Furthermore, in contrast with traditional static analysis 

methods, malware visualization is more suitable for malicious samples adapted by obfuscation 

technology [17]. 

Recently, quantities of visual detection methods based on malware have been proposed [18,19]. 

However, these methods still have some shortages, including the lack of available labeled samples in 

real applications, the great gap between feature extraction algorithms and visual feedback, and etc. [20] 

Therefore, we apply a semi-supervised learning algorithm to alleviate the issue of insufficient samples 

and continuously improves the classification performance through the utilization of unlabeled samples 

along with noise learning theory. 

2.2. Semi-supervised learning algorithm 

Supervised algorithms have achieved promising performance of malware detection, however, 

they rely on plenty of labeled samples for training, which is difficult to be satisfied in real 

applications [20,21]. On the other hand, unsupervised learning can employ unlabeled samples for 

training but often gets lower accuracy [22]. Compared with these two types of classification algorithms, 

the semi-supervised learning algorithm only needs a small number of labeled samples in the training 

stage and can continuously enhance detection performance through the use of a large number of 

unlabeled samples [23,24]. Consequently, semi-supervised learning is more suitable for the 

applications of malware detection. 

The semi-supervised learning algorithm co-training [25] assumes that we have two redundant and 

independent feature views to deal with data. And then, at the initial training stage, some labeled 

samples are summited to two basic classifiers in different feature views. After initial training, unlabeled 

samples with high label confidence are selected and these "pseudo-label" samples are put into the 

updating set for further training. Through the process of "learning from each other and making progress 

together", the classifiers iteratively updating in each training round until their performances are stable. 

However, the conditional independence of the two feature views is difficult to satisfy. S. Goldman and 

Y. Zhou proposed to improve the classifiers by collaborative learning [26]. Although this method has 

removed the requirement of redundant feature views, it still restricts the types of base classifiers, and 

the repeated ten-fold cross-validation in the updating process results in an overwhelming cost. In 

response to this problem, Zhi-Hua Zhou et al. proposed a Tri-training algorithm that neither requires 

sufficient redundant views nor restricts the type of classifiers [27]. The algorithm easily handles the 

problem of labeling confidence estimation and predictive classification of unknown samples by using 

three collaborative classifiers. 
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In this paper, the idea of noise learning theory [28] is utilized to improve the collaborative learning 

based on the original Tri-training algorithm. In each iteration stage, parts of “pseudo-label” samples 

are extracted for error rate calculations and threshold evaluation to reduce the tag error rate of "pseudo-

label". For a detailed description of the model, see Section 3. 

 

Figure 1. The overall process of malware detection for collaborative learning. 

3. Methodology 

The work of this paper focuses on the detection of malware. Figure 1 shows the architecture of 

our malware classification model, which mainly consists of three major components: malware 

visualization, feature extraction, and the tri-training classification algorithm. 

3.1. Malware visualization 

As shown in the first stage in Figure 1, The malware visualization transforms the binary codes 

into images with certain characteristic information [7,14]. For a given binary file, each 8-bit is 

transformed into one unsigned integer, and the result of these variables is reorganized into a two-

dimensional matrix. The corresponding value in the matrix can be expressed as the gray value of the 
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generated image in the range of [0, 255], where 0 and 255 represent black and white respectively. 

Figure 2 shows the visualization process of a binary malware file into a grayscale image. 

 

Figure 2. Process of malware visualization. 

The images converted from malware have the same width and different heights. The widths of 

images of different sizes are required to be pondered carefully, in case the generated images are 

extremely high or too wide, which degrades the performance of feature extraction [7]. Table 1 gives 

some recommended image widths for the malicious samples. 

Table 1. Image width for various sizes. 

File size Optional width 

<10KB 32 

10KB–30KB 64 

… … 

1000KB–2000KB 1024 

2000KB–4000KB 1280 

4000KB–8000KB 1536 

8000KB–10MB 1792 

10MB–15MB 2048 

15MB–20MB 2560 

20MB–25MB 3072 

25MB–30MB 4096 

>30MB 5120 

3.2. Feature extraction 

Take the obfuscated code technologies into consideration, such as fragment encryption and 

instruction substitution in consideration, the texture features of the generated gray-scale image may be 

disturbed and deformed. Hence, to ensure that the image features utilized in the training are stable and 

robust, both the local texture features and global features of the images are extracted and fused through 

the canonical correlation analysis (CCA) method [29]. 

3.2.1. Feature selection 

Before feature extraction, the SIFT feature [30], HOG feature [31], and LBP feature [32] are 

analyzed and compared for the local feature extraction of malicious samples’ gray images [33]. SIFT 
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features can keep the rotation, brightness, and scale of the image unchanged, but demand enormous 

computation. Since the characteristic gamma correction is performed at the end of the image grayscale 

calculation, the feature extracted by HOG can reduce the negative impact of local shadow and light 

changes. Nevertheless, the HOG extraction has some defects, such as the prolix generation process 

and sensitivity to noise points, which leads to high-risk costs. Thus, a more steady and efficient feature 

extraction method is required. 

Many malicious samples are derived from some classic malware. Source from the structure 

similarity of the malware family, the pixels of the converted gray images have some equal proportions 

on the whole or in some local areas [7,20]. Similarly, for the LBP feature extraction, the relative size 

of the central pixel and the overall gray level of the neighborhood remain unchanged even if they 

change simultaneously [34,35]. Furthermore, The LBP descriptor has benign adaptability to the effect 

of image rotation. Depending on the nature of this event, the LBP method has high adaptability and 

robustness for the detection of different groups of malicious samples. 

Therefore, LBP is utilized to extract the local features. It employs a descriptor window as a 

circular area, for a neighborhood with 𝑝 pixels containing a one-pixel set{𝑔0, 𝑔1, . . . , 𝑔𝑝−1} , and the 

encoding method of LBP is as: 

 𝐿𝐵𝑃𝑃,𝑅 = ∑ 𝑠(𝑔𝑝 − 𝑔𝑐)𝑃−1
𝑝=0 2𝑝, 𝑠(𝑥) = {

1,
0,     

𝑥 ≥ 0
𝑥 < 0

 (1) 

where 𝑔𝑐 and 𝑔𝑝 represent the gray value of the central pixel and circular neighborhood pixel 

respectively, and 𝑅 is the radius of the neighborhood. For such a circular LBP operator, the relative 

position of the center pixel𝑔𝑐and 𝑔𝑝 changes with the image rotation, resulting in various LBP values. 

Consequently, we adopt the uniform rotation invariant LBP operator, which can adapt to image rotation 

and has anti-noise property for a large number of modes generated in the circular neighborhood of 

different sizes, defined by: 

 𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2

= {
∑ 𝑠(𝑔𝑝 − 𝑔𝑐)𝑝−1

𝑝=0

𝑃 + 1
 
𝑖𝑓 𝑈(𝐿𝐵𝑃𝑃,𝑅) ≤ 2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

where 𝑠(𝑥) = {
1
0

 
𝑥 ≥ 0
𝑥 < 0

  and 𝑈  represents the LBP uniformity space conversion times (the 

transition between binary bits 0/1), expressed as: 

 𝑈(𝐿𝐵𝑃𝑃,𝑅) = ∑ |𝑠(𝑔𝑝 − 𝑔𝑐) − 𝑠(𝑔𝑝−1 − 𝑔𝑐)|𝑃
𝑝=1  (3) 

The LBP feature has the advantage of stability and noise anti-interference for the regional feature 

description, which mainly focuses on the local feature while lacking the global feature description of 

the images. Therefore, after extracting the LBP features of the malicious sample image, the global 

feature of the image was also extracted, this reduced the noise through Gaussian fuzzy processing. The 

image is divided into grids by the average size of 16 × 16. And the global image feature computes the 

mean value and average variance of pixel intensity in each grid of image where the two-dimensional 

Gaussian function is employed to calculate the weight of each pixel shown in (4).  

 𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒−(𝑥2+𝑦2)/2𝜎2

 (4) 
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where 𝜎 is the variance of 𝑥. 

3.2.2. Feature fusion 

To enhance the correlation between features and images, canonical correlation analysis (CCA) is 

applied to the fusion of image features after extracting the global and local features. CCA is an effective 

multi-data processing method [36], which can mine the potential association relationship between two 

sets of variables to obtain more representative data. The general idea of CCA is to obtain the maximum 

correlation coefficient between the linear combination of two groups of variables through a large 

number of matrix calculations, to establish the relationship between the two groups of variables [37]. 

The CCA feature fusion produces a structure containing 𝐷  null hypothesis (H0) and related 

information after the fusion of the two features X(local) and Y(global), which 𝐷 takes the minimum 

values of the ranks of the two feature matrices X and Y: 𝐷 = 𝑚𝑖𝑛(𝑟𝑎𝑛𝑘(𝑋), 𝑟𝑎𝑛𝑘(𝑌)) . Relevant 

information statistics of fusion are shown in Table 2.  

Table 2. Statistics on CCA fusion methods. 

Wilks chisq pChisq F pF df1 df2 

Wilks 

Lambda 

Approximate 

chi-squared 

statistic for 

H0 

The right-tail 

significance 

level for 

chisq 

Approximate 

chi-squared 

statistic for 

H0_K 

The right-

tail 

significance 

level for F 

The 

numerator 

degrees of 

freedom 

for F  

The 

denominator 

degrees of 

freedom for 

F 

3.3. Tri-Training algorithm based on Noise learning judgment 

The Tri-training algorithm contains three basic classifiers: 𝐶1, 𝐶2, 𝐶3 . 𝐶𝑖(𝑖 ∈ {1,2,3}) . A small 

number of labeled samples L along with a large number of unlabeled samples U are applied to the 

training process to carry out co-training [25] of the basic classifiers. 

For the three classifiers 𝐶𝑖 , 𝐶𝑗 , 𝐶𝑘  (where 𝑖, 𝑗, 𝑘 ∈ {1，2，3}  and 𝑗, 𝑘 ≠ 𝑖 ) in each round of co-

training, 𝐶𝑗 and 𝐶𝑘 are used to randomly select samples from the unlabeled sample set 𝑈 to make 

predictions, where the samples {𝑥|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑘(𝑥) = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑗(𝑥)} labeled by 𝐶𝑗 and 𝐶𝑘 are considered to 

have higher labeling confidence, and then they are taken as new labeled data and put into the updating 

set 𝐿𝑖 of the classifier 𝐶𝑖. 𝐿𝑖 along with the known labeled sample set 𝐿 to update the classifier 𝐶𝑖. 

After each round of updating, the newly labeled samples are put back in 𝑈 to start a new round of 

iteratively training until all the classifiers do not change. As shown in formula (5), after the iterative 

training, the class of the sample is predicted through a voting mechanism. 

 ℎ(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦∈𝑙𝑎𝑏𝑒𝑙

∑ 1
𝑖,ℎ𝑖(𝑥)=𝑦

 (5) 

If the prediction of 𝐶𝑗 and 𝐶𝑘 on𝑥is correct, 𝐶𝑖will get a valid new example for further training; 

otherwise, 𝐶𝑖will get a noise example with an incorrect label. According to the noise learning [28] 

theory of Angluin and Laird, for a training sequence 𝛾𝑖 containing m samples, if the sample size 𝑚 

is: 
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 𝑚 ≥
2

𝜀2(1−2𝜂)2 𝑙𝑛(
2𝑁

𝛿
) (6) 

where 𝜀 is the upper limit of the classifier error and 𝜂 is the classification error of the training 

set rate, 𝑁  is the number of categories, 𝛿  is the confidence parameter, then the PAC (probably 

approximately correct identification) judgment for the real classification h* is: 

 𝑃𝑟[𝑑(ℎ𝑗 , ℎ
∗) ≥ 𝜀] ≤ 𝛿 (7) 

where 𝑑(ℎ𝑗 , ℎ∗)  represents the sum of the probabilities of the elements of the symmetric 

difference between the hypothesis (classifier) ℎ
𝑗
  and the real situation ℎ

∗
 . Given the confidence 

parameter 𝛿 and the upper limit of classification error 𝜀, formula (8) can be transformed into formula (9): 

 (1 − 2𝜂)2 >
2

𝜀2𝑚
𝑙𝑛(

2𝑁

𝛿
) (8) 

Expand the left side of formula (8), we can get: 

 1 −
2

𝜀2𝑚
𝑙𝑛(

2𝑁

𝛿
) ≥ 4(𝜂 − 𝜂2) ≥ 4𝜂 (9) 

Thus 

 1 −
2

𝜀2𝑚
𝑙𝑛(

2𝑁

𝛿
) ≥ 4𝜂 (10) 

That is, for the given confidence parameter 𝛿 and the upper limit of classification error 𝜀, We 

need to guarantee that: 

 𝜂 ≤
1−

2

𝜀2𝑚
𝑙𝑛(

2𝑁

𝛿
)

4
 (11) 

To simplify the calculation of equation (10), let𝑐 = 2𝜇𝑙𝑛(
2𝑁

𝛿
), where 𝜇the coefficient that makes 

equation (11) is equal, and then we can get: 

 
𝑐

𝜀2
= 𝑚(1 − 4𝜂) (12) 

It can be seen from formula (12) that the square term of the upper limit of error 𝜀 is inversely 

proportional to 𝑚(1 − 4𝜂). Samples that are temporarily marked by two of the classifiers in each round 

can be called pseudo-marked samples. Since the number of unlabeled examples selected for each round 

of tri-training is not fixed, let 𝐿𝑡 be the pseudo-sample set labeled 𝐶1 for the 𝑡𝑡ℎ round, and the error 

rate of sample detection is 𝜂𝑡, then for the sample size of this round 𝑀𝑡 = |𝐿| + |𝐿𝑡|. Compared with 

the previous round, if the training result of this round is improved, it is necessary to ensure that the 

(13) must be satisfied: 

 (|𝐿| + |𝐿𝑢
𝑡 |)(1 − 4𝜂𝑡) > (|𝐿| + |𝐿𝑢

𝑡−1|)(1 − 4𝜂𝑡−1) (13) 

That is, updating the classifier by the |𝐿𝑡|  unknown samples introduced in this round can 

continue to improve the classification performance, because the upper limit error 𝜀of the training result 
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of the 𝑡𝑡ℎ round is lower than that of the𝑡 − 1𝑡ℎ round; otherwise, the newly-labeled samples of this 

round are abandoned and start re-sample training in 𝑈. For equation (13), the sample detection error 

rate is 𝜂𝑡 =
𝑒𝐿

𝑡|𝐿|+𝑒𝑢
𝑡 |𝐿𝑢

𝑡 |

|𝐿+𝐿𝑢
𝑡 |

, where 𝑒𝐿
𝑡 and 𝑒𝑢

𝑡  represent the error rate of the classifier on the labeled sample 

set 𝐿 and the unlabeled sample set 𝐿𝑢 during the 𝑡𝑡ℎ round of training respectively. To ensure that 

the training process can continuously reduce the upper limit of classification error 𝜀, substituting the 

𝜂𝑡 expression into equation (13), we can get: 

|𝐿𝑢
𝑡 | − 4(𝑒𝐿

𝑡|𝐿| + 𝑒𝑢
𝑡 |𝐿𝑢

𝑡 |) > |𝐿𝑢
𝑡−1| − 4(𝑒𝐿

𝑡−1|𝐿| + 𝑒𝑢
𝑡−1|𝐿𝑢

𝑡−1|) (14) 

In most cases, for the classification error rate of the model on the labeled samples, 𝑒𝐿
𝑡 << 𝑒𝑢

𝑡 , thus 

𝑒𝐿
𝑡 can be ignored. So equation (14) can be simplified as (15). 

   |𝐿𝑢
𝑡 | − (1 − 4𝑒𝑢

𝑡 ) > |𝐿𝑢
𝑡−1|(1 − 4𝑒𝑢

𝑡−1), that is 

 
|𝐿𝑢

𝑡 |

|𝐿𝑢
𝑡−1|

>
1−4𝑒𝑢

𝑡−1

1−4𝑒𝑢
𝑡  (15) 

Therefore, in the tri-training process of the classifiers 𝐶𝑖, 𝐶𝑗 , 𝐶𝑘(𝑖, 𝑗, 𝑘 ∈ {1,2,3}，𝑎𝑛𝑑 𝑗, 𝑘 ≠ 𝑖), for 

the two adjacent rounds of training, when the size and error rate of the new labeled samples meet 

equation (15), the new labeled samples with the same labels from 𝐶𝑗 and 𝐶𝑘 are submitted to 𝐶𝑖 for 

updating; otherwise, the newly labeled samples in this round are discarded, and unlabeled samples are 

re-selected from 𝑈 for training. For the classification error rate 𝑒𝑢
𝑡  of the “pseudo-labeled” samples 

that cannot be directly calculated, this paper adopts the idea of ten-fold cross-validation. In each round 

of the iterative training, 
1

10
 of the labeled samples are randomly selected from 𝐿 as the test set to 

estimate𝑒𝑢
𝑡 , the remaining samples in 𝐿 are combined with U for trained together. The Tri-training 

training with noise judgment is listed in Table 3. 

4. Experiment 

4.1. Dataset 

To evaluate the performance of the proposed method, we carried a group of comparisons based 

on the Malimg data set [7] and the Microsoft Malware Classification Challenge data set [38] (referred 

to as the Microsoft data set). The description of The Microsoft and Malimg datasets are shown in Table 

4 and Table 5, respectively. 

Tables 4 and 5 show that the distribution proportions of malicious samples in the Malimg dataset 

and the Microsoft dataset are imbalanced, and the proportions of different sample groups are different. 

For example, in the Malimg data set, these two sample families of ALLAPLE in the 25 sample families 

accounted for 48.6% of the total, while the remaining 23 samples only accounted for 51.4%; in the 

Microsoft data set, the Simda samples in the 9 sample families only accounted for 0.4% of the total. 

For traditional supervised learning algorithms, the imbalanced distribution of malicious samples often 

leads to overfitting and poor classification performance. 

  



6004 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 5995–6011. 

Table 3. Improved Tri-training algorithm based on noise learning theory. 

Algorithm 1: Periodic tri-training with noise judgment 

Input:   
 

     

     

     

Output:  

1 Initialize  

2 while  do 

3          

4     for  do 

5          

6            

7     endfor 

8     while  do 

9         for  do  

10            if  then 

11                 

12            end 

13        endfor 

14         

15         

16        if  then 

17             

18        end 

19         

20        if  then 

21             

22        end 

23        if  then 

24             

25        end 

26         

27         

28    end 

29     

30 end 
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Table 4. Sample distribution of malware for the Malimg dataset. 

Class ID Class Family Sample size Population 

1 Adialer.C Dialer 122 1.3% 

2 Agent.FYI Backdoor 116 1.2% 

3 Allaple.A Worm 2949 31.6% 

4 Allaple.L Worm 1591 17.0% 

5 Alueron.gen!J Trojan 198 2.1% 

6 Autorun.K Worm: AutoIT 106 1.1% 

7 C2Lop.gen!G Trojan 200 2.1% 

8 C2Lop.P Trojan 146 1.6% 

9 Dialplatform.B Dialer 177 1.9% 

10 Dontovo.A Trojan downloader 162 1.7% 

11 Fakerean Rogue 381 4.1% 

12 Instantaccess Dialer 431 4.6% 

13 Lolyda.AA 1 PWS 213 2.3% 

14 Lolyda.AA 2 PWS 184 2.0% 

15 Lolyda.AA 3 PWS 123 1.3% 

16 Lolyda.AT PWS 159 1.7% 

17 Malex.gen!J Trojan 136 1.5% 

18 Obfuscator.AD Trojan downloader 142 1.5% 

19 Rbot!gen Backdoor 159 1.7% 

20 Skintrim.N Trojan 80 0.9% 

21 Swizzor.gen!E Trojan downloader 128 1.4% 

22 Swizzor.gen!I Trojan downloader 132 1.4% 

23 VB.AT Worm 408 4.4% 

24 Wintrim.BX Trojan downloader 97 1.0% 

25 Yuner.A Worm 800 0.086 

Table 5. Sample distribution of malware for the Microsoft dataset. 

Class ID Class Sample size Population 

1 Ramnit 1541 14.2% 

2 Lollipop 2478 22.8% 

3 Kelihos ver3 2942 27.1% 

4 Vundo 475 4.4% 

5 Simda 42 0.4% 

6 Tracur 751 6.9% 

7 Kelihos ver1 398 3.7% 

8 Obfuscator.ACY 1228 11.3% 

9 Gatak 1013 9.3% 

4.2. Feature fusion methods analysis 

Firstly, the LBP feature and the average grid gray intensity of the malicious sample images in the 
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Malimg data set are extracted. And then CCA fusion is carried out for these two features. Finally, the 

fusion results are submitted to a co-learning model for the training of classifiers. The results of the 

classifications are shown in Figure 3. It can be seen that as the proportion of training data increases, 

the classification results on CCA are better，which is attributed to the suppression of the repellency 

between the two variables by the CCA method. By calculating the correlation coefficient of the two 

one-dimensional data obtained by linear transformation projection, the CCA method maximizes the 

correlation between the two dimensions, thus obtaining more discriminative data characteristics. 

Moreover, after CCA fusion the dimensionality of the data is reduced, which greatly saved the training 

cost of co-learning. The time comparison between traditional serial fusion and CCA fusion in different 

sample sizes (in seconds) is shown in Table 6. And from the table, we can see that, after CCA fusion, 

the time cost is dramatically reduced.   

Table 6. Time cost for fusion methods. 

     Method 

Sample size 
Serial Fusion CCA Fusion 

4000 378.15s 54.04s 

5000 589.81s 106.16s 

6000 846.73s 319.62s 
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Figure 3. Accuracy for fusion methods. 

4.3. Algorithm performance analysis 

5 alternative linear classifiers are employed for collaborative learning. To ensure the degree 

of divergence among the cooperative learning classifiers, we eventually selected random forest, 

KNN, and LR as the three candidate classifiers𝐶1,𝐶2 and 𝐶3for tri-training. In the experiment, the 

three classifiers are initialized with differentiated sample characteristics at first. Then the three 

classifiers are trained by a cooperative learning algorithm periodically. After the training, different 
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types of malicious samples are predicted on the test set and compared with traditional machine 

learning classifiers. 

We have conducted an experimental effect analysis of the collaborative learning algorithm on the 

Malimg data set, as shown in Figure 4. In the experiment, 𝐶1,𝐶2 and 𝐶3 respectively represent the 

selected single classical classifier, and T represents the cooperative learning algorithm satisfying the 

noise learning theory. As shown in Figure 4, due to the low sample size at the beginning, the 

classification performance of all training algorithms is poor. With the continuous learning from 

unlabeled samples, the classifier is continuously improved, while the classification performance of 

collaborative learning has raised more obviously; when the number of unlabeled samples reaches 3000, 

the accuracy of fusion classification can exceed 95%, and the accuracy is raised until the number 

reaches 3400. The results demonstrated that the collaborative learning algorithm can continuously 

improve classification accuracy through a continuous utilization of unlabeled samples. 
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Figure 4. Accuracy of each algorithm. 

However, for such a data set with imbalanced samples, simply calculating the correct rate of the 

model cannot comprehensively reflect the advantages of the proposed model. Consequently, in 

addition to calculating the accuracy of the overall model, the Precision, Recall, and F1- score of the 

model are also calculated to further evaluate our model. The 𝑃 (precision), 𝑅 (recall) and 𝐹 (F1-

score) of each given class are calculated first, and then average the F1 scores of all classes to calculate 

the weighted-average F1 score. The calculation formulas of 𝑃 , 𝑅  and 𝐹  are shown in Equations 

(16)–(19). 

 𝑃𝑖 =
𝑇𝑃𝑖

𝐹𝑃𝑖
 (16) 

 𝑅𝑖 =
𝑇𝑃𝑖

𝐹𝑁𝑖
 (17) 
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 𝐹𝑖 =
2×𝑃𝑖×𝑅𝑖

𝑃𝑖+𝑅𝑖
 (18) 

and 

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝐹1 =
1

𝑛
∑ 𝐹𝑖

𝑛
𝑖=1   (19) 

where 𝑇𝑃𝑖 is the number of samples that are correctly classified in the 𝑖𝑡ℎ category, 𝐹𝑃𝑖 is the 

number of samples that are misclassified into the 𝑖𝑡ℎ category, and 𝐹𝑁𝑖 indicates how many samples 

belonging to the 𝑖𝑡ℎ class are misclassified to other classes. 

The evaluation results based on Malimg and Microsoft are shown in Table 7 and Table 8. The 

Malimg dataset has an F1-score of up to 97.23%, while the accuracy rate of the Microsoft dataset can 

reach 94.09%. Therefore, compared with other classic classification algorithms, our method can not 

only reduce the input cost of labeled samples but also has better detection accuracy. 

Table 7. Classification representation of different approaches on the Malimg dataset (%). 

Approach Accuracy Precision Recall F1-Score 

RandomForest 

SVM 

KNN 

LogisticRegression 

GBDT 

Our method 

95.06 

93.38 

93.31 

92.69 

93.37 

97.95 

99.48 

1 

99.87 

98.39 

1 

99.95 

93.00 

95.37 

93.31 

92.68 

93.57 

95.06 

96.16 

96.57 

96.48 

95.43 

96.57 

97.23 

Table 8. Classification representation of different approaches on the Microsoft dataset (%). 

Approach Accuracy Precision Recall F1-Score 

RandomForest 

SVM 

KNN 

LogisticRegression 

GBDT 

Our method 

92.72 

93.93 

93.78 

93.63 

92.42 

94.09 

99.69 

99.69 

99.37 

99.06 

96.19 

1 

92.74 

93.93 

92.66 

93.45 

92.42 

94.09 

96.08 

96.73 

96.50 

96.27 

94.24 

96.96 

5. Conclusions and future work 

We propose a new malware classification model based on malware visualization, and co-training 

of classifiers, and shows that combining the malware visual method with tri-training can provide a 

better discriminative pattern of malware families. In this framework, the malware is transformed into 

grayscale images by visual methods, then a fusion method based on CCA is utilized to fuse the local 

and global features extracted from the gray image to reduce time cost and improve feature relevance; 

finally, three basic classifiers are collaboratively training based on the tri-training schemes. In each 

round of collaborative learning, the new labeled samples are filtered by noise learning theory which 

ensures a continuous improvement of the overall performance of the co-learning results and alleviates 
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the problem that the labeled samples are difficult to obtain in practical applications through the 

incorporate of unlabeled data into the training process.  

The advantages of our method are manifold. Firstly, the experimental results show that the 

proposed method achieves good classification performances of 0.98 and 0.94 on Malimg dataset and 

Microsoft dataset, respectively. Second, our approach is more resistant to data imbalances. Thirdly, the 

tri-training algorithm improves the classification ability of the model through the introduction of a 

large number of cheap unlabeled samples and reduces the noise impact caused by the lack of labeled 

samples. Although the accuracy of the collaborative learning algorithm is improved after iterative 

training, it increases the time overhead. In future work, the iterative updating efficiency of the 

collaborative learning algorithm needs to be further improved, such as introduce some more complex 

models which are more suitable for image classification.  
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