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Abstract: Purpose: Cutaneous melanoma (SKCM) is the most invasive malignancy of skin cancer. 

Metastasis to distant lymph nodes or other system is an indicator of poor prognosis in melanoma 

patients. The aim of this study was to identify reliable prognostic biomarkers for SKCMs. Methods: 

Four RNA-sequencing datasets associated with SKCMs were downloaded from the Gene Expression 

Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database as well as corresponding clinical 

information. Differentially expressed genes (DEGs) were screened between primary and metastatic 

samples by using MetaDE tool. Weighted gene co-expression network analysis (WGCNA) was 

conducted to screen functional modules. A prognostic score (PS)-based predictive model and 

nomogram model were constructed to identify signature genes and independent clinicopathologic 

factors. Results: Based on MetaDE analysis and WGCNA, a total of 456 overlapped genes were 

identified as hub genes related to SKCMs progression. Functional enrichment analysis revealed these 

genes were mainly involved in the hippo signaling pathway, signaling pathways regulating 

pluripotency of stem cells, pathways in cancer. In addition, eight optimal DEGs (RFPL1S, CTSV, 

EGLN3, etc.) were identified as signature genes by using PS model. Cox regression analysis revealed 

that pathologic stage T, N and recurrence were independent prognostic factors. Three clinical factors 

and PS status were incorporated to construct a nomogram predictive model for estimating the three 

years and five-year survival probability of individuals. Conclusions: The prognosis prediction model 

of this study may provide a promising method for decision making in clinic and prognosis predicting 

of SKCM patients. 
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1. Introduction  

Skin cutaneous melanoma (SKCM) is an aggressive malignancy with the highest mortality in 

skin cancer. In general, it is characterized by high grade malignancy, and most patients are diagnosed 

at an advanced stage, which leads to missed therapeutic opportunities [1]. According to cancer 

statistics in 2020, approximately 95,710 new cases of skin melanoma are diagnosed in US [2]. 

Although recent checkpoint blockade immunotherapy (such as PD-1/PD-L1 antibodies) and targeted 

therapy have contributed to medical breakthroughs, the 5-year overall survival rate of metastatic 

SKCM is still less than 5% due to local recurrence and metastasis [3,4]. Therefore, it is urgent 

demands to develop more superior reliable biomarkers for early detection and prognosis 

prediction in SKCMs.  

Metastasis of melanoma was associated with activation of several pathways, such as 

epithelial-mesenchymal transition (EMT), angiogenesis, pericytic mimicry and extravascular 

migratory [5,6]. However, the genetic and molecular mechanism of metastasis remains unclear. 

Cutaneous melanoma can metastasize haematogenously or through the lymphatic system, and three 

exist predominant models can explain the progression, stepwise spread, simultaneous spread and 

differential spread model [7,8]. Brain metastases are particularly common in metastatic melanoma 

patients and they can also metastasize to liver, bones, or distant lymph nodes [9]. Nowadays, the 

increasing application of RNA-sequencing technologies has shown effective methods for 

understanding tumor metastasis. With the development of gene expression profiling, researchers 

have identified gene expression signatures that are associated with metastasis or survival 

outcomes [10,11]. Recently, bioinformatic analysis of public databases has been broadly used to 

explore prognostic biomarkers in disease progression, and the predictive models can also be utilized 

to assess prognosis in melanoma patients [12,13]. Thus, the identification of reliable signature genes 

and clinical factors will provide a guide for decision-making in clinical.  

In this study, we comprehensively analyzed the RNA-sequencing profiles of SKCMs by using 

weighted gene co-expression network analysis (WGCNA) and bioinformatics analysis. Based on 

prognostic score (PS) model and nomogram model, we screened eight signature genes and three 

clinical characteristics for prognosis prediction of SKCMs. Our findings might provide reliable 

prognostic biomarkers in SKCMs.  

2. Materials and methods 

2.1. Data resource 

RNA-sequencing profiles of SKCMs were derived from The Cancer Genome Atlas (TCGA) 

(https: //gdc-portal.nci.nih.gov/) on September 9, 2020 and tested on Illumina HiSeq 2000 RNA 

sequencing platform. The profile included 473 SKCM tumor samples, of which 458 SKCM tumor 

samples with metastasis and clinical survival information were selected as training data set. 

In addition, microarray data of SKCM were downloaded from the Gene Expression Omnibus 

(GEO) (http: //www.ncbi.nlm.nih.gov/geo/) based on following screening criteria: 1) transcriptional 

expression profiles; 2) skin solid tissue samples from SKCM patients; 3) human expression profiles; 

4) individuals containing metastasis information; 5) samples counts should be more than fifty; 6) 

information with survival and prognosis. Finally, we obtained three datasets associated with SKCM, 
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including GSE46517 [14], GSE7553 [15], and GSE65904 [16,17]. The whole testing platform and 

corresponding usage of these profiles were shown in Table 1. 

Table 1. Datasets and usage information included in this study. 

Datasets Platform Component of samples Usage 

TCGA Illumina HiSeq 2000 
102 primary, 356 

metastatic 

Used for DEGs, WGCNA and prognostic 

analysis 

GSE46517 GPL570 Affymetrix 31 primary, 73 metastatic 
Used for DEGs, WGCNA analysis 

GSE7553 GPL570 Affymetrix 14 primary, 40 metastatic 

GSE65904 GPL10558 Illumina 214 SKCM Used for prognostic model validation 

Moreover, annotation of each platform involved in Table 1 were download from Ensembl 

genome browser 96 databases [18] (http: //asia.ensembl.org/index.html), including RNA types, gene 

symbol and probe, etc. After re-annotate the detection probes in the expression profile dataset, the 

corresponding long non-coding RNAs (lncRNAs) and mRNA expression level were finally obtained. 

2.2. Screening DEGs 

MetaDE tool [19,20] in R3.6.1 software was utilized to screened significantly differentially 

expressed RNAs from three databases of TCGA, GSE46517 and GSE7553. Heterogeneity of gene 

expression value was tested with parameters of tau2, Q-value and Qpval. The tau2 represents the 

amount of heterogeneity, and Qpval represents the heterogeneity of data set. If tau2 = 0 and Qpval > 0.05, 

it means that the gene was homogeneous and unbiased. Therefore, false discovery rate (FDR) < 0.05, 

tau2 = 0 and Qpval > 0.05 were set as thresholds to ensure homogeneity of signature genes. 

Combining with |log2 fold-change (FC)| parameter, the genes with the same direction of logFC in the 

three datasets is screened as candidate genes for further analysis. 

2.3. WGCNA  

WGCNA is a method for screening diseases-related modules from thousands of genes, and then 

incorporating these modules to clinical characteristics [21]. In this study, we used WGCNA version 

1.61 packet [22] to screen disease-related modules. Profiles of TCGA were set as training set, while 

GSE46517 and GSE7553 were set as validation set. All algorithms were conducted following 

scale-free features. The correlation of co-expression matrix was analyzed and adjacency functions 

were defined. By the criteria of gene counts ≥ 50 and cut Height = 0.995, we identified the modules 

associated with disease traits. The stability of modules across differential datasets was calculated 

based on two validation sets. 

The mRNAs screened from MetaDE analysis were corresponding to WGCNA modules to 

identify overlapped genes significantly associated with disease traits. Hypergeometric algorithm [23] 

were conducted to calculated enrichment parameter and significance P value of DEGs in each 

module. Fold enrichment > 1 and P < 0.05 were set as thresholds for hub gene screening. 

f (k, N, M, n) = C (k, M) * C (n-k, N-M)/C (n, N) 
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where “N” and “M” represent the whole gene cohorts and module-related genes screened by 

WGCNA. “n” and “k” represent the whole gene counts and module-related genes screened by 

MetaDE analysis.  

2.4. Co-expression network construction 

To identify crucial genes related to SKCM metastasis, we calculated the Pearson correlation 

coefficient (PCC) of DEGs in TCGA training set by using cor function. We constructed the 

co-expression network for the overlapped genes or lncRNAs screened by MetaDE analysis and 

WGCNA. Cytoscape 3.6.1 [24] were utilized to visualize the connection of gene pairs. GO and 

KEGG pathways analysis were conducted by using DAVID version 6.8 [25] tool, and p value less 

than 0.05 was selected as the threshold. 

2.5. Identification optimal RNAs for prognostic risk prediction 

Cox regression analysis were conducted to screen DEGs associated with survival time in TCGA 

dataset by using survival package [26]. Log-rank p < 0.05 was selected as a threshold.  

Next, cox-proportional hazards (Cox-PH) model [27] in penalized package version 0.9-50 [28] 

were used to further screen the optimal RNAs associated with SKCM prognosis. The optimal 

parameter “lambda” in the screening model is obtained through cycling 1000 cross-validation 

likelihood calculation. PS model were constructed on the basis of least absolute shrinkage and 

selection operator (LASSO) coefficient and expression value of DEGs in training set. The PS 

calculation formula is as follows:  

Prognostic score (PS) = ∑βRNAs × Exp RNAs 

where βRNAs represents the LASSO prognostic coefficient, Exp RNAs refers to expression level of 

RNAs in training set. 

To validate the performance ability of this predictive model, we calculated PS value of each 

sample, and divided samples of training set and validation set into high and low risk groups by 

setting median PS value as criteria. The correlation between risk grouping and overall survival time 

was assessed by using survival package.  

2.6. Identify independent prognostic clinicopathologic factors 

Univariate and multivariate cox regression analysis were conducted to screen the clinical factors 

correlated to survival times of SKCMs. Log-rank p value < 0.05 was selected as a threshold. Since 

then, to further explore the correlation of risk grouping and variables, individuals could be divided 

into differential subgroups on the basis of clinicopathologic parameters, such as pathologic T, N, 

recurrence, etc. 

In addition, nomogram model incorporating three factors and PS status were constructed by 

using rms package [29] version 5.1-2 for prediction of 3- and 5-year survival probability of 

individuals. Nomogram is a graphic scale to visualize the contribution of each factor to survival 

probability prediction of an individual patient, and it has been widely applied in survival time 

prediction in multiple cancers [30,31], such as bladder cancer, lung cancer, renal cancer, etc. 
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2.7. Functional analysis of DEGs between high-risk group and low-risk group 

The samples in the training set were divided into high-risk and low-risk two groups 

according to PS model. The DEGs between two groups were screened by using limma package 

version 3.34.7. FDR < 0.05 and |log2FC| > 1 were considered as screening threshold. Gene set 

enrichment analysis (GSEA) [32] was carried out to identify potential pathways related to risk, 

and P < 0.05 was set as criteria. 

3. Results 

3.1. Differentially expressed RNAs between primary and metastasis SKCMs 

 

Figure 1. Hierarchical cluster analysis of DEGs between primary and metastasis 

SKCM samples. Black and white column represent primary and metastasis SKCM 

samples, respectively. 



5130 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 5125–5145. 

According to gene expression analysis, we screened numerous of differential expressed RNAs 

from three datasets (TCGA, GSE46517 and GSE7553). After calculated parameters (pval, FDR, tau2, 

Qpval and Qval) of each gene, we finally identified 1463 differential expressed RNAs between 

primary and metastasis samples, including 11 lncRNAs and 1452 mRNAs. The clustering analysis 

results of heatmap showed these differential expressed RNAs could be clustered into the same 

column and rows, indicating these genes might be crucial genes related to metastasis of SKCMs 

(Figure 1). 

3.2. Identification functional modules  

While the power value was set as 14, the median connectivity of RNAs satisfied the scale-free 

network (Figure 2A). CutHeight was chose as 0.995, and three gene hierarchical clustering trees 

(dendrogram) were generated based on TCGA, GSE46517, and GSE7553 dataset, including 12 

co-expression modules (Figure 2B). A heatmap were generated to visualize the associations of 

module and clinical traits (Figure 2C). 

Table 2. Preservation information of TCGA, GSE46517 and GSE7553 modules. 

ID Color Module size 
Preservation infor 

#DEGs 
Enrichment infor 

Z-score P value Enrichment fold [95%CI] Phyper 

module 1 black 46 1.0948  5.30E-01 2 0.461 [0.0540-1.772] 4.33E-01 

module 2 blue 412 26.1088  1.50E-32 31 0.798 [0.528-1.166] 2.86E-01 

module 3 brown 222 13.0959  5.10E-07 40 1.909 [1.310-2.725] 7.61E-04 

module 4 green 116 3.3211  6.80E-02 9 0.822 [0.364-1.630] 7.46E-01 

module 5 green yellow 31 1.4561  2.20E-02 1 0.342 [0.00838-2.062] 5.19E-01 

module 6 grey 3254 1.3379  3.10E-10 305 0.994 [0.851-1.159] 9.69E-01 

module 7 magenta 42 5.5990  7.70E-01 1 0.252 [0.00623-0.493] 1.76E-01 

module 8 pink 44 9.0744  1.30E-02 7 1.686 [0.637-3.802] 2.05E-01 

module 9 purple 38 1.9483  6.70E-02 4 1.115 [0.288-3.119] 7.81E-01 

module 10 red 49 2.2596  4.90E-01 5 1.082 [0.335-2.719] 8.06E-01 

module 11 turquoise 446 31.0564  4.00E-35 50 1.188 [1.055-1.622] 2.80E-02 

module 12 yellow 134 6.8541  3.50E-01 1 0.0791 [0.00198-0.450] 1.26E-04 

Notes: where “Z score” represented the stability of modules. Modeled with Z score range from 5 to 10 

represented the general stability, while Z score > 10 represented a high stability. The p value represented 

correlationships of modules. 

Four modules with preservation Z score > 5 and P value < 0.05 were identified as stable 

modules associated with clinical traits (Table 2). We compared the differential expressed RNAs from 

MetaDE and WGCNA package, and found 456 overlapped genes with consistent expressed status 

(Figure 2D). These genes were mainly enriched in brown and turquoise modules according to the 

preset thresholds (Fold enrichment > 1, P value < 0.05), including 40 and 50 mRNAs respectively 

(Figure 2E).  
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.  

Figure 2. Weighted gene co-expression network construction. A, Scale-free network 

analysis. B, Division of co-expression gene modules based on TCGA, GSE46517 and 

GSE7553 datasets. C, Correlation matrix for each module and clinicopathological 

parameters. D, Venn diagram showed the overlapped genes between MetaDE analysis 

and WGCNA. E, Distribution of overlapped genes in each module (left) and the 

parameter graph of genes enriched in modules (right). 

3.3. Co-expression network construction 

We explore the correlation-ships of dysregulated mRNAs or lncRNAs related to SKCM 

prognosis. By the criteria of absolute PCC value higher than 0.4, we screened 458 pair of 

connections to construct network (Figure 3A). These genes were mainly related to 12 BP and 6 
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KEGG pathways (Table 3, Figure 3B), such as process of transcription, DNA-templated, protein 

autophosphorylation, DNA-templated, anatomical structure morphogenesis, pathways in cancer, 

hippo signaling pathway, etc. 

 

Figure 3. Co-expression network construction A, The co-expression network of DEGs in 

brown and turquoise module. B, GO term and KEGG pathway enrichment analysis. 

3.4. Prognostic model for establishing optimal RNAs 

The whole samples in training set and validation set were divided into low- and high-risk group 

after calculating PS value. We screened 41 RNAs significantly correlated to prognosis of disease by 

univariate analysis. Multivariate analysis showed 14 RNAs with independent prognostic values were 

identified as hub genes, including 2 lncRNAs and 12 mRNAs. Using cox-proportional hazards model, 

we final selected 8 RNAs as optimal signature genes associated with SKCM prognosis, such as 

RFPL1S, CTSV, EGLN3, ESRP1, HESX1, MANEA, PKP1 and PRSS8 (Table 4).  
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Table 3. GO terms and KEGG pathways enrichment analysis for major mRNAs in 

co-expression network. 

Category Term Count Pvalue 

Biology Process GO: 0035735~intraciliary transport involved in cilium morphogenesis 2 3.37E-02 

 GO: 0030916~otic vesicle formation 2 3.37E-02 

 GO: 0015889~cobalamin transport 2 3.84E-02 

 GO: 0045893~positive regulation of transcription, DNA-templated 7 4.00E-02 

 GO: 0006351~transcription, DNA-templated 16 4.50E-02 

 GO: 0046777~protein autophosphorylation 4 4.52E-02 

 GO: 0043508~negative regulation of JUN kinase activity 2 4.66E-02 

 GO: 0009653~anatomical structure morphogenesis 3 4.74E-02 

 GO: 0006978~DNA damage respons 2 4.75E-02 

 GO: 0009948~anterior/posterior axis specification 2 4.80E-02 

 GO: 0051298~centrosome duplication 2 4.89E-02 

 GO: 0009235~cobalamin metabolic process 2 4.98E-02 

KEGG Pathway hsa04390: Hippo signaling pathway 5 2.29E-04 

 hsa04550: Signaling pathways regulating pluripotency of stem cells 4 1.52E-03 

 hsa05200: Pathways in cancer 5 5.79E-03 

 hsa04530: Tight junction 2 2.82E-02 

 hsa04310: Wnt signaling pathway 2 4.10E-02 

 hsa00230: Purine metabolism 2 4.91E-02 

Table 4. Identify the optimal RNA cohorts for prognostic prediction model. 

Symbol Type 
Multi-variate Cox regression analysis 

LASSO coef 
HR 95%CI P value 

RFPL1S lncRNA 1.424 1.018-1.990 3.89E-02 0.1846  

CTSV mRNA 1.107 1.002-1.358 3.32E-02 0.0440  

EGLN3 mRNA 1.109 1.006-1.342 2.90E-02 0.0651  

ESRP1 mRNA 1.122 1.033-1.268 1.64E-02 0.1092  

HESX1 mRNA 0.687 0.476-0.993 4.57E-02 -0.2125  

MANEA mRNA 0.747 0.601-0.930 8.96E-03 -0.2613  

PKP1 mRNA 1.241 1.080-1.426 2.36E-03 0.1473  

PRSS8 mRNA 0.766 0.599-0.980 3.40E-02 -0.0959  

PS value of each sample was calculated based on expression value and LASSO coefficient of 

eight signature genes. The solution paths and parameters of lasso regression model of 8-genes 

prognostic risk model were shown in Figure 4. Individuals of dataset can be divided into low- and 

high-risk groups. Accuracy of risk grouping was further validated by evaluating the correlation 

between actual survival rate and risk grouping. Patients in high risk groups exhibited a poor 

prognosis than those in low risk groups, indicating a significant consistency of disease grouping and 

actual disease prognosis (Figure 5A,B). 
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Figure 4. Kaplan-Meier curves for SKCMs in training (A) and validation set (B). Left: 

Overall survival time analysis based on prediction model. Right: Receiver operating 

characteristic curve. Data in bracket represent specificity and sensitivity of model. 

3.5. Independent prognostic clinical factors 

Three clinical factors (pathologic N, T, recurrence) and PS status were identified as 

independent prognosis-related factors (Table 5, Table S1) according to regression analysis. 

Patients could be divided into differential groups according to three clinical factors. 

Kaplan-Meier curve demonstrated patients in groups of high-grade pathologic T, N and 

recurrence statue exhibited a poor prognosis. The results were consistent with actual disease 

progression (Figure 6A). Furthermore, individuals could be divided into differential subgroups 
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based on pathologic stage and recurrence status. The patients in differential subgroups were 

further divided into high and low risk groups according to PS value. Patients in low risk groups 

exhibited a better prognosis than those in high risk groups (Figure 6B). 

 

Figure 5. LASSO profiles of the prognostic genes in SKCM. (A) LASSO coefficient 

profiles of the prognostic genes in SKCM. (B) Lasso deviance profiles of the prognostic 

genes in SKCM. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528264/bin/12935_2019_858_MOESM4_ESM.tif
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528264/bin/12935_2019_858_MOESM4_ESM.tif
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528264/bin/12935_2019_858_MOESM4_ESM.tif
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Figure 6. The results of identify prognostic clinical factors in SKCMs. A, Kaplan-Meier 

curves for clinical factors pathologic N, T and recurrence. B, Kaplan-Meier curves 

showed the correlation of risk grouping and prognosis. 
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Table 5. Screening independent clinical factors for survival analysis. 

Clinical characteristics TCGA (N = 458) 
Uni-variables cox Multi-variables cox 

HR 95%CI P HR 95%CI P 

Age (years, mean ± sd) 58.09 ± 15.74 1.024 1.015-1.034 1.71E-07 1.008 0.992-1.025 3.19E-01 

Gender (Male/Female) 284/174 1.148 0.866-1.522 3.32E-01 - - - 

Pathologic M (M0/M1/-) 408/24/26 1.877 1.019-3.459 4.34E-02 1.478 0.439-4.971 5.28E-01 

Pathologic N (N0/N1/N2/N3/-) 227/73/49/55/54 1.367 1.198-1.561 2.42E-06 1.405 1.201-1.975 4.98E-02 

Pathologic T (T1/T2/T3/T4/-) 64/76/89/151/78 1.442 1.255-1.657 7.05E-08 1.412 1.100-1.811 6.75E-03 

Pathologic stage (I/II/III/IV/-) 82/138/169/23/46 1.419 1.203-1.674 2.73E-05 1.395 0.775-2.513 2.67E-01 

Radiotherapy (Yes/No/-) 49/408/1 0.522 0.317-0.857 8.93E-03 1.207 0.538-2.709 6.48E-01 

Tumor recurrence (Yes/No/-) 88/207/163 1.831 1.193-2.810 4.96E-03 1.915 1.110-3.302 1.95E-02 

Prognostic model (High/Low) 229/229 2.407 1.827-3.172 1.43E-10 3.23 1.854-5.628 3.47E-05 

Death (Yes/No) 221/237 - - - - - - 

Overall survival time (months mean ± sd) 61.45 ± 64.69 - - - - - - 

3.6. Nomogram model to predict survival probability of individuals  

Nomogram model incorporating four variables (pathologic N, T, recurrence and PS status) were 

constructed to predict 3- and 5-year survival probability of individuals (Figure 7). The total score of 

each factor corresponded to an estimated survival rate in nomograms. “Total Points” axis in the first 

row incorporates the four variables to predict prognosis of patients. 

3.7. Screening of crucial genes DEGs between high-risk group and low-risk group 

Table 6. KEGG pathways analysis for critical differential expressed genes related to risk grouping. 

NAME Gene count ES NES NOM p-val 

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 20 -0.5980  -1.8426  6.623E-03 

KEGG_FOCAL_ADHESION 5 -0.7394  -1.5914  1.843E-02 

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 3 -0.7673  -1.5308  3.419E-02 

KEGG_JAK_STAT_SIGNALING_PATHWAY 7 -0.5553  -1.5085  3.601E-02 

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 25 -0.4286  -1.4432  3.915E-02 

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 6 -0.7082  -1.4858  4.270E-02 

KEGG_MELANOGENESIS 3 0.8835  1.6179  6.012E-03 

KEGG_TYROSINE_METABOLISM 2 0.8191  1.4877  3.184E-02 

Samples of TCGA set were divided into two groups after calculating PS values. We finally 

obtained 662 DEGs (including 427 downregulated and 235 upregulated genes) between the high-risk 

and low-risk groups, and the volcanic diagram was shown in Figure 8A. The heatmap incorporate the 

gene expression level and Risk Score to visualize the distribution of crucial genes (Figure 8B).   

GSEA results revealed these DEGs were mainly related to eight pathways, such as 

melanogenesis (Table 6, Figure 9), JAK-STAT signaling pathway, cytokine receptor interaction, 

neuroactive ligand receptor interaction, etc. 
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Figure 7. Nomogram for predicting survival probability in the TCGA data set. A, A 

nomogram model of independent prognostic factor for survival probability prediction. B, 

Calibration curve for the nomogram predicting overall survival. 
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Figure 8. Screen DEGs between high-risk group and low-risk group based on TCGA 

training set. A, Volcanic diagram showed the DEGs of high and low risk groups. Green 

and orange dots represent DEGs, while gray represents general genes. B, Heatmap 

showed the different group of DEGs changing from low to high risk score. 

 

Figure 9. Enrichment map of KEGG pathways significantly related to risk grouping. 

4. Discussion 

In this study, a total of 1463 DEGs were screened between primary tumor and metastatic 

samples based on three datasets, TCGA, GSE46517 and GSE7553. We conducted WGCNA and 

identified two stable functional modules. Functional enrichment analysis revealed module-related 
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DEGs were associated with pathways in cancer, hippo signaling pathway, regulating pluripotency of 

stem cells. After PS model and nomogram model construction, we identified 8 optimal signature 

RNAs (such as lncRNA-RFPL1S, CTSV, ESRP1, etc.) and three independent clinical factors 

(Pathologic N, T and Recurrence) for prognosis prediction of individuals. 

In this study, a lncRNA-mRNA network was constructed by differentially expressing lncRNAs 

and DEGs. In order to elucidate the underlying mechanisms, pathway enrichment analysis was 

performed on these lncRNAs and DERs. The results of the study showed that these DEGs were 

significantly associated with the Hippo signaling pathway, Signaling pathways regulating 

pluripotency of stem cells and Pathways in cancer. The Hippo pathway is a critical regulator of organ 

growth and cell fate that is dysregulated in many cancers [33]. Cancer malignancy has been linked to 

distinct subsets of stem-like cells, known as cancer stem cells, which persist during treatment and 

appear to lead to drug-resistant recurrence [34]. Besides, melanomas develop from 

melanoma-competent melanocyte stem cells in response to UVB stimulation, which causes 

melanocyte stem cell activation and translocation through an inflammation-dependent process [35]. 

These findings indicate that the Hippo signaling pathway, Signaling pathways regulating 

pluripotency of stem cells and Pathways in cancer are important for SKCM, and that disease-related 

RNAs RNAs are involved in the regulation of these pathways in SKCM. 

We explored the potential biological function of eight signature genes by searching the 

published papers. IncRNAs are types of RNAs molecules without protein encoding function, and 

have been reported involved in the tumorgenesis and development. LncRNAs-RFPL1S is antisense to 

RFPL1 gene and may function in the post-transcriptional regulation of this gene [36]. RFPL 

transcripts encode proteins with tripartite structure and it has been reported regulating cell-cycle 

progression through cyclin B1/Cdc2 degradation [37]. A recent study showed RFPL1S were 

down-regulated in brain tumors samples and expression patterns of this lncRNA were correlated with 

malignancy grade in gliomas [38]. 

CTSV or cathepsin L2 is a lysosomal cysteine proteinase that associated with 

extracellular-matrix degradation and tumor progress. High expression of CTSV is reported to 

involved in metastasis and poor prognosis in breast ductal cancer, and it is a potential biomarker for 

prognosis prediction breast cancer [39]. Moreover, two gene CTSV and CTSC were involved in 

invasion of RCC, and a recent study showed praeruptorin B could promote the metastatic ability of 

RCC cells through targeting CTSC and CTSV expression [40]. In addition, ELGN3 or PHD3 is a 

member of PHDs, which induced in hypoxia. The biological role of PHD3 was related to HIF-1α 

hydroxylation, suppression of tumor angiogenesis under hypoxic conditions [41,42]. Further study 

demonstrated the tumor inhibition role of EGLN3, and it could regulates p53 stability by 

hydroxylating proline 359 and resulted to cell cycle arrest and apoptosis [43]. In murine melanoma 

model, treatment of PHD3 inhibitor could decreases tumor growth and angiogenesis through 

increasing sVEGFR-1 generation from tumor-associated macrophages, indicating a critical role 

PHD3 in tumor progression [44]. Whereas, PHD3 might function as the tumor promotion factor in 

some tumors. By integrative -omics and HLA-ligand omics analysis, Anna identified that 

EGLN3-derived peptides were associated with higher infiltration of tumor by CD8+ T cells; 

functional analyses revealed EGLN3 might play the role of pro-proliferative and anti-apoptotic in 

several RCC cell lines [45]. Moreover, EGLN3 were also elaborated that related to chemotherapy 

resistance of cancer, such as prostate cancer and pheochromocytoma [46,47].  

Furthermore, protein of ESRP1 belong to RNA-binding proteins family and it involved in tumor 
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progression through regulating of gene posttranscriptional process [48]. Studies have shown that 

downregulation of ESRPs was associated with tumor infiltration in various type of cancers, including 

prostate cancer, breast cancer and pancreatic cancers [49,50]. Recently, ESRP1 was identified as 

potential prognostic biomarker in cutaneous malignant melanoma [51], and patients with higher 

ESRP1 level had a poor overall survival rate than those with lower ESRP1 level; the further analysis 

showed ESRP1 was negatively associated with infiltration of DC and Treg cells. It is well known 

that DC can promote tumor metastasis by up-regulating Treg cells and down-regulating the 

cytotoxicity of CD8+ T cells [52]. In fact, data analysis in our study also identified dysregulated 

ESRP1 from metastatic SKCM sample, which consistent with previous studies.  

In addition, PKP1/2/3 played an potential role in tumor invasion and metastasis in various 

malignancy and PKP1 mutation could result in skin fragility syndrome [53,54]. Lee et al reported 

that phosphorylation of Pkp1 by RIPK4 (receptor-interacting serine-threonine kinase 4) regulated 

epidermal differentiation and skin tumorigenesis [55]. Moreover, the serine protease PRSS8 could 

suppress colorectal carcinogenesis and metastasis [56]. Hypermethylated PRSS8 in ESCC tissues 

was linked to the downregulation of PRSS8; The reduction of PRSS8 was well correlated with 

shorter survival time in ESCC patients [57]. High levels of PRSS8 and prostasin has been identified 

as potential clinical biomarkers for ovarian cancer early detection [58]. Taken together, these findings 

indicated that protein of CTSV, ESRP1, ELGN3 might be critical genes associated with tumor 

metastasis, and the eight genes may be reliable biomarkers for predictive of SKCM prognosis. 

Univariate and multivariate cox regression analysis revealed three clinicopathological variables 

and PS status were correlated to prognosis of SKCMs. Nomogram model incorporating these factors 

to predict 3- and 5-year survival probability of individuals. Previous studies showed this model has 

been widely used to provide prognosis prediction for cancer patients. A recent study showed six 

clinical factors were significantly correlated with sentinel node status, which is major factor of 

melanoma prognosis; six variables-based nomogram model exhibited a good predictive performance 

and suggested to be a decision aid for T1 melanoma being considered sentinel node biopsy [59]. 

Using nomogram model, another paper identified five immune-related genes and several clinical 

parameters for prognosis prediction of SKCMs [60], such as pathological T, N, AJCC stage etc.. In 

our study, we selected common clinical factors of SKCMs, and these clinicopathologic parameters 

were relative easily available and comprehensive in clinical work. Moreover, our nomogram 

exhibited a better discrimination ability for predicting prognosis. 

The potential limitation of this study should be enumerated. Firstly, individual number was 

small and the whole data analysis were conducted on the basis of public databases (TCGA and GEO), 

thus more external samples from multiple medical centers should be concerned validate the 

performance of prediction models. Secondly, the function of optimal RNAs also needed to be further 

investigated in SKCM not only by data analysis but also by molecular and cellular experiments. 

5. Conclusions 

In conclusion, we screened cohorts of overlapping genes related to SKCM metastasis by using 

DEGs analysis and WGCNA. On the basis of PS model, we identified eight signature genes and 

pathologic N, T and recurrence as prognostic factors for disease prediction. Furthermore, eight 

signature genes based predictive model and nomogram might be useful methods for prognostic 

prediction of SKCM patients. 



5142 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 5125–5145. 

Conflict of interest  

The authors report no conflicts of interest. 

References 

1. D. Burns, J. George, D. Aucoin, J. Bower, N. Bower, The pathogenesis and clinical management 

of cutaneous melanoma: an evidence-based review, J. Med. Imaging Radiat. Sci., 50 (2019), 

460–469. 

2. R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics, CA. Cancer J. Clin., 70 (2020), 7–30. 

3. T. Crosby, R. Fish, B. Coles, M. Mason, Systemic treatments for metastatic cutaneous 

melanoma, Cochrane Database Syst. Rev., 2 (2018), CD001215. 

4. L. C. van Kempen, M. Redpath, C. Robert, A. Spatz, Molecular pathology of cutaneous 

melanoma, Melanoma Manag., 1 (2014), 151–164. 

5. C. Lugassy, S. Zadran, L. A. Bentolila, M. Wadehra, R. Prakash, S. T. Carmichael, et al., 

Angiotropism, pericytic mimicry and extravascular migratory metastasis in melanoma: an 

alternative to intravascular cancer dissemination, Cancer Microenviron., 7 (2014), 139–152. 

6. S. L. V. Es, M. Colman, J. F. Thompson, S. W. McCarthy, R. A. Scolyer, Angiotropism is an 

independent predictor of local recurrence and in-transit metastasis in primary cutaneous 

melanoma, Am. J. Surg. Pathol., 32 (2008), 1396–1403. 

7. L. Mervic, Time course and pattern of metastasis of cutaneous melanoma differ between men 

and women, PLoS One., 7 (2012), e32955. 

8. N. R. Adler, A. Haydon, C. A. McLean, J. W. Kelly, V. J. Mar, Metastatic pathways in patients 

with cutaneous melanoma, Pigment Cell Melanoma Res., 30 (2017), 13–27. 

9. I. J. Fiddler, Melanoma metastasis, Cancer Control, 2 (1995), 398–404. 

10. C. Haqq, M. Nosrati, D. Sudilovsky, J. Crothers, D. Khodabakhsh, B. L. Pulliam, et al., The 

gene expression signatures of melanoma progression, Proc. Natl. Acad. Sci. U. S. A., 102 (2005), 

6092–6097. 

11. S. Mandruzzato, A. Callegaro, G. Turcatel, S. Francescato, M. C. Montesco, V. Chiarion-Sileni, 

et al., A gene expression signature associated with survival in metastatic melanoma, J. Transl. 

Med., 4 (2006), 1479–5876. 

12. B. Huang, W. Han, Z. F. Sheng, G. L. Shen, Identification of immune-related biomarkers 

associated with tumorigenesis and prognosis in cutaneous melanoma patients, Cancer Cell Int., 

20 (2020), 020–01271. 

13. M. Liao, F. Zeng, Y. Li, Q. Gao, M. Yin, G. Deng, et al., A novel predictive model incorporating 

immune-related gene signatures for overall survival in melanoma patients, Sci. Rep., 10 (2020), 12462. 

14. O. Kabbarah, C. Nogueira, B. Feng, R. M. Nazarian, M. Bosenberg, M. Wu, et al., Integrative 

genome comparison of primary and metastatic melanomas, PLoS One, 5 (2010), 0010770. 

15. A. I. Riker, S. A. Enkemann, O. Fodstad, S. Liu, S. Ren, C. Morris, et al., The gene expression 

profiles of primary and metastatic melanoma yields a transition point of tumor progression and 

metastasis, BMC Med. Genomics, 1 (2008), 1755–8794. 

16. H. Cirenajwis, H. Ekedahl, M. Lauss, K. Harbst, A. Carneiro, Molecular stratification of 

metastatic melanoma using gene expression profiling : Prediction of survival outcome and 

benefit from molecular targeted therapy, Oncotarget, 6 (2015), 12297–12309. 



5143 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 5125–5145. 

17. R. Cabrita, M. Lauss, A. Sanna, M. Donia, G. Jönsson, Tertiary lymphoid structures improve 

immunotherapy and survival in melanoma, Nature, 577 (2020), 561–565. 

18. V. Nicolaidou, C. Papaneophytou, C. Koufaris, Detection and characterisation of novel 

alternative splicing variants of the mitochondrial folate enzyme MTHFD2, Mol. Biol. Rep., 47 

(2020), 1–8. 

19. C. Qi, L. Hong, Z. Cheng, Q. Yin, Identification of metastasis-associated genes in colorectal 

cancer using metaDE and survival analysis, Oncol. Lett., 11 (2015), 568–574. 

20. X. Wang, D. D. Kang, K. Shen, C. Song, S. Lu, L. C. Chang, et al., An R package suite for 

microarray meta-analysis in quality control, differentially expressed gene analysis and pathway 

enrichment detection, Bioinformatics, 28 (2012), 2534–2536. 

21. X. Zhai, Q. Xue, Q. Liu, Y. Guo, Z. Chen, Colon cancer recurrenceassociated genes revealed by 

WGCNA coexpression network analysis, Mol. Med. Rep., 16 (2017), 6499–6505. 

22. P. Langfelder and S. Horvath, WGCNA: an R package for weighted correlation network analysis, 

BMC Bioinf., 9 (2008), 1471–2105. 

23. J. Cao, S. Zhang, A Bayesian extension of the hypergeometric test for functional enrichment 

analysis, Biometrics., 70 (2014), 84–94. 

24. P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, et al., Cytoscape: a 

software environment for integrated models of biomolecular interaction networks, Genome Res., 

13 (2003), 2498–2504. 

25. D. W. Huang, B. T. Sherman, R. A. Lempicki, Systematic and integrative analysis of large gene 

lists using DAVID bioinformatics resources, Nat. Protoc., 4 (2009), 44–57. 

26. P. Wang, Y. Wang, B. Hang, X. Zou, J. H. Mao, A novel gene expression-based prognostic 

scoring system to predict survival in gastric cancer, Oncotarget, 7 (2016), 55343–55351. 

27. R. Tibshirani, The lasso method for variable selection in the Cox model, Stat. Med., 16 (1997), 

385–395. 

28. J. J. Goeman, L1 penalized estimation in the Cox proportional hazards model, Biom. J., 52 

(2010), 70–84. 

29. K. H. Eng, E. Schiller, K. Morrel, On representing the prognostic value of continuous gene 

expression biomarkers with the restricted mean survival curve, Oncotarget, 6 (2015), 36308–

36318. 

30. W. Liang, L. Zhang, G. Jiang, Q. Wang, J. He, Development and validation of a nomogram for 

predicting survival in patients with resected non-small-cell lung cancer, J. Clin. Oncol., 33 

(2015), 861–869. 

31. C. Zhang, F. Wang, F. Guo, C. Ye, B. Yang, A 13-gene risk score system and a nomogram 

survival model for predicting the prognosis of clear cell renal cell carcinoma, Urol. Oncol., 38 

(2020), 74.e1–74.e11. 

32. A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, et al., 

Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide 

expression profiles, Proc. Natl. Acad. Sci. U. S. A., 102 (2005), 15545–15550. 

33. X. Zhang, L. Yang, P. Szeto, G. K. Abali, Y. Zhang, A. Kulkarni, et al., The Hippo pathway 

oncoprotein YAP promotes melanoma cell invasion and spontaneous metastasis, Oncogene, 39 

(2020), 5267–5281. 

34. Z. Kozovska, V. Gabrisova and L. Kucerova, Malignant melanoma: diagnosis, treatment and 

cancer stem cells, Neoplasma, 63 (2016), 510–517. 



5144 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 5125–5145. 

35. H. Moon, L. R. Donahue, E. Choi, P. O. Scumpia, W. E. Lowry, J. K. Grenier, et al., Melanocyte 

Stem Cell Activation and Translocation Initiate Cutaneous Melanoma in Response to UV 

Exposure, Cell Stem. Cell, 21 (2017), 665–678. 

36. E. Seroussi, D. Kedra, H. Q. Pan, M. Peyrard, C. Schwartz, P. Scambler, et al., Duplications on 

human chromosome 22 reveal a novel Ret Finger Protein-like gene family with sense and 

endogenous antisense transcripts, Genome Res., 9 (1999), 803–814. 

37. J. Bonnefont, T. Laforge, O. Plastre, B. Beck, S. Sorce, C. Dehay, et al., Primate-specific RFPL1 

gene controls cell-cycle progression through cyclin B1/Cdc2 degradation, Cell Death Differ., 18 

(2011), 293–303. 

38. X. Zhang, S. Sun, J. K. Pu, A. C. Tsang, D. Lee, V. O. Man, et al., Long non-coding RNA 

expression profiles predict clinical phenotypes in glioma, Neurobiol. Dis., 48 (2012), 1–8. 

39. M. Toss, I. Miligy, K. Gorringe, K. Mittal, R. Aneja, I. Ellis, et al., Prognostic significance of 

cathepsin V (CTSV/CTSL2) in breast ductal carcinoma in situ, J. Clin. Pathol., 73 (2020), 76–82. 

40. C. -L. Lin, T. -W. Hung, T. -H. Ying, C. -J. Lin, Y. -H. Hsieh, C. -M. Chen, Praeruptorin B 

mitigates the metastatic ability of human renal carcinoma cells through targeting CTSC and 

CTSV expression, Int. J. Mol. Sci., 21 (2020), 2919. 

41. Q. L. Liu, Q. L. Liang, Z. Y. Li, Y. Zhou, W. T. Ou, Z. G. Huang, Function and expression of 

prolyl hydroxylase 3 in cancers, Arch Med. Sci., 9 (2013), 589–593. 

42. N. Pescador, Y. Cuevas, S. Naranjo, M. Alcaide, D. Villar, M. O. Landázuri, et al., Identification 

of a functional hypoxia-responsive element that regulates the expression of the egl nine 

homologue 3 (egln3/phd3) gene, Biochem. J., 390 (2005), 189–197. 

43. J. Rodriguez, A. Herrero, S. Li, N. Rauch, A. Quintanilla, K. Wynne, et al., PHD3 regulates p53 

protein stability by hydroxylating proline 359, Cell Rep., 24 (2018), 1316–1329. 

44. J. M. Roda, Y. Wang, L. A. Sumner, G. S. Phillips, C. B. Marsh, T. D. Eubank, Stabilization of 

HIF-2α induces sVEGFR-1 production from tumor-associated macrophages and decreases 

tumor growth in a murine melanoma model, J. Immunol., 189 (2012), 3168–3177. 

45. A. Reustle, M. Di Marco, C. Meyerhoff, A. Nelde, J. S. Walz, S. Winter, et al., Integrative 

-omics and HLA-ligandomics analysis to identify novel drug targets for ccRCC immunotherapy, 

Genome Med., 12 (2020), 32–32. 

46. Y. Wang, X. Li, W. Liu, B. Li, D. Chen, F. Hu, et al., MicroRNA-1205, encoded on chromosome 

8q24, targets EGLN3 to induce cell growth and contributes to risk of castration-resistant 

prostate cancer, Oncogene, 38 (2019), 4820–4834. 

47. S. Li, J. Rodriguez, W. Li, P. Bullova, S. M. Fell, O. Surova, et al., EglN3 hydroxylase stabilizes 

BIM-EL linking VHL type 2C mutations to pheochromocytoma pathogenesis and chemotherapy 

resistance, Proc. Natl. Acad. Sci. U. S. A., 116 (2019), 16997–17006. 

48. T. W. Bebee, J. W. Park, K. I. Sheridan, C. C. Warzecha, B. W. Cieply, A. M. Rohacek, et al., 

The splicing regulators Esrp1 and Esrp2 direct an epithelial splicing program essential for 

mammalian development, Elife, 15 (2015), 08954. 

49. K. Horiguchi, K. Sakamoto, D. Koinuma, K. Semba, A. Inoue, S. Inoue, et al., TGF-β drives 

epithelial-mesenchymal transition through δEF1-mediated downregulation of ESRP, Oncogene, 

31 (2012), 3190–3201. 

50. J. Ueda, Y. Matsuda, K. Yamahatsu, E. Uchida, Z. Naito, M. Korc, et al., Epithelial splicing 

regulatory protein 1 is a favorable prognostic factor in pancreatic cancer that attenuates 

pancreatic metastases, Oncogene, 33 (2014), 4485–4495. 



5145 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 5125–5145. 

51. B. Wang, Y. Li, C. Kou, J. Sun, X. Xu, Mining database for the clinical significance and 

prognostic value of ESRP1 in cutaneous malignant melanoma, Biomed. Res. Int., 5 (2020), 

4985014. 

52. A. Sawant, J. A. Hensel, D. Chanda, B. A. Harris, G. P. Siegal, A. Maheshwari, et al., Depletion 

of plasmacytoid dendritic cells inhibits tumor growth and prevents bone metastasis of breast 

cancer cells, J. Immunol., 189 (2012), 4258–4265. 

53. A. E. Boyce, J. A. McGrath, T. Techanukul, D. F. Murrell, C. W. Chow, L. McGregor, et al., 

Ectodermal dysplasia-skin fragility syndrome due to a new homozygous internal deletion 

mutation in the PKP1 gene, Australas. J. Dermatol., 53 (2012), 61–65. 

54. I. Hofmann, Plakophilins and their roles in diseased states, Cell Tissue Res., 379 (2020), 5–12. 

55. P. Lee, S. Jiang, Y. Li, J. Yue, X. Gou, S. Y. Chen, et al., Phosphorylation of Pkp1 by RIPK4 

regulates epidermal differentiation and skin tumorigenesis, Embo. J., 36 (2017), 1963–1980. 

56. Y. Bao, Y. Guo, Y. Yang, X. Wei, S. Zhang, Y. Zhang, et al., PRSS8 suppresses colorectal 

carcinogenesis and metastasis, Oncogene, 38 (2019), 497–517. 

57. Y. Bao, Q. Wang, Y. Guo, Z. Chen, K. Li, Y. Yang, et al., PRSS8 methylation and its significance 

in esophageal squamous cell carcinoma, Oncotarget, 7 (2016), 28540–28555. 

58. A. Tamir, A. Gangadharan, S. Balwani, T. Tanaka, U. Patel, A. Hassan, et al., The serine 

protease prostasin (PRSS8) is a potential biomarker for early detection of ovarian cancer, J. 

Ovarian Res., 9 (2016), 016–0228. 

59. A. Maurichi, R. Miceli, H. Eriksson, J. Newton-Bishop, J. Nsengimana, M. Chan, et al., Factors 

affecting sentinel node metastasis in thin (T1) cutaneous melanomas: development and external 

validation of a predictive nomogram, J. Clin. Oncol., 38 (2020), 1591–1601. 

60. B. Hu, Q. Wei, C. Zhou, M. Ju, L. Wang, L. Chen, et al., Analysis of immune subtypes based on 

immunogenomic profiling identifies prognostic signature for cutaneous melanoma, Int. 

Immunopharmacol., 6 (2020), 107162. 

©2021 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

 


