
http://www.aimspress.com/journal/MBE

MBE, 18(4): 4860–4870.
DOI: 10.3934/mbe.2021247
Received: 28 March 2021
Accepted: 31 May 2021
Published: 03 June 2021

Research article

Ternary compound ontology matching for cognitive green computing

Wei-Min Zheng1, Qing-Wei Chai1, Jie Zhang2 and Xingsi Xue3,∗

1 College of Computer Science and Engineering, Shandong University of Science and Technology,
Qingdao 266590, China

2 School of Computer Science and Engineering, Yulin Normal University, Yulin 537000, China
3 School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou 350118,

China

* Correspondence: Email: jack8375@gmail.com; Tel: +8615359746498.

Abstract: Cognitive green computing (CGC) dedicates to study the designing, manufacturing, using
and disposing of computers, servers and associated subsystems with minimal environmental damage.
These solutions should provide efficient mechanisms for maximizing the efficiency of use of computing
resources. Evolutionary algorithm (EA) is a well-known global search algorithm, which has been
successfully used to solve various complex optimization problems. However, a run of population-based
EA often requires huge memory consumption, which limited their applications in the memory-limited
hardware. To overcome this drawback, in this work, we propose a compact EA (CEA) for the sake of
CGC, whose compact encoding and evolving mechanism is able to significantly reduce the memory
consumption. After that, we use it to address the ternary compound ontology matching problem. Six
testing cases that consist of nine ontologies are used to test CEA’s performance, and the experimental
results show its effectiveness.

Keywords: cognitive green computing; ternary compound ontology matching; compact evolutionary
algorithm

1. Introduction

Cognitive green computing (CGC) amalgams the properties of cognitive computing [1] and green
computing [2] to deal with such challenging issues like, energy optimization, carbon emission, resource
utilization intelligently. In particular, CGC aims at providing efficient mechanisms for the tasks such
as maximizing the efficiency of use of computing resources [3]. Evolutionary algorithm (EA) [4]
is a well-known global search algorithm, which has been successfully used to solve various complex
optimization problems. EA heuristically explores the decision space by maintaining a population which
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might contain hundreds of chromosomes. Thus, a run of population-based EA often requires huge
memory consumption, which limited their applications in the memory-limited hardware, e.g., mobile
systems, industrial robots, etc. To overcome this drawback, in this work, we propose a Compact EA
(CEA) [5] for the sake of CGC, and use it to address the ternary compound ontology matching problem.
CEA uses a Probability Array (PA) to represent a population and execute the evolutionary operations,
which is able to reduce the algorithm’s memory consumption and searching performance.

Ontology is a cutting-edge knowledge modeling technique, which has been widely used to model
various domain knowledge. It is impractical to develop and maintain a top-level ontology that is able
to meet all the requirements of different applications, and thus, various domain ontologies are devel-
oped independently for different purposes [6]. Although they own significant overlapped information,
a concept could be described with different granularity, yielding the ontology heterogeneity prob-
lem. For instance, describing a patient’s record may include using SNOMED-CT for clinical methods
employed, LOINC for laboratory analyses and results, ICD-10 for diagnoses and ATC for coding
any prescribed antibiotics. Matching ontologies is able to determine semantically identical concepts
among heterogenous ontologies, which is a feasible approach to integrate the knowledge in different
ontologies. Traditionally, matching ontologies is the procedure that takes input two ontologies, and
returns the concept mappings between two ontologies. However, if multiple ontologies are necessary
to accurately describe the information and knowledge, to allow their communications, there is a need
to establish links among multiple ontologies. This need motivates a new type of complex ontology
matching, i.e., compound ontology matching [7], which involves more than two ontologies. A com-
mon case of the compound matching is the ternary compound matching, where two concepts from two
distinct ontologies are mapped with a concept from the third ontology. For instance, the concept “broad
forehead” in the human phenotype ontology (HP) is equivalent to the union of the concept “increased
width” in phenotypic quality ontology (PATO) and the concept “forehead” in the foundation model of
anatomy (FMA) ontology, i.e., “broad forehead” ≡ “increased width” ∩ “forehead”.

Since 2018, ontology alignment evaluation initiative (OAEI)∗ has presented the complex track that
evaluates the matching techniques which generate complex correspondences. But there is still no test-
ing case on the compound ontology matching problem, and currently, there are only two compound
ontology matching techniques that are proposed by Pesquita and Oliveira [7, 8]. The former first de-
termines the anchors, i.e., highly similar concept pairs, in two ontologies, and then match them to the
third ontology. On the basis of the first work, Oliveira et al. further makes use of agreement maker light
(AML) to built for the word matcher, and a weighted Jaccard index to aggregate the similarity values,
whose computational complexity is large. Moreover, the completeness and accuracy of the determined
compound ontology alignments are not high. Being inspired by the success of EA in the ontology
matching domain [9–13], this work proposes to make use of EA to address the ternary compound
ontology matching problem. However, population-based EA suffers from significant computational
complexity, which hampers their application in the real matching tasks. To maximize the utilization of
computer hardware and improve the algorithm’s efficiency, this work first construct an optimal model
for the ternary compound ontology matching problem, and then presents a concept similarity mea-
sure to calculate the confidence of a ternary compound correspondence, finally, a CEA with compact
encoding and evolving mechanism is proposed to efficiently address this problem.

The rest of the paper is organized as follows: section 2 defines the ternary compound ontology
∗http://oaei.ontologymatching.org/
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matching problem and the concept similarity measure; section 4 describes the problem-specific CEA
in details; section 5 shows the experimental results; and finally, section 6 draws the conclusion.

2. Ternary compound ontology matching problem

There are many definitions on the Ontology, and in this work, for the convenience, an ontology is
defined as a 5-tuple (C,DP,OP, I, λ), where C is the concept set, DP and OP are respectively the sets
of inner property and outer property, I is the set of instance, and λ is the set of axiom [14, 15]. In par-
ticular, an inner property (or datatype property) describes a concept’s individual feature, while an outer
property (or object property) describes its relationships with other concepts. A ternary correspondence
is also a 3-tuple (c1, c2, c3,≡, sim), where c1,c2 and c3 are respectively the concepts of the first, second
and third ontologies, ≡ is the relationship of equivalence, i.e., c1 ≡ c2 ∩ c3, and sim is the confidence
or similarity value of this correspondence. The ternary compound matching process takes as input
three ontologies and an external background knowledge base (e.g., unified medical language system
(UMLS) [16]), and outputs a set of ternary compound correspondences, i.e., the ternary compound
ontology alignment.

The traditional evaluation metrics work on the basis of the reference alignment provided by the
expert. However, the reference alignment is not always available especially when the entity scale
is huge. To overcome this drawback, we propose an approximate metric, which is based on the
observation that the more ternary compound alignment correspondences found, the higher probability
that it contains more correct correspondences, i.e., the alignment’s completeness would be higher;
and similarly, the higher mean similarity value of all the correspondences in an alignment, the higher
probability that it contains less incorrect correspondences, i.e., the alignment’s accuracy would
be higher [17]. In particular, the approximate metric for evaluating a ternary compound ontology
alignment’s quality is defined as follows:

f (A) =

√
|A|

max{|C1|, |C2|, |C3|}
×

∑|A|
i=1 simi

|A|
(2.1)

where |A|, |C j| are respectively the cardinalities of the alignment A and the jth ontology’s concept set,
simi is the confidence value of the ith correspondence. Here, |A|

max{|C1 |,|C2 |,|C3 |}
measures how many ternary

compound alignment correspondences are found,
∑|A|

i=1 simi

|A| calculates the average similarity measure, and
function f () takes both of them into consideration.

On this basis, the mathematical model of ternary compound ontology matching problem can be
defined as follows: 

max f (X)
s.t. X = (X1, X2, · · · , X |C1 |)T

Xi = (xi
1, x

i
2)T , i ∈ {1, 2, · · · , |C1|}

xi
1 ∈ {0, 1, 2, · · · , |C2|}, xi

2 ∈ {0, 1, 2, · · · , |C3|}

(2.2)

where |C j| is the cardinality of the jth ontology’s concept set, and Xi, i = 1, 2, · · · , |C1| represents the
ith correspondence. In particular, xi

1 = 0 (or xi
2 = 0) means the ith concept in the first ontology is

mapped to none in the second (or third) ontology.
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3. Concept similarity measure

Concept similarity measure (CSM) is a function measuring to what extent the concepts in a corre-
spondence are similar, and its effectiveness directly affects the alignment’s quality [18]. Essentially,
CSM used in this work borrows the idea from Oliveira et al. [7], but we more focus on the concept’s
lexical and linguistic features, which are the most commonly used information in the ontology
matching domain [19]. Given three concepts c1, c2 and c3, and their labels as label1, label2 and label3,
we first pre-process these labels by: (1) remove their numbers, punctuations and stop-words; (2) split
the labels into words and convert them into lower-case; (3) lemmatizing and stemming the English
words. Then, we get the corresponding word set W1, W2 and W3, which are used to calculate c1,
c2 and c3’s similarity value in two sequential steps. First, we calculate the similarity of c1, c2 as follows:

sim(c1, c2) =

∑|W1 |

i=1 max {sim′(w1,i,w2, j)}
|W1|

(3.1)

where j = 1, 2, · · · , |W2|. Here, for each word in W1, say w1,i, we find its most similar word in W2,
say w2, j, and calculate their similarity value sim′(w1,i,w2, j). After that, we sum all the similarity
values with respect to the words in W1, and divide it by the cardinality of W1 to obtain two concepts’
similarity value. In particular, sim′() is defined as follows:

sim′(w1,w2) =

{
1, if w1 and w2 are synonymous in UMLS
simN(w1,w2), otherwise

(3.2)

where UMLS is first used to determine whether two words w1 and w2 are synonymous terms, and if not,
simN() will be used to calculate the lexical similarity with N-gram distance [20]. If sim(c1, c2) < 0.4,
similarity value among c1, c2 and c3 is set as 0; otherwise, we reduce W1 by removing all the words that
have already been matched with W2 to get W ′

1. After that, c1, c2 and c3’s similarity value is determined
by the sim(W ′

1,W3). In particular, the threshold for sim(W ′
1,W3) is set as 0.8, which is referred to the

configurations in Oliveira et al. [7].

4. Compact evolutionary algorithm

This work presents a problem-specific CEA, and use it to solve the ternary compound ontology
matching problem. CEA uses the binary encoding mechanism, i.e., Gray code, to encode the ternary
compound correspondences in a solution. Supposing |C1|, |C2| and |C3| are respectively the number of
concepts in three ontologies, the length of a chromosome is log |Csrc| × (log |Ctgt1|+ log |Ctgt2|). The i-th
gene bit consists of two parts of information, one for the index of the first target concept and the other
for the second. When decoding, the i-th source concept is mapped with these two target concepts.

A PA is used to represent a population and execute the evolving process. In particular, the length
of a PA is equal to that of a chromosome, where each element inside is the probability of being one
with respect to the corresponding gene bit. Here is an example of generating a new solution through
PA (0.3, 0.7, 0.6, 0.9)T . First, generate four random numbers, such as 0.4, 0.5, 0.8 and 0.1. Then
compare the numbers with the elements in PA accordingly to determine the new generated individual’s
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Table 1. Description on nine biomedical ontologies.

Full Name Acronym Scale
Human phenotype ontology [22] HP 10,593 classes

Mammalian phenotyope ontology [23] MP 10,730 classes
Neurobehavior ontology [24] NBO 1,070 classes

C. elegans phenotype vocabulary [25] WBP 2,185 classes
Phenotypic quality ontology [26] PATO 2,444 classes

Cell ontology [27] CL 5,901 classes
Foundational model of anatomy [28] FMA 83,283 classes

Gene ontology [29] GO 41,300 classes
Uber anatomy ontology [30] UBERON 12,808 classes

gene values, e.g., since 0.4 > 0.3, the first gene bit’s value of the new solution is 0, and similarly, the
remaining gene bits’ values are 1, 0 and 1, respectively. In this way, the new solution we obtain is 0101.
By repeating this procedure, we can obtain various individuals. In each generation, PA is updated to
move towards the best solution found so far, which is implemented by increasing the elements’ values
in PA when the best solution’s corresponding element’s value is 1, and decreasing the values when
0. Given the step = 0.1, if the gene value of the elite is 1 (or 0), the corresponding element of
PA will increase (or decrease) by st, and the updated PA is (0.2, 0.8, 0.5, 1.0)T . When PA’s elements
are all approach 1 or 0, CEA converges, and thus, the step length affects the algorithm’s searching
performance. When the step length is large, the algorithm will converge quicker but tends to get stuck
in the local optima; and when it is too small, the algorithm’s learning ability is lower, which makes it
converges slower. This work set the step length is

√
n log n by referring to Sudholt et al. [21]. Given the

length of a chromosome (or PA) len, the step length for updating PA st and the maximum generation
for CEA maxGen, the pseudo-code of CEA is shown in Algorithm 1.

5. Experiment

5.1. Experimental configuration

To test the performance of CEA, we use six testing cases that consists of nine ontologies, which
are suggested by Oliveira et al. [7]. Table 1 shows a brief descriptions on these ontologies. We denote
a testing case with the pattern “source ontology-the first target ontology-the second target ontology”,
e.g., “MP-CL-PATO”.

The alignment’s quality are evaluated with the traditional recall, precision and f-measure [31],
which are defined as follows:

recall(A) =
|A ∪ RA|
|RA|

(5.1)

precision(A) =
|A ∪ RA|
|A|

(5.2)

f − measure(A) =
2 × recall × precision

recall + precision
(5.3)
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Algorithm 1 Compact evolutionary algorithm
*******Initialization**********
for i = 0; i < len; i + + do

PA[i] = 0.5;
end for
generate a solution through PA and set it as solelite;
gen = 0;
*******Evolving Process **********
while gen < maxGen do

generate a solution solnew through PA;
[winner,loser]=competition(solnew, solelite);
if winner == solnew then

solelite = solnew;
end if
*******Update PA *******
for i = 0; i < len; i + + do

if solelite[i] == 1 then
PA[i] = PA[i] + st;

else
PA[i] = PA[i] − st;

end if
end for
for i = 0; i < len; i + + do

if solelite[i] >= 1 then
PA[i] = 1 − 1

len ;
end if
if solelite[i] <= 0 then

PA[i] = 1
len ;

end if
end for
gen = gen + 1;

end while
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Table 2. Comparison with meta-heuristics based matching techniques in terms of alignment’s
quality. f and stDev stand for f-measure and standard deviation, respectively.

Testing Case EA MA DE CEA
f (stDev) f (stDev) f (stDev) f (stDev)

MP-CL-PATO 0.36 (0.02) 0.42 (0.01) 0.36 (0.02) 0.55 (0.01)
MP-GO-PATO 0.55 (0.01) 0.55 (0.02) 0.61 (0.01) 0.65 (0.02)

MP-NBO-PATO 0.41 (0.02) 0.50 (0.01) 0.47 (0.02) 0.58 (0.01)
MP-UBERON-PATO 0.47 (0.02) 0.64 (0.02) 0.64 (0.01) 0.69 (0.01)

WBP-GO-PATO 0.30 (0.03) 0.35 (0.01) 0.35 (0.02) 0.43 (0.01)
HP-FMA-PATO 0.35 (0.02) 0.40 (0.03) 0.23 (0.02) 0.47 (0.01)

Table 3. T-Test statistical analysis on the alignment’s quality.

Testing Case EA vs CEA MA vs CEA DE vs CEA
t − value (p − value) t − value (p − value) t − value (p − value)

MP-CL-PATO −46.54 (0.0068) −50.34 (0.0063) −46.54 (0.0068)
MP-GO-PATO −24.49 (0.0129) −19.36 (0.0164) −9.79 (0.0324)

MP-NBO-PATO −41.64 (0.0076) −30.98 (0.0102) −26.94 (0.0118)
MP-UBERON-PATO −53.88 (0.0059) −12.24 (0.0259) −19.36 (0.0164)

WBP-GO-PATO −22.51 (0.0141) −30.98 (0.0102) −19.59 (0.0162)
HP-FMA-PATO −29.39 (0.0108) −12.12 (0.0262) −58.78 (0.0054)

where |A| and |RA| are respectively the cardinalities of the alignment A and reference alignment RA.
In particular, recall and precision respectively measure the coverage of correct correspondences by
referring to RA and A, and f-measure is their harmonic mean value. The experiment is carried out with
an Intel Core i9-8950HK CPU @ 2.90GHz x 12 and 25GB allocated RAM.

5.2. Comparison on alignment’s quality and matching efficiency

First, we compare CEA with EA based matching technique [32], Memetic algorithm (MA) based
matching technique [33], Differential Evolution Algorithm (DE) based matching technique [34], whose
configurations are referred to their literatures. Table 2 shows their mean f-measure and standard de-
viation of the alignments obtained by EA based matching techniques, and Table 3 presents the T-Test
statistical analysis [35] of the values in Table 2. The results of all the meta-heuristics based matching
techniques are the mean value of 30 independent runs.

In our experiment, a level of significance α = 0.05 is chosen. Data analysis of Tables 2 and 3 depicts
that CEA statistically outperforms other meta-heuristics based matching techniques on f-measure at
5% significance level. In addition, CEA does not need to tune any parameters except for the maximum
generation 3000, which makes it more stable than other meta-heuristics based matching techniques.

Tables 4 compares CEA with two state-of-the-art ternary compound ontology matching techniques,
i.e., AML based matching techniques with top-one ranked selector and top-two ranked selector [7], in
terms of recall, precision and f-measure. As shown in Table 4, CEA’s recall outperforms the other two
competitors in all testing cases, which show that the compact evolving mechanism is able to effectively
search in large searching space. Next, CEA’s precision values also rank the first in all matching tasks,
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Table 4. Comparison with state-of-the-art ternary compound ontology matching techniques.

Testing Case AMLtop−one AMLtop−two CEA
Comparison in terms of recall

MP-CL-PATO 0.24 0.53 0.58
MP-GO-PATO 0.60 0.61 0.62

MP-NBO-PATO 0.39 0.41 0.55
MP-UBERON-PATO 0.46 0.51 0.72

WBP-GO-PATO 0.10 0.13 0.48
HP-FMA-PATO 0.20 0.22 0.54

Average 0.33 0.40 0.58
Comparison in terms of precision

MP-CL-PATO 0.24 0.34 0.53
MP-GO-PATO 0.62 0.41 0.69

MP-NBO-PATO 0.50 0.42 0.60
MP-UBERON-PATO 0.55 0.52 0.64

WBP-GO-PATO 0.11 0.11 0.37
HP-FMA-PATO 0.17 0.24 0.41

Average 0.36 0.34 0.54
Comparison in terms of f-measure

MP-CL-PATO 0.24 0.42 0.55
MP-GO-PATO 0.61 0.49 0.65

MP-NBO-PATO 0.44 0.41 0.58
MP-UBERON-PATO 0.50 0.52 0.69

WBP-GO-PATO 0.10 0.12 0.43
HP-FMA-PATO 0.23 0.23 0.47

Average 0.35 0.36 0.56

which show the proposed similarity measure’s effectiveness. Finally, the f-measure of CEA based
matching technique show that it is able to effectively optimize the alignment’s quality.

From Table 5, we can see that, in all testing cases, CEA dramatically improves EA’s memory
consumption and runtime per generation. Specifically, the highest improvement degree is on average
by 82.95% and 80.93%, respectively. These gains are due to that CEA introduces the compact encoding
mechanism, which is able to significantly save the memory consumption, and the simplified evolving
mechanism , which is able to improve the algorithm’s runtime per generation. To conclude, CEA
is able to improve the quality of ternary compound ontology alignment, and significantly reduce the
memory consumption and runtime per generation.

6. Conclusions

For the sake of the cognitive green computing, this work proposes a CEA to efficiently address the
ternary compound ontology matching problem, which is able to bridge the sematic gap among three
heterogeneous ontologies. In particular, we use the compact encoding and evolving mechanisms to
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Table 5. Comparison of the memory (MegaByte) consumed per generation.

Testing Case EA MA DE CEA
Comparison of the memory (MegaByte) consumed per generation

MP-CL-PATO 524.30 1,027.72 490.26 115.21
MP-GO-PATO 547.75 1,109.44 583.90 145.32

MP-NBO-PATO 384.20 710.32 272.46 94.41
MP-UBERON-PATO 924.32 1,420.97 918.16 382.54

WBP-GO-PATO 640.22 1,302.61 712.32 217.25
HP-FMA-PATO 1,350.21 2,558.98 1,254.13 433.57

Average 728.50 1,355.01 705.20 231.38
Comparison on the runtime (second) taken per generation

MP-CL-PATO 4.88 6.82 3.64 0.82
MP-GO-PATO 4.21 7.04 3.22 0.86

MP-NBO-PATO 2.69 3.55 1.93 0.68
MP-UBERON-PATO 6.14 8.81 6.12 1.85

WBP-GO-PATO 6.68 7.12 5.64 1.73
HP-FMA-PATO 9.70 12.93 9.10 2.88

Average 5.72 7.71 4.94 1.47

reduce the algorithm’s memory consumption and runtime when searching for the global optima. We
construct an optimal model for the problem, and present a concept similarity measure to calculate a
ternary compound correspondence’s similarity value. The experimental results show that CEA-based
matching technique is able to efficiently determine ternary compound ontology alignments.

When facing a very large-scale matching task, e.g., an ontology owns tens of thousands of concepts,
a pre-screening method should be introduced. In the future, we will be interested in partitioning the
ontologies into several semantic segments, which is of help to reduce the search space of CEA. In
addition, a parallel matching mechanism would be of help to further improve the matching efficiency.
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