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Abstract: We consider a two-dimensional, uniform, incompressible and free convection flow of a 

nano-fluid along a plane. The plate is located facing upward about the porous medium. Throughout 

the investigation, thermal slip, chemical reaction, heat emission/absorption is considered. In the 

modeling of nano-fluid we have considered the dynamic effect along with the Brownian and 

thermophoresis. In obtaining the governing equations, including the boundary conditions, an 

appropriate scaling is applied. The governing momentum equations, including thermal energy and 

nanoparticles equations are translated into a group of nonlinear ODEs by using Lie symmetry group 

transformation. The transformed equations are then solved numerically using the Runge-Kutta-

Fehlberg fourth-fifth order. The numerical results of velocity, temperature, and nanoparticle volume 

fraction profiles for varied physical parameters will be discussed and analyzed at the end. The 

discussion also includes the local Nusselt and the local Sherwood numbers against several of the 

systems' physical parameters. It is found that the velocity and temperature decrease with thermal slip 

and heat absorption whilst it increases by increasing heat generation and chemical reaction order. Our 

present results will be compared with similar existing literature results. 
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1. Introduction 

Numerous studies were made on convective flow in porous medium owing to its far-reaching 

applications. Furthermore, in recent years some of the convective flow in porous media applications 

have been intensively studied due to its wide applications in engineering. For example, they are applied 

in the energy sectors, in which they are used in post-accidental heat removal in nuclear reactors, 
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underground disposal of radioactive waste, solar collectors, and oil recovery [1–4]. Other applications 

include but are not limited to food processing, fibrous insulation, building construction, and nano-

based thermal insulation for energy-efficient buildings [5–8]. The fluids containing the solid 

nanometer-sized (with length scales of 1–10 nm) particles dispersed in some basic fluid that 

conventionally transfer heat are defined as “nano-fluid”. Due to these nanoparticles’ thermal 

conductivity along with the coefficient of heat transfer of the base fluid remarkably increases. 

Heat transfer fluids such as synthetic oil, ethylene glycol, and water have a low thermal 

conductivity [9]. Furthermore, thermal conductivity affects the heat transfer factor across the space 

spreading the heat transfer medium. In [9], Choi first presented the novel idea of jumbling metallic 

nanoparticles with non-metallic nanoparticles to a base fluid. The author reported several potential 

advantages to his idea, such as the rise of heat conveyance and having a smaller heat conveyance size. 

Choi et al. [10] were from the first to use the term “nano-fluid”, and they proved that thermal 

conductivity augments with the inclusion of small nanoparticles less than 1% by volume. Many 

researchers [11–13] demonstrated that nano-fluids contain effective thermal conductivity to a great 

extent compared to base fluids. Consequently, such fluids have an excellent prospective for heat 

transfer enhancement. In [14], Ghasemi and Aminossadati analyzed natural convection heat 

transfer in a compound, placed at an inclined position, filled with a CuO/water nano-fluid. Their 

analysis points out that the inclusion of nanoparticles into pure water shows better performance 

for heat transfer. Recently, Godson et al. [15] presented an overview of the increase of heat transfer 

by using nano-fluids. 

Various science and engineering studies show the occurrence of heat transfer in porous media of 

having a saturation of a nano-fluid along with a chemical reaction. On account of these occurrences, 

nano-fluids are extremely important to both scientists and engineers from the point of practical 

applications. Several industries make use of this type of flow. Moreover, various engineering 

applications such as safety measures of a radioactive reactor, combustion systems, solar thermal 

collectors, metallurgical processes, and chemical engineering contain many transport processes. 

Thermal and mass diffusion exerts a buoyancy force used by the transport processes of such 

engineering applications in conducting their working principle. All these processes are run under the 

effects of a chemical reaction. The convection in a horizontally placed layer with a porous medium 

was analyzed by Nield and Kuznetsov [16,17], and also in [18] by Cheng and Minkowycz. The 

aforementioned authors considered a porous medium saturated by nano-fluid. Gorla and Chamkha [19] 

investigated a porous medium with a nano-fluid saturation with natural convection along an isothermal 

horizontal plate in the medium. 

Hamad et al. [20] have endeavored to deduce the similarity solutions of the flow of a 2-D laminar 

forced convection past a stretching permeable sheet within a porous medium, assuming a saturation of 

a nano-fluid in the medium.  Recently, Ahmad and Pop [21] have used the nano-fluid model to research 

the steady mixed convection boundary layer flow along a firmly fixed plane surface placed vertically 

and surrounded in a porous medium containing a nano-fluid.  Lately, an investigation was made by 

Arifin et al. [22] on the steady free as well as mixed convection boundary layer flow along a plane 

plate placed horizontally. They assumed the plate was inserted in a porous medium containing a 

saturation of a nano-fluid.  The similarity solutions reduce the free variables of their problem, due 

to which such solutions are quite widely used. Derivation of all group-invariant similarity solutions 

of 2-D laminar boundary-layer equations is accomplished by applying Lie group transformations. 

However, at present, it is widely familiar that the classical Lie symmetry technique is applicable for 

obtaining similarity solutions, see Ovsiannikov [23], Ibragimov [24], and Bluman [25] et al. 
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In [26], Krishna et al. investigated the magneto-hydrodynamic convection flow of an 

electrically conducting viscous incompressible and heat-absorbing fluid through a porous medium 

over a vertical flat plate under the influence of a magnetic field. In addition, other heat transfers 

and flow problems on magneto-hydrodynamic nano-fluid with the effect of Hall and ion slip with 

infinite vertical plate embedded in a porous medium have been studied and analyzed 

mathematically, among others, by Krishna and his collaborators [27–31]. In [32], Patil et al. 

investigated the Prandtl magneto-hydrodynamic nanofluid aspects over a stretched sheet with 

convective boundary conditions.  

Different works, such as those in [33–36], use the group method to solve various transport 

problems. For example, Patil et al. [37] studied the unsteady magneto-hydrodynamic flow of a nano 

Powell-Eyring fluid near a stagnation point past a convectively heated stretching sheet with thermal 

radiation and a chemical reaction. The authors used theoretical group analysis to transfer the system 

of nonlinear PDEs into a system of nonlinear ODE’s, which was then solved numerically. Affify and 

Elgazery [38] used scaling group transformations to study a steady two-dimensional stagnation point 

flow of heat and mass transfer over a heated porous stretching sheet embedded in a porous medium in 

the presence of a chemical reaction, with heat generation and absorption effects. Ferdows et al. [39] 

investigated such merged impacts on uniform MHD free convection flow that transfers mass as well 

as heat along a vertically stretched flat surface in motion. They considered the moving stretching 

surface to be permeable.  

In [40], Uddin et al. studied the problem of a free convective boundary layer flow of a nano-fluid 

past a horizontal plate that is placed in a porous media. They considered convective boundary 

conditions along with suctions and injection at the wall. In [41], the authors investigated the 

amalgamated effects of convective surface boundary conditions along with thermal radiation. The 

effects were studied on a uniform magneto-hydrodynamic free convection flow that transfers heat and 

mass along a vertically stretched flat surface. In their investigation, the authors assumed that the 

permeable stretching surface was in motion. Thermal radiation and a convective surface boundary 

condition have a plethora of effects on fluid flow. Rashidi et al. [42] used optimal homotopy analysis 

to study the laminar incompressible free convection flow of a nano-fluid past a chemically reacted 

plate that is placed in a porous medium. The boundary conditions were considered to be convective 

along with suction and injection at the wall.  

The influence of thermal slip boundary condition with chemical reaction and heat 

emission/absorption on free convection nano-fluid past a horizontal plate in porous media with free 

stream conditions has not been mentioned in the literature. Our present study aims to investigate the 

consequences of thermophoresis, Brownian motion, thermal slip, chemical reaction, and heat 

emission/absorption on the boundary layer flow of a nano-fluid. The flow is considered along a 

horizontal plate at an upward-facing position. The entire investigation is conducted to obtain the results 

numerically. The governing equations are translated into a group of nonlinear ODEs by using Lie 

symmetry group transformation. The corresponding boundary conditions are also analyzed. Finally, 

graphical analysis is presented on the resulting consequences of governing parameters on the 

dimensionless flow profiles.  

This paper’s outline is as follows: In Section 2, we formulate our model. In Section 3, we 

perform the Lie group analysis. After that, in Section 4, we discuss our physical quantities and the 

non-dimensional quantities. Then, in Sections 5 and 6, we present the results of our model 

simulations as well as show our analysis. Finally, in section 7, we conclude with a discussion of 

our results. 
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2. Problem formulation 

In this problem, we consider a laminar, 2-D free convective boundary layer flow of a nano-fluid. 

The nano-fluid is assumed to flow over a horizontally placed plate upwardly faced and held in a Darcy 

porous medium. We select a coordinate frame in which the 𝑥-axis is in the horizontal direction, and 

the 𝑦-axis is normal to it (Figure 1).  Across the space separating the constitute of the plate and the 

fluid, a chemical reaction of order 𝑛 occurs. This chemical reaction is assumed to be homogeneous, 

isothermal, and reversible. On the surface, the fraction volume of the nanoparticle  (𝐶) and the 

temperature (𝑇) are assumed to be constants and take the values 𝐶𝑊  and 𝑇𝑊, respectively. We 

denote the corresponding values of 𝑇 and 𝐶 as obtained at free stream by 𝑇∞ and 𝐶∞, respectively. 

As in [43], we also assume that 𝑇𝑊 > 𝑇∞, and that the Boussinesq-approximation is used.  

The following assumptions are considered: 

• At the boundaries, it is assumed that 𝑇 = 𝑇𝑤 and 𝐶 = 𝐶𝑤 are both constants. 

• The corresponding values of 𝑇 and 𝐶 as obtained at free stream are denoted by 𝑇∞ and 𝐶∞, 

respectively. 

• It is assumed that 𝑇𝑤 > 𝑇∞. 

• It is assumed that the Boussinesq approximation is used. 

 

Figure 1. Flow model along with the coordinate system. 

As in references [41–44], the conservation of mass, momentum, energy, and properties of the 

nanoparticles are respectively described by the following four field equations: 

𝛻 ⋅ �⃗� = 0, (1) 

𝜌𝑓

𝜖

𝜕�⃗� 

𝜕𝑡
= −𝛻𝑃 −

𝜇

𝐾
�⃗� + [𝐶𝜌𝑃 + (1 − 𝐶) (𝜌𝑓(1 − 𝛽(𝑇 − 𝑇∞)))] 𝑔 , (2) 

𝜕𝑇

𝜕𝑡
+ �⃗� ⋅ 𝛻𝑇 = 𝑘𝑚𝛻2𝑇 + 𝜏 [𝐷𝐵𝛻𝐶 ⋅ 𝛻𝑇 + (

𝐷𝑇

𝑇∞
) 𝛻𝑇 ⋅ 𝛻𝑇] + 𝑞

.
, (3) 

𝜕𝐶

𝜕𝑡
+ �⃗� ⋅ 𝛻𝐶 = 𝐷𝐵𝛻2𝐶 + (

𝐷𝑇

𝑇∞
)𝛻2𝑇 − 𝑘(�̅�)(𝐶 − 𝐶∞)𝑛. (4) 

In the equations above, �⃗� = (�̅�, �̅�), and 𝜏 =
(𝜌𝑐𝑃)𝑃

(𝜌𝑐𝑃)𝑓
. Also, the thermophoretic diffusion coefficient 

is denoted by 𝐷𝑇 is, the Brownian motion diffusion coefficient is denoted by 𝐷𝐵 , the porous media 

 �̅�, �̅�

𝑦,ഥ �̅�                                𝑇∞, 𝐶∞, 𝑈∞ 

i 

iii 
ii 

𝑇, 𝐶 

𝑔 

(i) Nanoparticle  

(ii) Thermal 

(iii) Momentum boundary  
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porosity is denoted by 𝜖 , and finally, (𝜌𝐶)𝑓  and (𝜌𝐶)𝑃  denote the heat capacity of our fluid and 

nanoparticles, respectively. We assumed that we have a slow flow ignoring an advective term quadratic 

drag by Buongiorno [45] and Nield and Kuznetsov [46]. The momentum equation is linearized by 

assuming nanoparticle concentration is diluted with a befitting selection for the reference pressure. 

Thus, Eq (2) corresponds to the following form: 

−∇𝑃 −
𝜇

𝑘1
�⃗� + [(𝜌𝑃 − 𝜌𝑓∞)(𝐶 − 𝐶∞) + (1 − 𝐶∞)𝜌𝑓∞𝛽(𝑇 − 𝑇∞)]𝑔 = 0, (5) 

where 𝜌𝑃 and 𝜌𝑓 are the density of particles and base fluid, respectively. 

The effect of volumetric heat generation as a function of temperature in the flow region is 

given by:  

𝑞
.
=

𝑅𝑎2/3𝑄0

𝐿4/3�̅�4/3
(𝑇 − 𝑇∞), 𝑇 > 𝑇∞, (6) 

where 𝑄0 is the heat constant, and 𝐿 is assumed to be the length of our plate. The reaction rate also 

varies as the following function: 

𝑘(�̅�) =
𝑅𝑎

2
3⁄ 𝑘0

𝐿4/3�̅�4/3
, (7) 

where 𝑘0 denotes the constant reaction rate.  

Considering the previous suppositions, and following references [41–44], the governing equations 

are rewritten as: 

𝜕�̅�

𝜕�̅�
+

𝜕�̅�

𝜕�̅�
= 0, (8) 

𝜕𝑃

𝜕�̅�
= −

𝜇

𝑘1
�̅�, (9) 

𝜕𝑃

𝜕�̅�
= −

𝜇

𝐾
�̅� ± [(1 − 𝐶∞)𝜌𝑓∞𝑔𝛽(𝑇 − 𝑇∞) − (𝜌𝑃 − 𝜌𝑓∞)𝑔(𝐶 − 𝐶∞)], (10) 

�̅�
𝜕𝑇

𝜕�̅�
+ �̅�

𝜕𝑇

𝜕�̅�
= 𝛼𝑚

𝜕2𝑇

𝜕�̅�2
+ 𝜏 [𝐷𝐵

𝜕𝐶

𝜕�̅�

𝜕𝑇

𝜕�̅�
+ (

𝐷𝑇

𝑇∞
) (

𝜕𝑇

𝜕�̄�
)
2

] +
𝑄𝑜

(ρC)𝑓

Ra2/3

𝐿4/3�̅�4/3
(𝑇 − 𝑇∞), (11) 

�̅�
𝜕𝐶

𝜕�̅�
+ �̅�

𝜕𝐶

𝜕�̅�
= 𝐷𝐵

𝜕2𝐶

𝜕�̅�2
+ (

𝐷𝑇

𝑇∞
)
𝜕2𝑇

𝜕�̅�2
−

Ra2/3𝑘0

𝐿4/3�̅�4/3
(𝐶 − 𝐶∞)𝑛, (12) 

where 𝛼𝑚 =
𝑘𝑚

(𝜌𝑐𝑃)𝑓
 is the thermal diffusivity, 𝑘𝑚 is the thermal conductivity, the parameter τ =

𝜖(𝜌𝐶)𝑝

(𝜌𝐶)𝑓
, and 

the boundary conditions take the form: 

�̅� = 0, 𝑇 = 𝑇𝑤 + 𝐷1

𝜕𝑇

𝜕�̅�
, 𝐶 = 𝐶𝑤     when      �̅� = 0, 

�̅� → 𝑈ഥ∞, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞     as      �̅� → ∞. (13) 

In Eq (13) above, 𝐷1 is the thermal slip factor, and the studied boundary conditions are different 

from those in references [41–44].  

Now, to transform Eqs (6) to (11), we set:  

𝑥 =
�̅�

𝐿√Ra
, 𝑦 =

�̅�

𝐿
,   𝑢 =

�̅�𝐿

𝛼𝑚√Ra
, 𝑣 =

�̅�𝐿

𝛼𝑚
, 𝑈∞ =

𝑈ഥ∞𝐿

𝛼𝑚√Ra
 ,  
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𝜃 =
𝑇 − 𝑇∞

Δ𝑇
, 𝜙 =

𝐶 − 𝐶∞
Δ𝐶

, Δ𝑇 = 𝑇𝑤 − 𝑇∞, Δ𝐶 = 𝐶𝑤 − 𝐶∞. (14) 

Assuming 𝜓 to be a stream function such that  

𝑢 =
𝜕𝜓

𝜕𝑦
 and 𝑣 = −

𝜕𝜓

𝜕𝑥
. (15) 

As in references [40] and [42], we substitute the stream function into Eqs (8)–(13) and further 

assume that the free stream velocity 𝑈∞ = 𝑥𝑚, which gives us: 

Δ1 ≡
𝜕2𝜓

𝜕𝑦2
+

𝜕𝜃

𝜕𝑥
− 𝑁𝑟

𝜕𝜙

𝜕𝑥
= 0, (16) 

Δ2 ≡
𝜕𝜓

𝜕𝑦

𝜕𝜃

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕𝜃

𝜕𝑦
−

𝜕2𝜃

𝜕𝑦2
− 𝑁𝑏

𝜕𝜃

𝜕𝑦

𝜕𝜙

𝜕𝑦
− 𝑁𝑡 (

𝜕𝜃

𝜕𝑦
)
2

+
𝑄𝜃

𝑥4/3
= 0, (17) 

Δ3 ≡ 𝐿𝑒 [
𝜕𝜓

𝜕𝑦

𝜕𝜙

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕𝜙

𝜕𝑦
] −

𝜕2𝜙

𝜕𝑦2
−

𝑁𝑡

𝑁𝑏

𝜕2𝜃

𝜕𝑦2
−

𝐾𝜙𝑛

𝑥4/3
= 0. (18) 

The boundary conditions in Eq (13) are transformed to: 

𝜕𝜓

𝜕𝑥
= 0, 𝜃 = 1 +

𝐷1

𝐿

𝜕𝜃

𝜕𝑦
, 𝜙 = 1     at     𝑦 = 0, 

𝜕𝜓

𝜕𝑦
→ 𝑥𝑚, 𝜃 → 0, 𝜙 → 0     as      𝑦 → ∞. (19) 

The parameters in Eqs (16)–(18) are 𝑁𝑡 (thermophoresis), 𝑁𝑏 (Brownian motion), 𝑁𝑟 (buoyancy 

ratio), 𝑄 (heat generation), 𝐾 (chemical reaction), and 𝐿𝑒 (Lewis number). Now, similar to Tapanidis 

et al. [47], we define our parameters as  

𝑁𝑡 =
𝜏𝐷𝑇Δ𝑇

𝛼𝑚𝑇∞
, 𝑁𝑏 =

𝜏𝐷𝐵Δ𝐶

𝛼𝑚
, 𝑁𝑟 =

(𝜌𝑃 − 𝜌𝑓∞)Δ𝐶

𝜌𝑓∞𝛽(1 − 𝐶∞)Δ𝑇
 

𝑄 =
𝑄0𝐿

2

𝛼𝑚(ρC)𝑓
, 𝐾 =

𝑘0𝐿
2(ΔC)𝑛−1

𝛼𝑚
, 𝐿𝑒 =

𝛼𝑚

𝐷𝑏

(20) 

3. Lie group analysis 

Scaling group transformations are a distinctive case of Lie group analysis [46,47]. We consider 

the following: 

Γ : 𝑥∗=𝑥𝑒ϵα1 ,   𝑦∗=y𝑒ϵα2 ,   𝜓∗=𝜓𝑒ϵα3 ,   𝜃∗=θ𝑒ϵα4 ,   𝜙∗ = 𝜙𝑒ϵα5 ,   𝐷1
∗ = 𝐷1𝑒

ϵα6 . (21) 

In the above equation, 𝜖 is the parameter of group Γ, and 𝛼𝑖 (𝑖 = 1, 2, … , 6) are assumed to be 

real numbers. The transformations in Eq (21) can be considered as a point transformation that converts 

the coordinates from (𝑥, 𝑦, 𝜓, 𝜃, 𝜙, 𝐷1) into (𝑥∗, 𝑦∗, 𝜓∗, 𝜃∗, 𝜙∗, 𝐷1
∗). Now, we find the relation between 

𝛼𝑖 such that  

Δj (𝑥∗, 𝑦∗, 𝜃∗, 𝜑∗, ⋯ ,
𝜕3𝜓∗

𝜕𝑦*3
) = 𝐻𝑗 (𝑥, 𝑦, 𝜃, 𝜙,⋯ ,

𝜕3𝜓

𝜕𝑦3
; 𝑎) Δj (𝑥, 𝑦, 𝜃, 𝜙,⋯ ,

𝜕3𝜓

𝜕𝑦3
) , (22) 

where 𝑗 = 1, 2, 3.  
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The differential forms Δ1, Δ2, and Δ3 are required to be conformally constant under group 

transformation in Eq (21). As done in references [48–50], we set the conversions in Eq (21) into 

Eqs (16)–(18) to give us the following: 

                      Δ1 ≡
𝜕2𝜓∗

𝜕𝑦∗2
+

𝜕𝜃∗

𝜕𝑥∗
− 𝑁𝑟

𝜕𝜙∗

𝜕𝑥∗
                        

= 𝑒𝜖(𝛼3−2𝛼2)
𝜕2𝜓

𝜕𝑦2
+ 𝑒𝜖(𝛼4−𝛼1)

𝜕𝜃

𝜕𝑥
− 𝑒𝜖(𝛼5−𝛼1)

𝜕𝜙

𝜕𝑥
,                    (23)

 

Δ2 ≡
𝜕𝜓∗

𝜕𝑦∗

𝜕𝜃∗

𝜕𝑥∗
−

𝜕𝜓∗

𝜕𝑥∗

𝜕𝜃∗

𝜕𝑦∗
−

𝜕2𝜃∗

𝜕𝑦∗2
− 𝑁𝑏

𝜕𝜃∗

𝜕𝑦∗

𝜕𝜙∗

𝜕𝑦∗
− 𝑁𝑡 (

𝜕𝜃∗

𝜕𝑦∗
)
2

+
𝑄𝜃∗

𝑥∗4/3
 

= 𝑒𝜖(𝛼3+𝛼4−𝛼1−𝛼2) [
𝜕𝜓

𝜕𝑦

𝜕𝜃

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕𝜃

𝜕𝑦
] − 𝑒𝜖(𝛼4−2𝛼2)

𝜕2𝜃

𝜕𝑦2
                  

                            −  𝑒𝜖(𝛼4+𝛼5−2𝛼2)𝑁𝑏
𝜕𝜃

𝜕𝑦

𝜕𝜙

𝜕𝑦
− 𝑒𝜖(2𝛼4−2𝛼2)𝑁𝑡 (

𝜕𝜃

𝜕𝑦
)
2

+ 𝑒𝜖(𝛼4−
4
3𝛼1)

𝑄𝜃

𝑥4/3
, (24) 

 Δ3 ≡ 𝐿𝑒 [
𝜕𝜓∗

𝜕𝑦∗

𝜕𝜙∗

𝜕𝑥∗
−

𝜕𝜓∗

𝜕𝑥∗

𝜕𝜙∗

𝜕𝑦∗
] −

𝜕2𝜙∗

𝜕𝑦∗2
−

𝑁𝑡

𝑁𝑏

𝜕2𝜃∗

𝜕𝑦∗2
−

𝐾𝜙∗

𝑥∗4/3
                      

= −𝑒𝜖(𝛼5−2𝛼2)
𝜕2𝜙

𝜕𝑦2
+ 𝑒𝜖(𝛼3+𝛼5−𝛼1−𝛼2)𝐿𝑒 [

𝜕𝜓

𝜕𝑦

𝜕𝜙

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕𝜙

𝜕𝑦
]        

−𝑒𝜖(𝛼4−2𝛼2)
𝑁𝑡

𝑁𝑏

𝜕2𝜃

𝜕𝑦2
− 𝑒𝜖(𝛼5−

4
3𝛼1)

𝐾𝜙𝑛

𝑥4/3
.                                 (25) 

The invariance under the group Γ is invoked, and from it, we obtain the following relationships: 

𝛼3 − 2𝛼2 = 𝛼4 − 𝛼1 = 𝛼5 − 𝛼1, 

𝛼3 + 𝛼4 − 𝛼1 − 𝛼2 = 𝛼4 − 2𝛼2 = 𝛼4 + 𝛼5 − 2𝛼2 = 2𝛼4 − 2𝛼2 = 𝛼4 −
4

3
𝛼1, 

𝛼3 + 𝛼5 − 𝛼1 − 𝛼2 = 𝛼5 − 2𝛼2 = 𝛼4 − 2𝛼2 = 𝛼5 −
4

3
𝛼1. (26) 

The boundary conditions yield: 

𝛼3 − 𝛼1 = 0, 𝛼4 = 0 = 𝛼4 + 𝛼6 − 𝛼2, 𝛼5 = 0, 𝛼2 − 𝛼3 = −𝑚𝛼1. (27) 

Now, solving Eqs (26) and (27) yields 

𝛼4 = 𝛼5 = 0, 𝛼1 =
3𝛼2

2
, 𝛼3 =

𝛼2

2
, 𝛼6 = 𝛼2, and       𝑚 = −

1

3
. (28) 

The set of transformation under group Γ reduces to  

𝑥∗ = 𝑥𝑒3𝜖𝛼2/2,   𝑦∗ = 𝑦𝑒𝜖𝛼2 ,   𝜓∗ = 𝜓𝑒𝜖𝛼2/2,   𝜃∗ = 𝜃,   𝜙∗ = 𝜙,   𝐷1
∗ = 𝐷1𝑒

𝜖𝛼2 . (29) 

Now, taking Taylor series expansion about 𝜖 gives us: 

𝑥∗ − 𝑥 =
3𝑥𝜖𝛼2

2
+ 𝑂(𝜖2), 𝑦∗ − 𝑦 = 𝜖𝛼2𝑦 + 𝑂(𝜖2), 𝜓∗ − 𝜓 =

𝜖𝜓𝛼2

2
+ 𝑂(𝜖2), 

𝜃∗ − 𝜃 = 0, 𝜙∗ − 𝜙 = 0, 𝐷1
∗ − 𝐷 = 𝜖𝛼2𝐷1 + 𝑂(𝜖2)  (30) 

As 𝛼2 ≠ 0, we can rewrite the equations above as the following characteristic equations:  

2(𝑥∗ − 𝑥)

3𝑥𝛼2
= 𝜖,

𝑦∗ − 𝑦

𝛼2𝑦
= 𝜖,

2(𝜓∗ − 𝜓)

𝜓𝛼2
= 𝜖,

𝐷1
∗ − 𝐷

𝛼2𝐷1
= 𝜖 
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𝜃∗ − 𝜃 = 0, 𝜙∗ − 𝜙 = 0, (31) 

Thus, in terms of differentials, we have that: 

𝑑𝑦

𝛼2𝑦
=

2𝑑𝑥

3𝛼2𝑥
(32) 

2𝑑𝜓

𝛼2𝜓
=

2𝑑𝑥

3𝛼2𝑥
 (33) 

𝑑𝐷1

𝛼2𝐷1
=

2𝑑𝑥

3𝛼2𝑥
 (34) 

𝑑𝜃 = 𝑑𝜙 = 0 (35) 

3.1. Similarity transformations 

Now, integrating Eq (32) gives us: 

𝑦𝑥−
2
3 = 𝜂, (36) 

where 𝜂 is a constant. Likewise, integrating Eq (33) yields: 

𝜓 = 𝑥
1
3𝑓(𝜂), (37) 

where 𝑓(𝜂) is a constant, and integrating Eq (34) gives us: 

𝐷1 = (𝐷1)0𝑥
2
3, (38) 

where (𝐷1)0 is a constant. Finally, from Eq (35), we have that: 

𝜃 = 𝜃(𝜂)   and  𝜙 = 𝜙(𝜂) (39) 

where 𝜃(𝜂) and 𝜙(𝜂)  are constants. Therefore, from Eqs (36)–(39), we get that: 

𝜂 = 𝑦𝑥−
2

3, 𝜓 = 𝑥
1

3𝑓(𝜂), 𝜃 = 𝜃(𝜂), and       𝐷1 = (𝐷1)0𝑥
2

3. (40)   

We note that the similarity transformations in Eq (40) are congruous with the conventional 

similarity transformations as described in Cheng and Chang [51] for λ=0. Thus, the expression of 

𝑢, 𝑣 becomes: 

𝑢 =
𝑓′

𝑥1/3
, and       𝑣 = −

1

3𝑥2/3
(𝑓 − 2𝜂𝑓′) . (41) 

3.2. Similarity equations 

Making substitution of the transformations in Eq (40) into the governing Eqs (16)–(18) gives us:

𝑓′′ −
2

3
(𝜃′ − 𝑁𝑟𝜙′) = 0, (42) 

𝜃′′ +
1

3
𝑓𝜃′ + 𝑁𝑏𝜃′𝜙′ + 𝑁𝑡(𝜃′)2 + 𝑄𝜃 = 0, (43) 

𝜃′′ +
𝐿𝑒

3
𝑓𝜃′ +

𝑁𝑡

𝑁𝑏
𝜃′′ − 𝐾𝜙𝑛 = 0, (44) 

contingent on the boundary conditions  

𝑓(0) = 0, 𝜃(0) = 1 + 𝑏𝜃′(0), 𝜙(0) = 1, 
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𝑓′(∞) = 1, 𝜃(∞) = 0, 𝜙(∞) = 0, (45) 
where, 𝑏 = (𝐷1)0/𝐿 is the thermal slip parameter.  

4. Physical quantities 

In our present problem, the parameters of physical significance are the local Nusselt number  
𝑁𝑢�̅�, local skin friction coefficient 𝐶𝑓�̅�, and the local Sherwood number 𝑆ℎ�̅�, respectively. Physically, 

𝐶𝑓�̅� is the shear stress of the wall, 𝑁𝑢�̅� is the rate of transfer of heat in the wall, whilst 𝑆ℎ�̅� symbolizes 

the rate of volume fraction of nanoparticles in the wall. The following relations are applied to obtain 

the aforementioned quantities: 

𝐶𝑓�̅� =
2𝜇

𝜌𝑈𝑟
2
(
𝜕�̅�

𝜕�̅�
)
�̅�=0

, 𝑁𝑢�̅� =
−�̅�

𝑇𝑓 − 𝑇∞
(
𝜕𝑇

𝜕�̅�
)
�̅�=0

, 𝑆ℎ�̅� =
−�̅�

𝐶𝑤 − 𝐶∞
(
𝜕𝐶

𝜕�̅�
)
�̅�=0

. (46) 

Substituting Eqs (12) and (40) into Eq (46) shows that the physical quantities can be written in 

the following dimensionless form: 

1

2
𝑅𝑎�̅�𝑃𝑟𝐶𝑓�̅� = 𝑓′′(0), 𝑅𝑎�̅�

−1/3
𝑢�̅� = −𝜃′(0),

1

2
𝑅𝑎�̅�

−1/3
𝑆ℎ�̅� = −𝜃′(0).  (47) 

In the equation above, 𝑅𝑎�̅� =
𝑔𝐾𝛽(1−𝐶∞)Δ𝑇�̅�

𝛼𝑚𝑣
  is the local Rayleigh number, 𝑝𝑟 =

𝑣

𝛼𝑚
 is the 

Prandtl number, and 𝑈𝑟 =
(1−𝐶∞)𝑔𝐾𝛽Δ𝑇

𝛼𝑚
 is the reference velocity. 

5. Numerical solutions 

A two-point boundary value problem is formed by the set of coupled nonlinear ODEs in Eq (42) 

through Eq (44) with the boundary conditions in Eq (45). In [52], Aziz showed numerically using 

Runge-Kutta-Fehlberg’s method in Maple that similarity solutions are possible for convective surface 

boundary conditions. Moreover, White and Subramanian [53] examined the above process's precision 

for different transport problems. 

A finite value of 10 for the similar variable 𝜂max is used to replace the asymptotic boundary 

conditions given in Eq (43). The chosen value of 𝜂max assured the correct mannered approach of all 

numerical solutions to the far-field asymptotic values, which is often ignored. In [54], Pantokratoras 

studied convective heat transfer problems, and in his report, he found some erroneous results in the 

convective heat transfer problems. He identified the reason behind these errors as the graphs for the 

temperature, velocity, and the volume fraction (concentration) of nanoparticle distributions in the 

boundary layers do not tend to the accurate values in an asymptotic manner owing to the infinitesimal 

value of 𝜂max.  

Here we perform numerical computations for 0.1 ≤ 𝑁𝑏 ≤ 0.5, 0.1 ≤ 𝑁𝑡 ≤ 0.5, 0.1 ≤ 𝑁𝑟 ≤
0.5, 1 ≤ 𝐿𝑒 ≤ 10, −0.5 ≤ 𝑄 ≤ 0.5, 0.5 ≤ 𝐾 ≤ 3, 0 ≤ 𝑏 ≤ 1, and 1 ≤ 𝑛 ≤ 3 . At the end of our 

discussion, we measured the wall shear stress, local heat transfer rate, and local mass transfer rate, 

respectively, with regard to the local skin friction coefficient, the reduced local Nusselt number 𝑁𝑢, 

and reduced local Sherwood number 𝑆ℎ𝑟. Finally, to evaluate our numerical computations’ precision, 

we compared our results to that of Gorla and Chamkha [19]. Both sets of results are summarized in 

Table 1, and it is worth noting that we found our results to compare exceptionally well. 

We note that when the case when the thermal slip parameter is (𝑏 = 0), buoyancy force (𝑁𝑟 = 0), 

thermophoresis (𝑁𝑡 = 0), heat generation (𝑄 = 0), chemical reaction (𝑘 = 0), and Brownian motion 
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(𝑁𝑏 → 0), our undertaken problem transforms to the problem, which had been inspected by Cheng 

and Chang [50] for the case of λ = 0 in their work. 

Table 1. Comparison of our results with [19]. 

 Present results  [19] 

 −𝜃′(0) −𝜙′(0) −𝜃′(0) −𝜙′(0) 

𝑁𝑟 𝑁𝑏 = 0.3,   𝑁𝑡 = 0.1,   𝐿𝑒 = 10,   𝑏 = 𝐾 = 𝑄 = 0 

0.1 0.325859 1.482246 3.26E-01 1.484164 

0.2 0.323929 1.466855 3.25E-01 1.468161 

0.3 0.321953 1.451057 3.22E-01 1.452664 

𝑁𝑡 𝑁𝑏 = 0.3,   𝑁𝑟 = 0.5,   𝐿𝑒 = 10,   𝑏 = 𝐾 = 𝑄 = 0 

0.1 0.317842 1.418114 3.19E-01 1.419499 

0.2 0.304917 1.414708 3.05E-01 1.416536 

0.3 0.292751 1.415425 2.93E-01 1.416866 

𝑁𝑏 𝑁𝑡 = 0.1,   𝑁𝑟 = 0.5,   𝐿𝑒 = 10,   𝑏 = 𝐾 = 𝑄 = 0 

0.1 0.367286 1.325843 3.68E-01 1.327454 

0.2 0.342789 1.391928 3.43E-01 1.393615 

0.3 0.317842 1.418114 3.19E-01 1.419499 

6. Results and discussion  

Numerical solution to Eqs (42)–(44) with boundary conditions in Eq (45) is obtained by applying 

the Runge-Kutta-Fehlberg fourth-fifth order numerical method. We performed the computations using 

the software Maple 13, and our numerical results are displayed graphically for emphasizing the 

significant attributes of the flow characteristics.    

In Figures 2 and 3, we have presented the velocity profiles within the boundary layer for both 

thermal slip parameter 𝑏 , and no-thermal slip parameter (𝑏 = 0)  against several values of heat 

emission/absorption parameter Q, chemical reaction parameter 𝑘, and reaction order 𝑛, respectively. 

Figure 2(a) shows that the velocity profiles inside the boundary layer become high; hence the 

boundary layer’s thickness rises with the increase of heat generation/absorption parameter 𝑄. As heat 

evolves, the buoyancy force increases, which in turn causes the flow rate to reduce, which triggers an 

increase in the velocity profile. However, with the intensification of heat absorption, the velocity is 

observed to decrease due to the buoyancy force’s decrease. Figure 2(b) shows that the velocity profiles 

𝑓′(𝜂)  inside the boundary layer increase as the chemical reaction parameter 𝐾  increase, and the 

boundary layer’s width also decreases. This is because physically, the fluid motion becomes thicker 

as 𝐾 increases. In both Figure 2(a),(b), we clearly see that an increase in the thermal slip parameter 𝑏 

causes the velocity profiles 𝑓′(𝜂) to decrease. Therefore, the velocity profiles increase with the heat 

generation and order of chemical reaction, while they decrease when the thermal slip increases. 
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                                            (a)                                                                      (b) 

Figure 2. Effect of the generation and the chemical reaction parameters on the dimensionless 

velocity profiles for thermal slip parameter. 

Figure 3 shows that the velocity profiles 𝑓′(𝜂) inside the boundary layer slightly expand, and 

consequently, the width of the boundary layer decrease as the order reaction parameter 𝑛 rises. As in 

Figure 2, we see that the velocity profiles decrease as the thermal slip thermal parameter 𝑏 increases. 

 

Figure 3. Effect of the order of chemical reaction and the Lewis number on the dimensionless 

velocity profiles against several thermal slip parameter values. 

In Figure 4(a),(b), we have presented the temperature profiles 𝜃(𝜂) within the boundary layer for 

both thermal slip parameter 𝑏  and no-thermal slip parameter (𝑏 = 0)  for several values of heat 

emission/absorption parameter 𝑄, and order of reaction 𝑛, respectively. Figure 4(a) displays that the 

boundary layer’s temperature profiles increase; hence, the boundary layer’s thickness increases with 

the heat generation/absorption parameter.  As heat generation (𝑄 >  0), it is evident that there is a rise 

in the thermal state of the fluid.  As a result, we notice that the temperature enhances as 𝑄 attains larger 

values.  However, when heat absorption (𝑄 <  0), the exact converse happens, and this result agrees 

with previous work done by Alsaedi et al. [55]. Figure 4(b) shows that the boundary layer’s 

temperature profiles increase; hence, the boundary layer’s width extends as the order reaction 

parameter 𝑛 increases.  As the thermal slip parameter becomes large, less heat is transferred from the 

surface to the fluid, and consequently, the temperature profiles decrease. 
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In Figure 5(a),(b), we have presented the nanoparticle volume fraction profiles 𝜙(𝜂) within the 

boundary layer for various values of the order of reaction 𝑛, Lewis number 𝐿𝑒, chemical reaction parameter 

𝐾, and the thermal slip parameter 𝑏, respectively. Figure 5(a) shows that the nanoparticle volume fraction 

profiles within the boundary layer increase; hence, the boundary layer’s width becomes greater as the 

reaction order becomes large. This is because the Lewis number 𝐿𝑒  is inversely proportional to the 

diffusion coefficient. Consequently, a rise in 𝐿𝑒 yields a reduction in diffusion, which lastly results in a 

drop in nanoparticle concentration.  Figure 5(b) shows that the nanoparticle volume fraction profiles within 

the boundary layer decrease; hence, the boundary layer’s width enhances as the chemical reaction 

parameter rises. This result agrees with previous work by Abdul-Kahar et al. [35]. For both the “slip thermal” 

and “no-slip thermal” cases, the nanoparticle volume fraction profiles decrease monotonically as 𝐾 

increases. These physical behaviors are demonstrated because of the coalesced effects of the Brownian 

motion and thermophoresis particle deposition strength. 

 

                                             (a)                                                                     (b) 

Figure 4. Effect of the heat generation and the order of chemical reaction on the dimensionless 

temperature profiles against several thermal slip parameter values. 

 

                                             (a)                                                                      (b) 

Figure 5. Effect of the chemical reaction and the order of chemical reaction on the dimensionless 

concentration profiles against several thermal slip parameter values. 



4829 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 4817–4833. 

Table 2 shows the effects of thermal slip, order of chemical reaction, reaction rate, and generation 

parameters on the dimensionless heat and mass transfer rates. In Table 2, we also that the rates of heat 

and mass transfer decrease as the thermal slip and order of chemical reaction parameters increase. 

Thus, the generation and reaction parameters reduce with the heat transfer rate whereas, the parameters 

increase as the mass transfer rate increase.  In this respect, let us note that there is a significant effect 

on the flow field and accordingly on the heat transfer rate and nanoparticle volume fraction from the 

plate to the fluid. These effects are observed by the impact of thermophoresis particle deposition in the 

existence of the heat generation, order of chemical reaction, thermal slip, and chemical reaction 

parameters with Brownian motion. This demonstrates that all the previous parameters will significantly 

influence the heating and cooling processes in nano-fluids. This work has aided both scientists and 

engineers understand the most significant working principle of the deposition process.   

Table 2. Variation of −𝜃 ′(0) and −𝜙′(0) for various parameters values. 

𝑏 𝑄 𝐾 𝑛 −𝜃′(0) −𝜙′(0) 

0 0.1 0.1 1 0.44700 1.90384 

0.2 0.1 0.1 1 0.40473 1.88000 

0.5 0.1 0.1 1 0.35527 1.84997 

0.2 0.3 0.1 1 0.26873 2.02794 

0.2 0.5 0.1 1 0.09773 2.20642 

0.2 0.1 0.2 1 0.40469 1.90508 

0.2 0.1 0.4 1 0.40464 1.95445 

0.2 0.1 0.1 2 0.40474 1.87060 

0.2 0.1 0.1 3 0.40473 1.86665 

A vast range of scientific and engineering applications are being extended in fluid mechanics, 

heat transfer, and nanoparticle volume fraction. Because of this wide-ranged scope, free convective 

flow through porous media became a great study area undergoing rapid growth in the aforesaid 

fields. Finally, we mention one promising scientific implementations of nanoparticles, which is 

the use of heat transfer fluids with the dispersion of nanoparticles to challenge cooling problems 

in thermal systems.  

7. Conclusions 

Our present paper includes the numerical and physical study of the 2D steady free convective 

flow of a nano-fluid. The flow is assumed along with a horizontal plate that is faced upward and 

saturated in a porous medium. Our study considered thermal slip, chemical reaction, and heat 

emission/absorption under the Brownian motion and thermophoresis. Applying Lie group analysis, 

firstly, we observe the symmetries of the basic equations, following which we transform these 

equations to ODEs. We then worked with the resulting equations to obtain the numerical solution using 

Runge-Kutta-Fehlberg’s fourth-fifth order numerical technique with Maple 13. Finally, to recapitulate 

our most prominent findings, we can write the following: 

1) The velocity decreases as the thermal slip and heat absorption increase whilst it increases as 

the heat generation, order of chemical reaction, and reaction parameters increase.  

2) The temperature decreases as the thermal slip and heat absorption increase, whilst it increases 

as the order of chemical reaction and heat generation parameters increase.  
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3) The concentration decreases as the thermal slip, reaction parameter, and Lewis number increase, 

whilst it increases as the order of the chemical reaction increase. 

4) The heat and mass transfer rates reduce by increasing the thermal slip and the order of the 

chemical reaction parameters. 

5) The generation and reaction parameters lead to the reduction of heat transfer rate, whilst they 

cause an increase in the mass transfer rate. 

For further extensions of this paper, we can study various convective boundary conditions on the 

boundary layer free convection flow past a horizontal plate embedded in a porous medium filled by a 

nano-fluid containing different types of nanoparticles. 
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