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Abstract: In this paper, a new model known as YOLO-v5 is initiated to detect defects in PCB. In the 

past many models and different approaches have been implemented in the quality inspection for 

detection of defect in PCBs. This algorithm is specifically selected due to its efficiency, accuracy and 

speed. It is well known that the traditional YOLO models (YOLO, YOLO-v2, YOLO-v3, YOLO-v4 

and Tiny-YOLO-v2) are the state-of-the-art in artificial intelligence industry. In electronics industry, 

the PCB is the core and the most basic component of any electronic product. PCB is almost used in 

each and every electronic product that we use in our daily life not only for commercial purposes, but 

also used in sensitive applications such defense and space exploration. These PCB should be inspected 

and quality checked to detect any kind of defects during the manufacturing process. Most of the 

electronic industries are focused on the quality of their product, a small error during manufacture or 

quality inspection of the electronic products such as PCB leads to a catastrophic end. Therefore, there 

is a huge revolution going on in the manufacturing industry where the object detection method like 

YOLO-v5 is a game changer for many industries such as electronic industries. 
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1. Introduction 

A Printed Circuit Board (PCB) is the core and primary section of any electronic product. As we 

observe in our day to day life we human beings are being reliable on electronic product, from 
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communication to transport, each and every product is being induced with PCB. These PCB are the 

core and base of any electronic product, which has to be designed and manufactured with a high 

precision to cope with demands and requirements keeping the quality up to the mark is really a 

challenging job. PCB are basically a base for the chips, transistors, capacitors and other electronic 

components which is made of fiberglass, composite epoxy with laminated materials [1–4]. During the 

manufacturing process many PCBs are produced with defects due to mishandling or technical faults 

during production. These faulty or defective PCBs should be detected and segregated during the quality 

inspection process. In the past there were many traditional and standard methods to detect defects [5,6] 

but they are not so efficient and fast. 

In the recent couple of years, there is a lot of research done on detecting defects in PCBs but they 

were not so effective and unfortunately not able to detect tiny defects [7]. Although nowadays the PCB 

manufacturing industries use different image processing methods such as image subtraction, they are 

still not able to keep up with the quality inspection process. With the hike in popularity of consumer 

electronics products, accurate PCB manufacturing is important [8]. Few examples of PCB defect 

detection methods can be found in the literature [8–10]. Particularly, template-matching method [11] 

is used to detect defects in PCBs. Image subtraction method is another method using OpenCV [12]. 

However, these detection algorithms are specific to particular types of defects in PCBs. 

Remarkable progress has been made in the use of convolutional neural networks (CNNs) in several 

applications [13,14], such as image recognition [15,16] and object detection. In particular, object 

detection is achieved by implementing object recognition methods [17] and region-based CNNs [18].  

These methods are used with the involvement of AOI and AVI machines. Apart from using such 

an expensive machine, PCB industries are bound to train and involve a huge amount of manpower for 

quality inspection after the traditional inspection process [19–21]. These industries need to rely on 

trained skilled manpower where there is an inconsistency in accuracy, and it consumes more time 

which delays the production. To overcome such kinds of difficulties and issues, YOLO-v5 has been 

introduced in this paper to overcome the difficulties that were experienced in previous research. 

However, training skilled engineers requires real skilled training. Even after years of training, human 

being makes errors. Eventually, the application of machine learning can reduce the error to some extent. 

Machines programmed with deep learning algorithms can be used to verify hard to detect defects.  

Comparative to skilled quality engineer, machine learning methods are more accurate and much 

faster. Thus, this research proves that the involvement of machine learning can detect defects in PCB 

and increase productivity with higher accuracy. Researchers have applied various You-Only-Look-

Once (YOLO) [22–26] approaches to art datasets and achieved excellent accuracy. YOLO-v5 

outperforms other object detection algorithms due to its unique features like Mosaic data enhancement 

and adaptive anchor frame calculation. Apart from its well-designed structure, it outperforms in speed 

and it is smaller in size. On Ubuntu operating system, running a Titan V, we saw inference times up 

to 0.007 seconds per image, meaning 140 frames per second (FPS). By contrast, YOLO-v4 achieved 50 

FPS after having been converted to the same PyTorch library. YOLO-v5 has several differences and 

improvements. In this research, we have used the PyTorch library to deploy the YOLO-v5 model 

which is a lot user-friendly for developers. 

YOLO-v5 model can be also deployed in mobile devices as it can be compiled to CoreML and 

ONNX. 140 FPS has been achieving by YOLO-v5. When batch size is set to 1, 30 FPS as output is 

achieved by YOLO-v5 and 10 FPS is achieved by YOLO-v4. In our tests, we achieved roughly 0.895 

mean average precision (mAP) after training for initial 100 epochs. Admittedly, we saw a comparable 

performance from EfficientDet and YOLO-v4, but it is rare to see such across-the-board performance 

improvements without any loss inaccuracy. Finally, YOLO-v5 is small in size. The weight file for 
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YOLO-v5 is about 27 megabytes and the weight file for YOLO-v4 is 244 megabytes. YOLO-v5 is 

nearly 90% smaller than YOLO-v4. This means YOLO-v5 can be deployed to embedded devices much 

more easily. 

2. Materials and methods 

2.1. PCB data set 

Initially, data is collected from the AVI machine, the AVI machine provides an RGB format of the 

panel image of 4 different cameras. Images from 4 different cameras are extracted separately and then 

further process by cropping and testing which is done separately on the 4 different cameras. So initially, 

the R, G, and B image is combined and cropped to the exact location of the defect that is provided by 

AOI machine in a text file. The images is cropped to a size of 400 × 400 of the location and saved. 

This method is used to collect around 23,000 defective PCB images. After collecting the images, they 

are labelled using a tool created for the quality inspection engineers. This tool is designed to extracts 

the images from AVI and AOI machine of defective PCB with coordinates and label the defects. The 

quality inspection engineer labels the defective region with box shape around the defective region and 

label it as DEFECT eventually the location of two corners of the box which is x1y1 and x2y2 are saved 

in txt format which is used for the training process. After collecting and labeling the images, three 

different models like YOLO-v5 small, YOLO-v5 medium, and YOLO-v5 large are trained and their 

results are compared. 

A total of 23,000 images are used in this experiment which is divided into 20,700 images for 

training and 2300 images for testing purposes. After training for all the three models using 10 cross-

validation method, 30 models are generated and tested. The quality control testing procedure is fully 

automated with a user interface that provides the time and number of negative and OK images. This 

visualization user interface is effective and helps in monitoring the testing process without human 

interaction. The interface is developed using Python and Tkinter library. Figure 1 shows a snapshot of 

the developed interface used by the quality inspection operators. 

 

Figure 1. Snapshot of a user interface for testing monitoring and visualization. 

2.2. Architecture of YOLO-v5 

The structure of YOLO-v5 and YOLO-v4 very similar, but there are some differences. Figure 2 
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shows YOLO-v5 network structure diagram, it is still divided into 4 parts, namely: Input, Backbone, 

Neck, Prediction. 

 

Figure 2. Structure of YOLO-v5. 

2.1.1. Input 

a) Mosaic data enhancement 

The input end of YOLO-v5 uses the same Mosaic data enhancement method. During the usual 

project training, Arithmetic progression with small target Generally lower than the medium and large 

goals. Our data set also contains a large number of small targets, but the more troublesome is the 

distribution of small targets Uneven. There are several advantages, Rich data set, Random use of 

pictures, Random scaling, and random distribution for splicing, which greatly enriches the detection 

data set, especially random scaling adds a lot of small targets, making the network more robust. 

Reducing GPU, some people may say that random scaling, ordinary data enhancement can also be 

done. But the author considers that many people may only have a GPU, so Mosaic enhancement 

training can directly calculate the data of 4 pictures such that the Mini-batch size does not need to be 

very large. Therefore, a GPU can achieve better results. 

b) Adaptive anchor frame calculation 

In the YOLO algorithm, for different data sets, there will be an Anchor frame with initial length 

and width. During the network training stage, the network outputs are the prediction frame based on 

the initial anchor frame, then the sum of the Ground Truth Compare is calculated using the difference 

between the two, and then Iterative network parameters are updated in reverse. In YOLO-v3 and 

YOLO-v4, when training with different data sets, the calculation of the initial anchor box value is 

executed through a separate program. But in YOLO-v5, this function is embedded in the code. Hence, 

the best anchor box value is calculated during each training stage and updated adaptively. 
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c) Adaptive image scaling 

In commonly used target detection algorithms, different pictures have different lengths and widths, 

so the common way is to uniformly scale the original pictures to a standard size, and then feed them 

to the detection network. During inspection, many defect images might have different aspect ratios, 

and after zooming and filling, the black image borders can be different. If more fillings is needed, there 

will be information redundancy, which will affect the speed of reasoning. Therefore, in the YOLO-v5 

code, the letterbox function is modified to the original image and the least black border adaptively 

which is different with our previous study [27]. The black edges at both ends of the image height are 

reduced which consequently reduced the calculations during inference which improves the target 

detection speed. Through this simple improvement, the inference speed has been increased by 37%, 

which can be said to be very effective. 

2.2.2. Backbone 

a) Focus structure 

Taking the structure of YOLO-v5 as an example, an original 608 × 608 × 3 image is fed into the 

Focus structure as shown in Figure 3, then the slicing operation is used to change the images to 304 × 

304 × 12 feature map, followed by 32 convolution operation kernels which produces a final feature 

map of 304 × 304 × 32. The Focus structure of YOLO-v5 is shown in Figure 3. 

 

Figure 3. Focus structure of YOLO-v5. 

b) CSP structure 

The full name of CSP Net is Cross Stage Partial Network, which mainly solves the problem of a 

large amount of calculation in reasoning from the perspective of network structure design. The author 

of CSP Net believes that the problem of excessive inference calculations is due to network optimization 

gradient information repetition. Therefore, the CSP module is used to first divide the feature map of 
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the base layer into two parts, and then merge them through a cross-stage hierarchy, which can reduce 

the amount of calculation and ensure accuracy. There are two CSP structures designed in the YOLO-

v5 network, for example, the CSP1_X structure applied to the Backbone network and an additional 

CSP2_X Structure is applied to Neck. 

2.2.3. Neck 

YOLO-v5’s current Neck and YOLO-v4 use FPN + PAN structure, but when YOLO-v5 first 

came out, only the FPN structure was used, and the PAN structure was added later, and other parts of 

the network were also adjusted. The Neck structure of YOLO-v5 as shown in Figure 4, the CSP2 

structure designed by CSPnet is adopted to strengthen the ability of the network feature integration. 

 

Figure 4. Neck structure of YOLO-v5. 

2.2.4. Output 

a) Bounding box loss function 

YOLO-v5 uses Generalized Intersection over Union (GIOU) Loss as the loss function of the 

bounding box. In GIOU the measurement method of the intersecting scale is added which relieves the 

embarrassment of pure Intersection over Union (IOU). Based on the IOU, it solves the problem when 

the bounding boxes do not coincide. 

b) Non-maximum suppression 

In the post-processing of target detection, screening of many target frames usually requires a non-

maximum suppression operation. In this research, DIOU_non-maximum suppression method is 

adopted which is different from our previous study [27]. Under the same parameters, the IOU in non-

maximum suppression was changed to DIOU_non-maximum suppression. For some block 

overlapping targets, there will be indeed some improvements. When the parameters are consistent with 



4417 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 4411-4428. 

the ordinary IOU_non-maximum suppression, we modify it to DIOU_non-maximum suppression, and 

the two targets can be detected. Although the effect is similar in most states without an increase in the 

calculation cost, there is a slight improvement which is also good. 

3. Results 

In comparison with other object detection algorithms, the implementation of YOLO-v5 into 

embedded devices is very easy. Nvidia TITAN V GPU is used for this experiment, which reduces 

training time to 10% (i.e., 34 to 4 h). YOLO-v5 only requires the installation of a torch and some 

lightweight python libraries. With NVidia TITAN V GPU using Linux operating system and with the 

help of PyTorch, the experimental costs have been reduced because we just need to install the Torch 

with lightweight libraries. YOLO-v5 can infer individual images, batch images, video feeds, or 

webcam ports. The file folder layout is intuitive and easy to navigate while developing. You can easily 

translate YOLO-v5 from PyTorch weights to ONXX weights to CoreML to IOS. Three types of 

YOLO-v5 models are used in this experiment and have been compared with each other YOLO-v5 

small, medium and large models. They have trained and tested the network setting, and parameters 

have been adjusted and tuned gradually using trial and error method. YOLO-v5 includes four different 

models ranging from the smallest YOLO-v5 with 7.5 million parameters (plain 7 MB, COCO pre-

trained 14 MB) and 140 layers to the largest YOLO-v5 x with 89 million parameters and 284 layers 

(plain 85 MB, COCO pre-trained 170 MB). The approach that is considered in this paper is based on 

pre-trained YOLO-v5x model.  

Table 1. Accuracy, misclassification rate, true positive rate, false positive rate, true 

negative rate, precision, prevalence, mean and standard deviation of accuracy for YOLO-

v5 small model. 

*Note. Accuracy: Overall, how often is the detection correct. (TP + TN) / total; Misclassification Rate: Overall, how 

often is it wrong. (FP + FN) / total; True Positive Rate: When it’s actually yes, also known as “Sensitivity” or “Recall”; 

False Positive Rate: When it’s no. FP/actual no; True Negative Rate: When it’s actually no, also known as 

YOLO-v5 small model 

Category Accuracy 
Misclassification 

Rate 

True 

Positive 

Rate 

False 

Positive 

Rate 

True 

Negative 

Rate 

Precision Prevalence 

Crossvalidation 1 97.60% 0.023 0.971 0.02 0.97 0.97 0.45 

Crossvalidation 2 97.56% 0.024 0.972 0.02 0.97 0.97 0.45 

Crossvalidation 3 97.43% 0.025 0.972 0.02 0.97 0.97 0.45 

Crossvalidation 4 97.56% 0.024 0.973 0.02 0.97 0.97 0.45 

Crossvalidation 5 97.60% 0.023 0.971 0.02 0.97 0.97 0.45 

Crossvalidation 6 

Crossvalidation 7 

Crossvalidation 8 

Crossvalidation 9 

Crossvalidation 10 

97.65% 

97.47% 

97.56% 

97.60% 

97.39% 

0.023 

0.025 

0.024 

0.023 

0.026 

0.973 

0.970 

0.971 

0.971 

0.969 

0.02 

0.02 

0.02 

0.02 

0.02 

0.97 

0.97 

0.97 

0.97 

0.97 

0.97 

0.97 

0.97 

0.97 

0.97 

0.45 

0.45 

0.45 

0.45 

0.45 

Mean ± SD 97.52 ± 0.07       
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“Specificity”. TN/actual no; Precision: When it predicts yes. TP/predicted yes; Prevalence: It defines how often does 

the yes condition occurs in our sample. Actual yes/total. 

Table 2. Accuracy, misclassification rate, true positive rate, false positive rate, true 

negative rate, precision, prevalence, mean and standard deviation of accuracy for YOLO-

v5 medium model. 

*Note. Similar to Table 1. 

Table 3. Accuracy, misclassification rate, true positive rate, false positive rate, true 

negative rate, precision, prevalence, mean and standard deviation of accuracy for YOLO-

v5 large model. 

* Note. Similar to Table 1. 

YOLO-v5 medium model 

Category Accuracy 
Misclassification 

Rate 

True 

Positive 

Rate 

False 

Positive 

Rate 

True 

Negative 

Rate 

Precision Prevalence 

Crossvalidation 1 99.17% 0.008 0.99 0.007 0.99 0.99 0.45 

Crossvalidation 2 99.08% 0.009 0.99 0.008 0.99 0.99 0.45 

Crossvalidation 3 99.17% 0.008 0.99 0.007 0.99 0.99 0.45 

Crossvalidation 4 99.17% 0.008 0.99 0.009 0.99 0.99 0.45 

Crossvalidation 5 99.17% 0.008 0.99 0.007 0.99 0.99 0.45 

Crossvalidation 6 

Crossvalidation 7 

Crossvalidation 8 

Crossvalidation 9 

Crossvalidation 10 

99.21% 

99.20% 

99.17% 

99.13% 

99.17% 

0.007 

0.007 

0.008 

0.008 

0.008 

0.99 

0.99 

0.99 

0.99 

0.99 

0.007 

0.007 

0.007 

0.008 

0.009 

0.99 

0.99 

0.99 

0.99 

0.99 

0.99 

0.99 

0.99 

0.99 

0.99 

0.45 

0.45 

0.45 

0.45 

0.45 

Mean ± SD 99.16 ± 0.03       

YOLO-v5 large model 

Category Accuracy 
Misclassification 

Rate 

True 

Positive 

Rate 

False 

Positive 

Rate 

True 

Negative 

Rate 

Precision Prevalence 

Crossvalidation 1 99.86% 0.001 0.99 0.0008 0.99 0.99 0.45 

Crossvalidation 2 99.82% 0.001 0.99 0.0016 0.99 0.99 0.45 

Crossvalidation 3 99.82% 0.001 0.99 0.0008 0.99 0.99 0.45 

Crossvalidation 4 99.78% 0.002 0.99 0.0002 0.99 0.99 0.45 

Crossvalidation 5 98.86% 0.001 0.99 0.0008 0.99 0.99 0.45 

Crossvalidation 6 

Crossvalidation 7 

Crossvalidation 8 

Crossvalidation 9 

Crossvalidation 10 

99.86% 

99.95% 

99.78% 

99.82% 

99.86% 

0.001 

0.0004 

0.002 

0.001 

0.001 

0.99 

0.99 

0.99 

0.99 

0.99 

0.0008 

0.0000 

0.0031 

0.0000 

0.0023 

0.99 

1.00 

0.99 

1.00 

0.99 

0.99 

1.00 

0.99 

1.00 

0.99 

0.45 

0.45 

0.45 

0.45 

0.45 

Mean ± SD 99.74 ± 0.29       
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Table 4. Confusion matrix of five different cross-validations for YOLO-v5 small, medium and large. 

    Real  

   S M L 

 model  NG OK NG OK NG OK 

  

Cross validation 1 

NG 1025 25 1040 10 1049 1 

OK 30 1220 9 1241 2 1248 

  

Cross validation 2 

NG 1023 27 1039 11 1048 2 

OK 29 1221 10 1240 2 1248 

  

Cross validation 3 

NG 1020 30 1041 9 1049 1 

OK 29 1221 10 1240 3 1247 

  

Cross validation 4 

NG 1022 28 1038 12 1047 3 

OK 28 1222 7 1243 2 1248 

P
re

d
ic

te
d
 

 

Cross validation 5 

NG 1025 25 1040 10 1049 1 

OK 30 1220 9 1241 2 1248 

  

Cross validation 6 

NG 1024 26 1040 10 10491 1 

OK 28 1222 8 1242 2 1248 

  

Cross validation 7 

NG 1023 27 1041 9 1050 0 

OK 31 1219 8 1242 1 1249 

  

Cross validation 8 

NG 1024 26 1040 10 1046 4 

OK 30 1220 9 1241 1 1249 

  

Cross validation 9 

NG 1025 25 1040 10 1050 0 

OK 30 1220 10 1240 4 1246 

  

Cross validation 10 

NG 1022 28 1038 12 1047 3 

OK 32 1218 7 1243 0 1250 

YOLO-v5x model uses a two-stage detector that consists of a Cross Stage Partial Network 

(CSPNet) backbone, and a model head using a Path Aggregation Network (PANet) for instance 

segmentation. Each Bottleneck CSP unit consists of two convolutional layers with 1 × 1 and 3 × 3 

filters. The backbone incorporates a Spatial Pyramid Pooling network (SSP), which allows for dynamic 

input image size and is robust against object deformations. In this experiment, we have used 23,000 

images which are labeled by skilled quality control engineer different types of defects has been labeled 

as a single class as DEFECT. The epoch size is based on the training dataset. After deciding the 

parameters for the model, an initial ideal starts for training beginning. A cross-validation method has 

been induced to validate the results and 10 cross-validation method has been used. Then data is divided 
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into 10 parts, 9 of them are used for training and the remaining one part is used for testing.  

The 10 cross-validation method is used for 3 different models which generates 30 cross-validation 

models to justify the result. The 10-fold cross-validation method [28] has been implemented to evaluate 

the execution of the trained models. Initially, the data is randomly divided into 10 equal parts, 9 of 

these parts are used for the training model and the remaining part is used for testing. After every 

training of the YOLO-v5 model, the data used to evaluate the model is not seen or interacted with the 

model during the training season. This method is repeated 10 times by jumbling the training and 

validation datasets. After completing the training process for the Tiny-YOLO-v5 model, every model 

is tested for different datasets. 

As demonstrated in Tables 1–3, the results are gradually improving as the structure changes. This 

performance also proves that YOLO-v5 model is more efficient than other YOLO models. After every 

epoch or iteration, there is an increase in accuracy of the training process, which eventually tends the 

model to move towards better performance, and the final model is saved after the accuracy reaches a 

stable state. Results of 10 cross-validations YOLO-v5 small model are shown in Table 1, for YOLO-v5 

medium model are shown in Table 2 and YOLO-v5 large model are shown in Table 3.  

Table 4 displays the result of testing in the form of a confusion matrix. In detail, initially, YOLO-

v5 small model detection accuracy is approximately 97.52%, the YOLO-v5 medium model’s accuracy 

is 99.16%, YOLO-v5 large model is approximately 99.74% as reported in Tables 1–3 respectively. In 

total, 30 cross-validations have been trained on 3 different model sizes as shown in Table 4. The cells 

are shaded with red and green representing True Positive and True Negative respectively. The 

categories are labeled as NG (not good/damaged) and OK. 

According to the results, it can be concluded that YOLO-v5 large provides the best output its 

highest accuracy of 99.95% in detecting defects, and on average for 10 cross-validations the accuracy 

is 99.74% (Table 3). Also, other parameters like Misclassification Rate, True Positive Rate, False 

Positive Rate, True Negative Rate, and Prevalence which can be noticed that measuring parameters for 

YOLO-v5 large, is consistent and in all the 10 cross-validations for YOLO-v5 large model, there is not 

a huge difference between them. Figure 5 shows sample images for True Positive. In the above sample 

images, it can be seen that the model can detect the defects with confidence. 

 

Figure 5. Sample images for True Positive. 
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Figure 6. Sample images for False Negative. 

Figure 6 displays the sample images for False Negative, and these are the images that have a 

defective region in them but it’s not able to detect it. 

Figure 7 shows the False Positive defects. In these images, the model predicts False Positive 

which is misclassified but it with low confidence. To avoid such kind of misclassification, the model 

needs to be fined tuned by inspecting the size of the bounding box in training data. 

 

Figure 7. Sample images for False Positive. 

 

Figure 8. Sample images for True Negative. 
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Figure 8 displays sample images for True Negative. These samples do not have any defect and 

have been detected as OK. As it can be seen, the detection results YOLO-v5 large are appreciable with 

an average accuracy of 99.74% apart from the evaluation precision which is consistently 0.99 (Table 3). 

In addition, other measures such as misclassification rate, True Positive Rate, False Positive Rate, True 

Negative Rate, and Prevalence are the best using YOLO-v5 large compared to YOLO-v5 medium and 

YOLO-v5 small which gives stability and consistency. In most machine learning algorithms, it is 

believed that a large and balanced dataset makes the difference in performance. 

Table 5. Accuracy, misclassification rate, true positive rate, false positive rate, true 

negative rate, precision, prevalence, mean and standard deviation of accuracy for YOLO-

v5 large model. 

YOLO-v5 large 

Category Accuracy 
Misclassification 

Rate 

True 

Positive 

Rate 

False 

Positive 

Rate 

True 

Negative 

Rate 

Precision Prevalence 

Cross validation 1 99.60% 0.0039 0.99 0.013 0.98 0.99 0.80 

Cross validation 2 99.35% 0.0065 0.99 0.020 0.97 0.99 0.80 

Cross validation 3 99.47% 0.0052 0.99 0.006 0.99 0.99 0.80 

Cross validation 4 99.47% 0.0052 0.99 0 1 1 0.80 

Cross validation 5 99.73% 0.0026 0.99 0.006 0.99 0.99 0.80 

Mean ± SD 99.524 ± 0.12       

*Note. Similar to Table 1. 

Table 6. Accuracy, misclassification rate, true positive rate, false positive rate, true 

negative rate, precision, prevalence, mean and standard deviation of accuracy for Tiny-

YOLO-v2 model. 

Tiny-YOLO-v2 Batch size = 32 

Category Accuracy 
Misclassification 

Rate 

True 

Positive 

Rate 

False 

Positive 

Rate 

True 

Negative 

Rate 

Precision Prevalence 

Cross validation 1 98.82% 0.01 0.99 0.02 0.97 0.99 0.80 

Cross validation 2 98.95% 0.01 0.99 0.02 0.97 0.99 0.80 

Cross validation 3 98.82% 0.01 0.98 0.01 0.98 0.99 0.80 

Cross validation 4 99.21% 0.007 0.99 0.02 0.97 0.99 0.80 

Cross validation 5 98.16% 0.01 0.98 0.04 0.95 0.99 0.80 

Mean ± SD 98.79 ± 0.346       

*Note. Similar to Table 1. 

In order to compare with our previous study using Tiny-YOLO-v2 version [27], five-fold cross-

validation with batch size 32 were used in this experiment where Tiny-YOLO-v2 was tested using 765 

images. An average defective PCB detection accuracy (batch size of 32) was found to be 98.79%, and 

evaluation precision was consistently 0.99. In addition, other measures such as the misclassification 

rate, true positive rate, false-positive rate, true negative rate, and prevalence for a batch size of 32 were 
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not up to the mark in comparison with YOLO-v5 as deposited in Tables 5 and 6. As the mean accuracy 

for YOLO-v5 large is 99.52%. Table 7 displays Confusion matrix of five different cross-validations 

and comparison between Tiny-YOLO-v2 and YOLO-v5 large methods. 

Finally, in order to compare the training time and memory size for our proposal YOLO-v5 three 

models (i.e., small, medium, and large). Table 8 shows results for running 150 epochs.  

Table 7. Confusion matrix of five different cross-validations and comparison between 

Tiny-YOLO-v2 and YOLO-v5 large methods. 

Batch size  Yolo-v5(l) 
Tiny-YOLO-v2 

(batch size 32) 

  NG OK NG OK 

Cross validation 1 
NG 615 2 611 6 

OK 1 147 3 145 

Cross validation 2 
NG 614 3 613 4 

OK 2 146 4 144 

Cross validation 3 
NG 616 1 610 7 

OK 3 145 2 146 

Cross validation 4 
NG 617 0 614 3 

OK 4 144 3 145 

Cross validation 5 
NG 616 1 609 8 

OK 1 147 6 142 

Table 8: Training time and memory requirements for our proposal YOLO-v5 three models 

(i.e., small, medium, and large) with 150 epochs. 

 YOLO-v5 small YOLO-v5 medium OLO-v5 large 

Time (hrs.) 3 hrs 15 hrs 31 hrs 

Memory (MB) 27 MB 50 MB 192 MB 

*Note. Time is the required time used by model for training process and memory is amount of memory of weight 

that is used by model. 

4. Discussion 

One major advantage of YOLO-v5 over other models in the YOLO series is that YOLO-v5 is 

coded in PyTorch from the ground up. This makes it useful for machine learning engineers as there 

exists an active and vast PyTorch community to support the researchers. YOLO-v5 is also much faster 

than all the previous versions of YOLO [29–31]. In addition to this, YOLO-v5 is nearly 90% smaller 

than YOLO-v4. This means YOLO-v5 can be deployed to embedded devices much more easily. To 

know more about some of the advantages of YOLO-v5, mosaic augmentation, is an included technique 

in the improved YOLO-v5. Previously, YOLO models are developed using darknet and that was not 

so flexible for research work and not suitable to be used in industry. Iterating on YOLO-v5 may be 

easier for the broader research community. Apart from that, YOLO-v5 is fast running on NVidia Titan 

V as it can reach 140 FPS while the other YOLO models are restricted to 50 FPS. YOLO-v5 is accurate 
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after training for 1000 epochs and roughly it can achieve 0.935 mean average precision. It is not usually 

seen in any other YOLO or object detection models without loss an accuracy has been achieved. Finally, 

the size of YOLO-v5 model, e.g., the weight file of YOLO-v5 small is only 27 megabytes and the size 

of YOLO-v5 large is 192 megabytes while the size of YOLO-v4 is 244 megabytes.  

 

(a) 

 

(b) 

Figure 9. The comparison of previous Tiny YOLO-v2 and proposal YOLO-v5 models (a) 

Structure of Tiny-YOLO-v2; (b) Structure of YOLO-v5. 

As mentioned in Section 2, adaptive image scaling and Non-maximum suppression are the 

changes that we have done comparative to our previous work [27]. In this study we have also 

implemented the automatic testing process and a user interface which automatically extracts the images 

from AVI machine and runs the testing in a parallel computing which eventually saves time during 

testing process. In addition to that, it runs the testing without intervention of human. Furthermore, to 

justify the difference between both the model, Figure 9(a) is the structure of Tiny-YOLO-v2 that we 

have used in the previous study, and Figure 9(b) displays the structure of YOLO-v5 that we have used 
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in this research. As we can see in the below figures, the difference between both the structure is the 

neck section. In the field of target detection, in order to better extract the fusion features, usually some 

layers are inserted in the Backbone and the output layer. This part is called Neck. The neck, which is 

equivalent to the target detection network, is also very critical. YOLO-v5 uses CSPDarknet53 as the 

backbone, plus the SPP module, PANET as the neck, and the head of YOLO-v3. Compared with Tiny-

YOLO-v2, the structure diagram of YOLO-v5 has more CSP structure and PAN structure. If you 

simply look at the structure, you will find it very convoluted. However, after seeing the below structure, 

it will feel suddenly open. In fact, the overall structure is same, but using various new algorithm ideas 

to improve each substructure. Yolo-v5 structure is the method for neighboring positive sample 

anchor matching strategy. Through flexible configuration parameters, models of different 

complexity can be obtained so it improves overall performance through some built-in hyper-

parameter optimization strategies, for example, mosaic enhancement is used to improve the detection 

performance of small objects. 

The used datasets are collected by our research team who have decades of experience in quality 

inspection of PCB. Moreover, the traditional deep learning [32–35] methods are based on classifying 

or detecting particular objects in the image. In this paper, three different types of models have been 

deployed and have been compared with each other. The training time has also been compared each 

other after comparing training time, it has been observed that YOLO-v5 small takes less time compared 

to the other two models. YOLO-v5 small takes almost 3–4 hrs., to train and YOLO-v5 medium takes 

12–14 hrs. to train while the YOLO-v5 large takes 31–32 hrs. However, with respect to the overall 

accuracy, YOLO-v5 large is more accurate than the other two models. YOLO-v5 small has an 

average accuracy of 97.52%, while YOLO-v5 medium has 99.16% and YOLO-v5 large has an 

accuracy of 99.74%. Apart from accuracy if we compare with the map, YOLO-v5 large has the 

highest map than the other two. YOLO-v5 large has 94%, while YOLO-v5 medium and YOLO-v5 

small has 84 and 82%. 

5. Conclusions 

This research proves that YOLO-v5 large can detect the defects in PCB with plausible accuracy 

of 99.74%, which optimized a lot of skilled manpower and time. It also increases the accuracy. In 

future work, the accuracy can be increased considering several types of defects. In future work, 

efficient performance with higher accuracy requires further research for example includes a different 

kind of defects. The grouping of classes must be done in a more balanced way, and we need to include 

more types of defects and increase the type of defects with an increase in data. Further, in the future, 

we will try to develop fully automatic training without human interference and use transfer learning 

and meta-learning to improve the accuracy. Eventually, the transfer learning approach [36,37] can be 

considered for a pre-trained YOLO model. 
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