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Abstract: In this paper, we discuss global existence, boundness, blow-up and extinction properties
of solutions for the Dirichlet boundary value problem of the p-Laplacian equations with logarithmic
nonlinearity ut − div(|∇u|p−2∇u) + β|u|q−2u = λ|u|r−2u ln |u|, where 1 < p < 2, 1 < q ≤ 2, r > 1,
β, λ > 0. Under some appropriate conditions, we obtain the global existence of solutions by means of
the Galerkin approximations, then we prove that weak solution is globally bounded and blows up at
positive infinity by virtue of potential well theory and the Nehari manifold. Moreover, we obtain the
decay estimate and the extinction of solutions.
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1. Introduction

In this paper, we consider the following p-Laplacian equations with logarithmic nonlinearity.
ut − div(|∇u|p−2∇u) + β|u|q−2u = λ|u|r−2u ln |u|, in Ω × (0,T ),
u(0) = u0, in Ω,

u = 0, on ∂Ω × (0,T ),
(1.1)

where 1 < p < 2, 1 < q ≤ 2, r > 1, β, λ > 0, T ∈ (0,+∞], Ω ∈ RN is a bounded domain with smooth
boundary and u0(x) ∈ L∞(Ω) ∩W1,p

0 (Ω) is a nonzero non-negative function.
Problem (1.1) is a class of parabolic equation with logarithmic nonlinearity, it is worth pointing out

that the interest in studying problem (1.1) relies not only on mathematical purposes, but also on their
significance in real models. Among the fields of mathematical physics, biosciences and engineering,
problem (1.1) is one of the most important nonlinear evolution equations. For example, in the
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combustion theory, we can use the function u(x, t) to represent temperature, the −div(|∇u|p−2∇u) term
to represent thermal diffusion, β|u|q−2u to represent absorption, and λ|u|r−2u ln |u| to be the source. In
the diffusion theory, we can use u(x, t) to represent the density of a type of population at position x at
time t, the −div(|∇u|p−2∇u) term represents the diffusion of density, λ|u|r−2u ln |u| and β|u|q−2u
represents the absorption and the sources, respectively. We refer the reader to [1,2] and the references
therein for further details on more practical applications of problem (1.1).

The research with logarithmic nonlinearity terms is the current research hotspot. The literature on
the evolution equations with logarithmic nonlinearity term is very interesting, we refer the readers
to [3–6] and the references therein. At the same time, the study of p-Laplacian equations has also
achieved many important results. The study of p-Laplacian equations can be divided into two cases,
namely 1 < p < 2 and p > 2. For the case of p > 2, most researchers discuss the global existence
and blow-up of solutions of the equations (see [7–10]). For the case of 1 < p < 2, the extinction and
attenuation estimation of solutions are mainly discussed, we refer the readers to [11–13].

In particular, there are also some papers concerning properties such as global existence or extinction
for the problem (1.1) for special cases.

In [14], Liu studied a more general form
ut − div(|∇u|p−2∇u) + β|u|q = λ|u|r, in Ω × (0,T ),
u(0) = u0, in Ω,

u = 0, on ∂Ω × (0,T ),
(1.2)

where 1 < p < 2, q ≤ 1, r > 1, β, λ > 0, Ω ⊂ RN (N > 2) is a bounded domain with smooth
boundary and u0(x) ∈ L∞(Ω) ∩ W1,p

0 (Ω) is a nonzero non-negative function. The author gave the
extinction properties and attenuation estimates of the solutions by comparison principle and differential
inequality.

In [15], Cao and Liu considered the following initial-boundary value problem for a nonlinear
evolution equation with logarithmic source

ut − div(|∇u|p−2∇u) − k4ut = |u|p−2u log |u|, in Ω × (0,T ), (1.3)

where 1 < p < 2, u0 ∈ H1
0(Ω), T ∈ (0,+∞), k ≥ 0, Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth

boundary ∂Ω. They proved the global existence of weak solutions and studied the asymptotic behavior
of solutions and gave some decay estimates and growth estimates by constructing a family of potential
wells and using the logarithmic Sobolev inequality.

In [16], Pan et al. considered the following pseudo-parabolic equation with p-Laplacian and
logarithmic nonlinearity terms

ut − 4ut − div(|∇u|p−2∇u) = |u|q−2u log(|u|), t > 0, x ∈ Ω, (1.4)

in a bounded domain Ω ⊂ Rn(n ≥ 1) with smooth boundary, where u0 ∈ W1,p
0 (Ω)\{0} and the parameters

p, q satisfy 2 < p < q < p(1 + 2
n ). They gave the upper and lower bound estimates of blow-up time and

blow-up rate, and established a weak solution with high initial energy.
In [17], Xiang and Yang studied the following initial-boundary value problem for the fractional

p-Laplacian Kirchhoff type equations

ut − M(‖u‖p)(−4)s
pu = λ|u|r−2u − µ|u|q−2u, (x, t) ∈ Ω × (0,∞), (1.5)
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where 0 < s < 1 < p < 2, 1 < q ≤ 2, r > 1, µ, λ > 0, Ω ⊂ RN is a bounded domain with Lipschitz
boundary, M : [0,∞) → (0,∞) is a continuous function. By flexible application of differential
inequalities, they gave the extinction and the decay estimates of solutions.

Inspired by the above work, we study problem (1.1). Compared with problem (1.2) and (1.5), the
focus of our work is partial differential equations with logarithmic nonlinearity. If the nonlinear term
λ|u|r−2u ln |u| in problem (1.1) is transformed into λ|u|r−2u, then the problem (1.1) can be transformed
into problem (1.2). For more research results of the logarithmic nonlinear p-Laplacian equations, we
refer the readers to [18–21] and the references therein. But as far as we know, no work has dealt with
the global existence and extinction properties of solutions for problem (1.1) with both the absorption
and source effects as well as the term of logarithmic nonlinearity. To state our main results, we need
the following two definitions.
Definition 1.1 (Weak solution). A function u(x, t) is said to be a weak solution of problem (1.1), if
(x, t) ∈ Ω × [0,T ), u ∈ Lp(0,T ; W1,p

0 (Ω)) ∩ C(0,T ; L∞(Ω)
)
, ut ∈ L2(0,T ; L2(Ω)

)
, u(x, 0) = u0(x) ∈

W1,p
0 (Ω), for all v ∈ W1,p

0 (Ω), t ∈ (0,T ), the following equation holds

(ut, ν) + (|∇u|p−2∇u,∇ν) + (β|u|q−2u, ν) = (λ|u|r−2u ln |u|, ν),

where (·, ·) means the inner product of L2(Ω).
Definition 1.2 (Extinction of solutions). Let u(t) be a weak solution of problem (1.1). We call u(t) is
an extinction of solutions if there exists T > 0 such that u(x, t) > 0 for all t ∈ (t,T ) and u(x, t) ≡ 0 for
all t ∈ [T,+∞).

Further, we respectively define the energy functional J(u) and the Nehari functional I(u) of problem
(1.1) as

J(u) =
1
p
‖∇u‖p

p − λ
1
r

∫
Ω

|u|r ln |u|dx + λ
1
r2

∫
Ω

|u|rdx + β
1
q

∫
Ω

|u|qdx, (1.6)

and

I(u) = ‖∇u‖p
p − λ

∫
Ω

|u|r ln |u|dx + β

∫
Ω

|u|qdx. (1.7)

By the subsequent Lemma 2.1 and a simple calculation, we can obtain∫
Ω

|u|r ln |u|dx ≤
1
σe
‖u‖r+σ

r+σ ≤
1
σe
‖∇u‖r+σ

2 ,

for 0 < σ < 2∗ − r. So J(u) and I(u) are well-defined for u ∈ W1,p
0 (Ω).

Next, the potential well W and its corresponding set V are defined by

W := {u ∈ W1,p
0 (Ω) | I(u) > 0, E(u) < d} ∪ {0}, (1.8)

V := {u ∈ W1,p
0 (Ω) | I(u) < 0, E(u) < d}. (1.9)

Let
d := inf

u∈N
J(u), (1.10)
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and define the Nehari manifold

N := {u ∈ W s,p
0 (Ω)\{0} | I(u) = 0}. (1.11)

Moreover, we define
N+ := {u ∈ W1,p

0 (Ω) | I(u) > 0}, (1.12)

N− := {u ∈ W1,p
0 (Ω) | I(u) < 0}. (1.13)

Next, we state our main results.

Theorem 1.1 (Global existence). Assume that u0(x) ∈ L∞(Ω) ∩W1,p
0 (Ω). Then problem (1.1) admits a

global weak solution u ∈ Lp(0,T ; W1,p
0 (Ω))∩C(0,T ; L∞(Ω)

)
with ut ∈ L2(0,T ; L2(Ω)

)
for 0 ≤ t < +∞.

Theorem 1.2 (Globally bounded and blow-up). Let u(x, t) be the weak solution of problem (1.1) and
r = p. If J(u0) ≤ d, I(u0) ≥ 0 and p = q, then the weak solution u(x, t) is globally bounded. Moreover,
if J(u0) < 0 and p > q, the weak solution u(x, t) blows up at +∞.

Theorem 1.3 Assume that I(u0) > 0, r = p and q = 2.
(1) If λ < R0, then the weak solution of (1.1) satisfies

‖u(·, t)‖22 ≤ ‖u0‖
2
2e−2βt for all t ≥ 0.

(2) If 2N/(N + 2s) < p < 2 and λ < R0 or 1 < p ≤ 2N/(N + 2s) and λ < R1, then the nonnegative
solutions of (1.1) vanish in finite time, and‖u(·, t)‖2 ≤

[(
‖u0‖

2−p
2 + C0

β

)
e(p−2)βt −

C0
β

] 1
2−p
, t ∈ [0,T1),

‖u(·, t)‖2 ≡ 0, t ∈ [T1,∞),

for 2N/(N + 2) < p < 2, and‖u(·, t)‖l+1 ≤
[(
‖u0‖

2−p
l+1 + C1

β

)
e(p−2)βt −

C1
β

] 1
2−p
, t ∈ [0,T2),

‖u(·, t)‖l+1 ≡ 0, t ∈ [T2,∞),

for 1 < p < 2N/(N + 2), where

R0 =
λ1

λ1Γ(p,Ω) + ln(R)
, C0 = C−p|Ω|(

N−p
N p −

1
2 )p

(
1 − λΓ(p,Ω) −

1
λ1

ln(R)
)
, l =

2N − (1 + N)p
p

,

R1 =
λ1lpp−1

[λ1Γ(p,Ω) + ln(R)](p + l − 1)p−1 ,C1 = C−p
( lpp

(p + l − 1)p − λp
( Γ(p,Ω)

p + l − 1
+

ln(R)
λ1(p + l − 1)

))
and C is the embedding constant, Γ(p,Ω) will be given in section 3.
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Theorem 1.4 Let r = p and p > q. If 0 < J(u0) < R2 and I(u0) < 0, then the solution u(x, t) of (1.1) is
non-extinct in finite time, where

R2 = λ
1
p2

( p2e
λnLp

) n
p .

Theorem 1.5 Assume I(u0) > 0, r > p and q = 2, then the nonnegative weak solution of problem (1.1)
vanishes in finite time and‖u(·, t)‖2 ≤

[(
‖u0‖

2−p
2 + 3C4

2β

)
e(p−2) 1

3βt −
3C4
2β

] 1
2−p
, t ∈ [0,T3),

‖u(·, t)‖2 ≡ 0, t ∈ [T3,∞),

for 2N/(N + 2) ≤ p < 2, λ < R2, and‖u‖l+1 ≤
[(
‖u0‖

2−p
l+1 + C8

C7

)
e(p−2)C7t −

C8
C7

] 1
2−p
, t ∈ [0,T4),

‖u‖l+1 ≡ 0, t ∈ [T4,∞),

for 1 < p < 2N/(N + 2s), λ < R3 = E0
E1

, where

E0 = βeσ|Ω|
l1−s2

s2 C(v2−1)l1
p∗ ,

E1 = (
lppeσ

3(p + l − 1)p |Ω|
l1−s2

s2 Cv2−1
p∗ )

l1(v2−1)
p−l1(1−v2) ,

and Cp∗ is the embedding constant, l1, v2, s2 will be given in section 3.
The paper is organized as follows. In section 2, we give some necessary Lemmas such as some

properties for Nehari functional and known results for ODEs. In section 3, we present the proof of the
main theorems.

2. Preliminaries and Lemmas

Lemma 2.1 ([22]) Let α be positive number, then

tp ln(t) ≤
1

eα
tp+α, for all p, t > 0.

Lemma 2.2 Let u ∈ W1,p
0 (Ω)\{0}, then∫

Ω

|u|p ln |u|dx ≤ Γ(p,Ω)‖∇u‖p
p + ln(‖∇u‖p)‖u‖p

p,

where Γ(p,Ω) := |Ω|

ep + 1
e(p∗−p)C

p∗

p∗ , Cp∗ is the best constant of embedding from W1,p
0 (Ω) to Lp∗(Ω).

Proof. For convenience, we provide complete proof. As we know, for 1 < p < 2,

‖u‖1,Ω = ‖u‖W1,p
0 (Ω) = ‖∇u‖p. (2.1)
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Let Ω1 = {x ∈ Ω : |u(x)| ≤ ‖u‖1,Ω} and Ω2 = {x ∈ Ω : |u(x)| > ‖u‖1,Ω}, we can obtain∫
Ω

|u(x)|p ln(
|u(x)|
‖u‖1,Ω

)dx =

∫
Ω1

|u(x)|p ln(
|u(x)|
‖u‖1,Ω

)dx +

∫
Ω2

|u(x)|p ln(
|u(x)|
‖u‖1,Ω

)dx. (2.2)

Using the properties of logarithmic, we have∫
Ω1

∣∣∣u(x)
∣∣∣p ln(

|u(x)|
‖u‖1,Ω

)dx ≤ ‖u‖1,Ω

∫
Ω

∣∣∣∣ |u(x)|
‖u‖1,Ω

∣∣∣∣p∣∣∣∣ ln(
|u(x)|
‖u‖1,Ω

)
∣∣∣∣dx ≤

|Ω|

pe
‖u‖p

1,Ω. (2.3)

Taking σ = p∗ − p in Lemma 2.1, and by Sobobev embedding inequality, we obtain∫
Ω2

|u(x)|p ln(
|u(x)|
‖u‖1,Ω

)dx ≤
1

e(p∗ − p)‖u‖p∗−p
1,Ω

‖u‖p∗

p∗ ≤
1

e(p∗ − p)
Cp∗

p∗‖u‖
p
1,Ω. (2.4)

By (2.2), (2.3) and (2.4), we get∫
Ω

|u(x)|p ln(
|u(x)|
‖u‖1,Ω

)dx ≤
( |Ω|

pe
+

1
e(p∗ − p)

Cp∗

p∗

)
‖u‖p

1,Ω.

By direct calculation and Eq (2.1), we have∫
Ω

|u|p ln |u|dx ≤ Γ(p,Ω)‖∇u‖p
p + ln(‖∇u‖p)‖u‖p

p.

The proof is completed. �

Lemma 2.3 ([23]) Let p > 1, µ > 0, and u ∈ W1,p
0 (Ω), then we have

p
∫
RN
|u(x)|p ln

( |u(x)|
‖u‖Lp(RN )

dx
)

+
n
p

ln
( pµe
nLp

) ∫
RN
|u(x)|pdx ≤ µ

∫
RN
|∇u|pdx,

where

Lp =
p
n
( p − 1

e
)p−1

π−
p
2
[ Γ( n

2 + 1)

Γ(n p−1
p + 1)

] p
n
.

Lemma 2.4 Let u ∈ W1,p
0 \{0} and r = p, then we have

(i) If 0 < ‖∇u‖p ≤ R, then I(u) ≥ 0;
(ii) If I(u) < 0, then ‖∇u‖p > R;

where R = λ
1
p

1

(
p2e
λnLp

) n
p2 and λ1 is the first eigenvalue of the following equation{

−div(|∇u|p−2∇u) = λ|u|p−2u in Ω,

u = 0, on ∂Ω.

Proof. (i) By (1.3) and Lemma 2.3, we can obtain

I(u) =‖∇u‖p
p − λ

∫
Ω

|u|p ln |u|dx + β

∫
Ω

|u|qdx

≥‖∇u‖p
p − λ

∫
Ω

|u|p ln |u|dx

≥(1 −
λµ

p
)‖∇u‖p

p + λ
(

ln
( pµe
nLp

) n
p2 − ln(‖u‖p)

)
‖u‖p

p.

(2.5)
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Taking µ = 1
λ

p in (2.5), we get

I(u) ≥ λ
(

ln
( p2e
λnLp

) n
p2 − ln(‖u‖p)

)
‖u‖p

p. (2.6)

If 0 < ‖∇u‖p ≤ R, then ‖u‖p ≤ λ
− 1

p

1 ‖∇u‖p ≤
(

p2e
λnLp

) n
p2 , we have I(u) ≥ 0.

(ii) If I(u) < 0, by (2.6), we have

ln
( p2e
λnLp

) n
p2 < ln(‖u‖p),

namely

R = λ
1
p

1

( p2e
λnLp

) n
p2
< λ

1
p

1 ‖u‖p ≤ ‖∇u‖p.

The proof is completed. �
Lemma 2.5 ([24]) If 1 ≤ p0 < pθ < p1 ≤ ∞, then we have

‖u‖pθ ≤ ‖u‖
1−θ
p0
‖u‖θp1

,

for all u ∈ Lp0(Ω) ∩ Lp1(Ω) with θ ∈ (0, 1) defined by 1
pθ

= 1−θ
p0

+ θ
p1

.
Lemma 2.6 ([25]) Let y(t) be a non-negative absolutely continuous function on [T0,+∞) satisfying

dy
dt

+ αyk + βy ≤ 0, t ≥ 0, y(0) ≥ 0,

where α, β > 0 are constants and k ∈ (0, 1). Theny(t) ≤
[(

y1−k(T0) + α
β

)
e(k−1)β(t−T0) − α

β

] 1
1−k
, t ∈ [T0,T∗),

y(t) ≡ 0, t ∈ [T∗,+∞),

where T∗ = 1
(1−k)β ln

(
1 +

β

α
y1−k(T0)

)
.

Lemma 2.7 Assume that J(u0) ≤ d, then the sets N+ and N− are both invariant for u(t), i.e, if u0 ∈ N−

(resp. u0 ∈ N+), then u(t) ∈ N− (resp. u(t) ∈ N+) for all t ∈ [0,T ).
Proof. We only prove the case of u(t) ∈ N−, and the proof of u(t) ∈ N+ is similar.

Step 1: J(u0) < d. If u(t) < N−, there exists a t0 > 0, such that

I(u(t0)) = 0, and I(u(t)) < 0 for all t ∈ [0, t0).

By (2.1), we have

I(u) =‖u‖p
1,Ω − λ

∫
Ω

|u|r ln |u|dx + β

∫
Ω

|u|qdx

≥‖u‖p
1,Ω − λ

1
σ
‖u‖r+σ

r+σ

≥
(
1 − λ

1
σ

S r+σ‖u‖r+σ−p
1,Ω

)
‖u‖p

1,Ω,

(2.7)
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where S is the embedding constant, 0 < σ ≤ p∗ − r. Note that I(u) ≤ 0, we have ‖u‖1,Ω = ‖∇u‖p >( σ
λS r+σ

r+σ

) 1
r+σ−p > 0, which implies ‖u(t0)‖1,Ω = ‖∇u(t0)‖p >

( σ
λS r+σ

r+σ

) 1
r+σ−p > 0, so we get u(t0) ∈ N . Choosing

ν = ut in Definition 1.1 and integrating with respect to time 0 to t, we can obtain∫ t

0
‖uτ‖22dx + J(u(t)) = J(u0) < d, for all t ∈ [0,T ), (2.8)

namely
J(u(t)) = J(u0) < d, for all t ∈ [0,T ).

While by the definition of d in (1.10), we get J(u(t0)) ≥ d, which gives a contradiction.
Step 2: J(u0) = d. Similarly, we assume that the conclusion is incorrect, then it exists a t1 > 0, such

that I(u(t1)) = 0, and I(u(t)) < 0 for all t ∈ [0, t1). By calculation of (2.7), we get ‖∇u‖p > 0, which
implies u(t1) ∈ N . Since 1

2
d
dt‖u‖

2
2 = −I(u(t)) for all t ∈ [0, t1), combining with boundary conditions, we

obtain ut , 0. By (2.8), we have

J(u(t1)) ≤ J(u0) −
∫ t1

0
‖uτ‖22dx < d, (2.9)

which gives a contradiction with the definition of d. �

3. Proof of main results

In this section, we prove that the main results of problem (1.1).
Proof of Theorem 1.1

First we let {ω j(x)} be the basis function of W1,p
0 (Ω). Next, we construct the following approximate

solutions um(t) of problem (1.1) as follows:

um =

m∑
j=1

g jm(t)ω j(x), j = 1, 2, · · ·,

which satisfy

(umt, ω j) + (|∇u|p−2∇um, ω j) + (β|um|
q−2um, ω j) = (λ|um|

r−2um ln |um|, ω j), (3.1)

and

um(x, 0) =

m∑
j=1

ξ jmω j(x)→ u0, in W1,p
0 (Ω), (3.2)

where j = 1, 2, ...,m, and ξ jm = (um(0), ω j) are given constants. We use (·, ·) to represent the inner
product in L2(Ω). The standard theory of ODEs, e.g. Peano’s theorem, yields that
g jm(t) ∈ C1([0,∞); W1,p

0 (Ω)) and g jm(0) = ξ jm, thus um ∈ C1([0,∞); W1,p
0 (Ω)).

Next, we try to get a priori estimates of the approximate solutions um. Multiplying (3.1) by g′jm(t) ,
summing for j from 1 to m and integrating with respect to time from 0 to t, we can obtain∫ t

0
‖umτ‖

2
2dτ +

1
p
‖∇um‖

p
p − λ

1
r

∫
Ω

|um|
r ln |um|dx + λ

1
r2 ‖um‖

r
r + β

1
q
‖um‖

q
q

=
1
p
‖∇um(0)‖p

p − λ
1
r

∫
Ω

|um(0)|r ln |um(0)|dx + λ
1
r2 ‖um(0)‖rr + β

1
q
‖um(0)‖qq.

(3.3)
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For sufficiently large m and by (3.3), we have

1
p
‖∇um(0)‖p

p − λ
1
r

∫
Ω

|um(0)|r ln |um(0)|dx + λ
1
r2 ‖um(0)‖rr + β

1
q
‖um(0)‖qq ≤ Φ(u0), (3.4)

where
Φ(u0) = ‖u0‖

p
p − λ

1
r

∫
Ω

|u0|
r ln |u0|dx + λ

1
r2 ‖u0‖

r
r + β

1
q
‖u0‖

q
q + 1.

Multiplying (3.1) by g jm(t), then summing j from 0 to m, we obtain

1
2

d
dt
‖um‖

2
2 + ‖∇um‖

p
p + β‖um‖

q
q = λ

∫
|um|

r ln |um|dx.

By Lemma 2.1, we have

λ

∫
|um|

r ln |um|dx ≤ λ
1

eσ
(
∫

Ω

|um|
2dx)

r+σ
2 . (3.5)

For σ ∈ [1, 2 − p), namely
1
2

d
dt
‖um‖

2
2 ≤

1
eσ

(
∫

Ω

|um|
2dx)

r+σ
2 ,

which implies

‖um‖
2
2 ≤

(2 − (r + σ)
eσ

t + ‖um0‖
2−(r+σ)
2

) 2
2−(r+σ) . (3.6)

By (3.3), (3.4) and (3.6), we can obtain∫ t

0
‖umτ‖

2
2dτ +

1
p
‖∇um‖

p
p + λ

1
r2 ‖um‖

r
r + β

1
q
‖um‖

q
q

≤ Φ(u0) + Ψ(u0, t),
(3.7)

where
Ψ(u0, t) = λ

1
eσ

(2 − (r + σ)
eσ

t + ‖um0‖
2−(r+σ)
2

) r+σ
2−(r+σ)

.

Therefore, by (3.6) and (3.7), there is a function u ∈ Lp(0,T ; W1,p
0 (Ω))

)
with ut ∈ L2(0,T ; L2(Ω)

)
,

and a subsequence of {um}
∞
m=1 (still denoted by {um}

∞
m=1) such that for t ∈ (0,∞), as m→ ∞, we obtain

umt ⇀ ut weakly in L2(0,∞; L2(Ω)), (3.8)

um ⇀ u weakly star in L∞(0,∞; W1,p
0 (Ω)), (3.9)

|∇um|
p−2∇um → χ(t) weakly star in L∞(0,∞; L

p
p−1 (Ω)). (3.10)

Since W1,p
0 ↪→ Lp(Ω) is compact, by (3.8), (3.9) and using Aubin-Lions compactness theorem, we have

um → u strongly in C(0,∞; L2(Ω)), (3.11)

which implies um → u a.e. in Ω × (0,∞), and then |um|
p−2um ln |um| → |u|p−2u ln |u| a.e. in Ω × (0,∞).
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Fixing j in (3.1) and letting m→ ∞, we get

(ut, ω j) + (χ(t),∇ω j) + (β|u|q−2u, ω j) = (λ|u|r−2u ln |u|, ω j),

which implies

(ut, ν) + (χ(t),∇ν) + (β|u|q−2u, ν) = (λ|u|r−2u ln |u|, ν), (3.12)

for all v ∈ W1,p
0 (Ω). The next work is to prove that χ(t) = |∇u|p−2∇u, that is to say, we should change

Eq (3.12) into the following equation

(ut, ν) + (|∇u|p−2∇u,∇ν) + (β|u|q−2u, ν) = (λ|u|r−2u ln |u|, ν).

The remainder of the proof is the same as that in [15]. �
Proof of Theorem 1.2

We first consider the case 0 < J(u0) < d and I(u0) > 0. Choosing ν = u in Definition 1.1, we obtain

1
2

d
dt
‖u‖22 + ‖∇u‖p

p + β‖u‖qq = λ

∫
Ω

|u|r ln |u|dx, (3.13)

which implies
1
2

d
dt
‖u‖22 + I(u) = 0. (3.14)

Taking ν = ut in Definition 1.1 and integrating with respect to time 0 to t, we get∫ t

0
‖uτ‖22dx + J(u(t)) = J(u0) < d, for t > 0. (3.15)

Next, we proof that u(x, t) ∈ W for any t > 0. If there exists a t0 > 0, such that u(x, t0) ∈ ∂W, namely

I(u(x, t0)) = 0 or J(u(x, t0)) = d.

By (3.15), we get J(u(x, t0)) = d is not true. If u(x, t0) ∈ N , then by the definition of d in (1.10), we get
J(u(x, t0)) ≥ d, which also contradict with (3.15). So we have u(x, t) ∈ W.

By (1.6), (1.7) and (3.15), we have

1
p

I(u) + λ
1
p2 ‖u‖

p
p = J(u) < d.

Note that I(u) > 0, we obtain
λ‖u‖p

p ≤ p2d. (3.16)

Through (3.14) and a simple calculation, we have the following inequality

‖u‖22 ≤ ‖u0‖
2
2. (3.17)

By Lemma 2.4, we have

‖∇u‖p
p ≤ λ

1
p

1

( p2e
λnLp

) n
p2
. (3.18)
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Thus, combining with the above inequality, we know that the weak solution of problem (1.1) is globally
bounded.

Now we consider J(u0) = d. Take a function ρm which satisfies ρm > 0 and lim
n→+∞

ρm = 1. Let
u(x, 0) = u0m(x) = ρmu0(x), x ∈ Ω, for the following equations

ut − div(|∇u|p−2∇u) + β|u|q−2u = λ|u|r−2u ln |u|, in Ω × (0,T ),
u(x, 0) = u0m(x) = ρmu0, in Ω,

u = 0, on ∂Ω × (0,T ).
(3.19)

Since u0(x) ∈ L∞(Ω) ∩W1,p
0 (Ω) is a nonzero non-negative function, ρm ∈ (0, 1) and I(u0) ≥ 0, then we

have

‖∇u0‖
p
p + β‖u‖qq ≥

∫
Ω

|u|r ln |u|dx, (3.20)

and

I(ρmu0) = ρp
m‖∇u0‖

p
p + βρq

m‖u0‖
q
q − ρ

r
m

∫
Ω

|u|r ln |u0|dx − ρr ln(ρm)
∫

Ω

|u0|
rdx

> ρp
m‖∇u0‖

p
p + βρq

m‖u0‖
q
q − ρ

r
m

∫
Ω

|u|r ln |u0|dx

= ρp
m

(
‖∇u0‖

p
p + βρq−p

m ‖u0‖
q
q − ρ

r−p
m

∫
Ω

|u0| ln |u|dx
)
.

(3.21)

Note that r = p and p = q, we have

I(ρmu0) = ρp
m

(
‖∇u0‖

p
p + β‖u0‖

p
p −

∫
Ω

|u0| ln |u|dx
)
. (3.22)

If
∫

Ω
|u0| ln |u|dx < 0, by (3.22), we can obtain

I(ρmu0) > ρp
m

(
‖∇u0‖

p
p + β‖u0‖

q
p

)
> 0. (3.23)

If
∫

Ω
|u0| ln |u|dx ≥ 0, by (3.20) and (3.22), we can obtain

I(ρmu0) = ρp
m

(
‖∇u0‖

p
p + β‖u0‖

p
p −

∫
Ω

|u0| ln |u|dx
)
> 0. (3.24)

Moreover, by a simple calculation, we have

J′(ρmu0) = ρp−1
m ‖∇u0‖

p
p + βρp−1

m ‖u0‖
p
p − ρ

p−1
m

∫
Ω

|u0|
p ln |u0|dx − ρp−1

m ln(ρm)
∫

Ω

|u0|dx

=
1
ρm

(
ρp

m‖∇u0‖
p
p + βρp

m‖u0‖
p
p − ρ

p
m

∫
Ω

|u0|
p ln |u0|dx − ρp

m ln(ρm)
∫

Ω

|u0|dx
)

=
1
ρm

I(ρmu0),

(3.25)

thus, we get

J′(ρmu0) =
1
ρm

I(ρmu0) =
1
ρm

I(u0m) > 0,
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which implies that J(ρmu0) is strictly increasing with respect to ρm. Then we have

J(u0m) = J(ρmu0) < J(u0) = d.

From the results above, we can derive that the weak solution of Eq (3.19) is globally bounded.
Then, we discuss that weak solution blows up at infinity. Let M(t) = 1

2

∫
Ω
|u(x, t)|2dx, then we have

M′(t) =

∫
Ω

utudx = −I(u). (3.26)

By (3.26) and the following equation

J(u) =
1
p

I(u) + λ
1
p2 ‖u‖

p
p + β

p − q
qp
‖u‖qq,

which implies

M′(t) = −pJ(u) + β
p − q

q
‖u‖qq + λ

1
p
‖u‖p

p. (3.27)

Making ν = ut in Definition 1.1, we get∫
Ω

ututdx = −(|∇u|p−2∇u,∇ut) + λ

∫
Ω

ut|u|p−2u ln |u|dx − β
∫

Ω

ut|u|q−2udx.

By a simple calculation, we get

d
dt

E(u) =
1
p

d
dt
‖∇u‖p

p − λ

∫
|u|r−2uut ln |u|dx + β

∫
Ω

|u|q−2uutdx.

Thus, we can obtain

J(u) = J(u0) −
∫ t

0
‖uτ‖22dτ. (3.28)

By (3.27) and (3.28), we have

M′(t) = −pJ(u0) + p
∫ t

0
‖uτ‖22dτ + β

p − q
q
‖u‖qq + λ

1
p
‖u‖p

p,

namely
M′(t) ≥ −pJ(u0) > 0.

Therefore, the following inequality holds

‖u‖22 ≥ −2pE(u0)t + 2‖u0‖
2
2, for all t > 0.

The proof is completed. �

Proof of Theorem 1.3
(1) Choosing ν = u in Definition 1.1, we get

1
2

d
dt

∫
Ω

u2dx + ‖∇u‖p
p + β

∫
Ω

u2dx = λ

∫
Ω

|u|p ln |u|dx. (3.29)
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By Lemma 2.2 and (3.29), we have

1
2

d
dt
‖u‖22 + ‖∇u‖p

p + β‖u‖22 ≤ λΓ(p,Ω)‖∇u‖p
p + λ ln(‖∇u‖p)‖u‖p

p. (3.30)

Combining (3.30) and Lemma 2.4, we can obtain

1
2

d
dt
‖u‖22 +

(
1 −

1
λ1
λ
(
λ1Γ(p,Ω) + ln(R)

)
‖∇u‖p

p + β‖u‖22 ≤ 0.

Note that λ < R0, it follows that
d
dt
‖u‖22 + 2β‖u‖22 ≤ 0,

so we have
‖u(·, t)‖22 ≤ ‖u0‖

2
2e−2βt.

Therefore, we conclude that ‖u(·, t)‖2 → 0 as t → ∞.
(2) We consider first the case 2N/(N+2) < p < 2 with λ < R0.Multiplying (1.1) by u and integrating

over Ω, we have
1
2

d
dt
‖u‖22 + ‖∇u‖p

p + β‖u‖22 = λ

∫
Ω

|u|p ln |u|dx. (3.31)

By the first eigenvalue λ1 and Lemma 2.4, we obtain

1
2

d
dt

∫
Ω

u2dx +
(
1 −

1
λ1
λ
(
λ1Γ(p,Ω) + ln(R)

)
‖∇u‖p

p + β

∫
Ω

u2dx ≤ 0. (3.32)

By virtue of Holder’s inequality and the embedding theorem, we obtain

‖u‖2 ≤ |Ω|
1
2−

N−p
N p ‖u‖ N p

N−p
≤ C|Ω|

1
2−

N−p
N p ‖∇u‖p, (3.33)

where C is the embedding constant.
By (3.32) and (3.33), we get the following differential inequality

d
dt
‖u‖22 + 2C0‖∇u‖p

2 + 2β‖u‖22 ≤ 0, (3.34)

where
C0 = C|Ω|(

N−p
N p −

1
2 )p

(
1 − λΓ(p,Ω) −

1
λ1

ln(R)
)
> 0. (3.35)

Setting y(t) = ‖u(·, t)‖22, y(0) = ‖u0(·)‖22, by Lemma 2.2, we obtain‖u(·, t)‖2 ≤
[(
‖u0‖

2−p
2 + C0

β

)
e(p−2)βt −

C0
β

] 1
2−p
, t ∈ [0,T1),

‖u(·, t)‖2 ≡ 0, t ∈ [T1,∞),

where
T1 =

1
(2 − p)β

ln
(
1 +

β

C0
‖u0‖

2−p
2

)
. (3.36)

We now turn to the case 1 < p ≤ 2N/(N + 2) and λ < R1.
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Multiplying (1.1) by ul (l =
2N−(1+N)p

p ≥ 1) and integrating over Ω, we can obtain

1
l + 1

d
dt
‖u‖l+1

l+1 +
( lpp

(p + l − 1)p −
λpΓ(p,Ω)
p + l − 1

−
λp ln(R)

λ1(p + l − 1)

)
‖∇u

p+l−1
p ‖p + β‖u‖l+1

l+1 ≤ 0, (3.37)

By the embedding theorem and the specific choice of l, we have

‖u‖
p+l−1

p

l+1 =
( ∫

Ω

u
p+l−1

p ·
N p

N−p dx
) N−p

N p
≤ C‖∇u

p+l−1
p ‖, (3.38)

where C is the embedding constant. Thus (3.37) becomes

1
l + 1

d
dt
‖u‖l+1

l+1 + C1‖u‖
p+l−1
l+1 + β‖u‖l+1

l+1 ≤ 0, (3.39)

where
C1 = C

( lpp

(p + l − 1)p − λp
( Γ(p,Ω)

p + l − 1
+

ln(R)
λ1(p + l − 1)

))
> 0.

Setting y(t) = ‖u(·, t)‖l+1, y(0) = ‖u0(·)‖l+1, by Lemma 2.6, we can obtain‖u(·, t)‖l+1 ≤
[(
‖u0‖

2−p
l+1 + C1

β

)
e(p−2)βt −

C1
β

] 1
2−p
, t ∈ [0,T2),

‖u(·, t)‖l+1 ≡ 0, t ∈ [T2,∞),

where
T2 =

1
(2 − p)β

ln
(
1 +

β

C1
‖u0‖

2−p
l+1

)
. (3.40)

The proof is completed. �

Proof of Theorem 1.4
We first define

M(t) :=
∫ t

0
‖u‖22dr,

then, we obtain
M
′

(t) = ‖u‖22,

and

M
′′

(t) = −2I(u)

= −2pJ(u) + 2pβ(
1
q
−

1
p

)‖u‖qq + 2λ
1
p
‖u‖p

p.
(3.41)

By (3.28) and (3.41), we can obtain

M
′′

(t) ≥ −2pJ(u0) + 2p
∫ t

0
‖ur‖dr + 2λ

1
p
‖u‖p

p. (3.42)

Not that

I(u) ≥‖∇u‖p
p − λ

∫
Ω

|u|p ln |u|dx

≥(1 −
λµ

p
)‖∇u‖p

p + λ
(

ln
( pµe
nLp

) n
p2 − ln(‖u‖p)

)
‖u‖p

p.
(3.43)
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Choosing µ = 1
λ

p in (3.43), we have

I(u) ≥ λ
(

ln
( p2e
λnLp

) n
p2 − ln(‖u‖p)

)
‖u‖p

p.

Since I(u0) < 0, we get

( p2e
λnLp

) n
p2 ≤ ‖u‖p. (3.44)

By (3.42), (3.44) and p > q, we obtain

M
′′

(t) ≥ −2pJ(u0) + 2p
∫ t

0
‖ur‖dr + 2λ

1
p
( p2e
λnLp

) n
p

= 2p(R2 − J(u0)) + 2p
∫ t

0
‖ur‖dr,

(3.45)

where R2 = λ 1
p2

( p2e
λnLp

) n
p . Multiplying both sides by M(t) in inequality (3.45), we get

M
′′

(t)M(t) ≥ 2p(R2 − J(u0))M(t) + 2p
∫ t

0
‖ur‖dr

∫ t

0
‖u(r)‖dr. (3.46)

Since
1
4

(M′(t)) ≤
( ∫ t

0

∫
Ω

ur(r)u(r)dxdr
)2
≤

∫ t

0
‖u(r)‖22ds

∫ t

0
‖ur(r)‖22dr,

thus we have
M
′′

(t)M(t) ≥ 2p(R2 − J(u0))M(t) +
p
2

(M′(t))2.

namely
M
′′

(t)M(t) −
p
2

(M′(t))2 ≥ 2p(R2 − J(u0))M(t) > 0.

So, there exists a finite time T0 > 0 such that

lim
t→T−0

M(t) = +∞,

which implies
lim
t→T−0
‖u‖22 = +∞.

The proof is completed. �

Proof of Theorem 1.5
We consider first the case p < r < 2 and 2N/(N + 2) < p < 2. Choosing ν = u in Definition 1.1, we

have
1
2

d
dt

∫
Ω

u2dx + ‖u‖p
1,Ω + β

∫
Ω

u2dx =

∫
Ω

|u|r ln |u|dx. (3.47)
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By Lemma 2.2, we have

1
2

d
dt

∫
Ω

u2dx + ‖u‖p
1,Ω + β

∫
Ω

u2dx ≤ λΓ(p,Ω)‖u‖r1,Ω + λ ln(‖u‖1,Ω)
∫

Ω

urdx. (3.48)

Since I(u0) > 0, combining Lemma 2.4 and Lemma 2.7, we get

1
2

d
dt

∫
Ω

u2dx + (1 − λΓ(p,Ω)Rr−p)‖u‖p
1,Ω + β

∫
Ω

u2dx ≤ λ ln(R)‖u‖rr. (3.49)

To facilitate discussion, we let

s1 =
v1

2
+

1 − v1

p∗
, v1 =

2(r − p)
r(2 − p)

.

Note that s1 > r and v1 ∈ (0, 1), by the Hölder’s inequality, the Sobolev embedding theorem and
Lemma 2.5, we have

‖u‖rr ≤ |Ω|
s1−r

s1 ‖u‖rs1
≤ |Ω|

s1−r
s1 Cr(1−ϑ1)

p∗ ‖u‖rv1
2 ‖u‖

r(1−v1)
1,Ω .

Further, by the Young inequality for any ε > 0, we get

‖u‖rr ≤ |Ω|
s1−r

s1 Cr(1−ϑ1)
p∗ (ε‖u‖p

1,Ω + ε
r(v1−1)

p−r(1−v1) ‖u‖22). (3.50)

By (3.49) and (3.50), we can obtain

1
2

d
dt
‖u‖22 + (1 − λΓ(p,Ω)Rr−p)‖u‖p

1,Ω + β‖u‖22 ≤ λ ln(R)|Ω|
s1−r

s1 Cr(1−ϑ1)
p∗ (ε‖u‖p

1,Ω + ε
r(v1−1)

p−r(1−v1) ‖u‖22),

namely
1
2

d
dt
‖u‖22 + C2‖u‖

p
1,Ω + C3‖u‖22 ≤ 0, (3.51)

where

C2 = 1 − λΓ(p,Ω)Rr−p − ελ ln(R)|Ω|
s1−r

s1 Cr(1−ϑ1)
p∗ , C3 = β − λ ln(R)|Ω|

s1−r
s1 Cr(1−ϑ1)

p∗ ε
r(v1−1)

p−r(1−v1) .

Taking ε =
(

β

3λ ln(R)|Ω|Cr(1−v1)
p∗

) p−r(1−v1)
r(v1−1) in (3.51), we have

1
2

d
dt
‖u‖22 + C4‖u‖

p
1,Ω +

2
3
β‖u‖22 ≤ 0, (3.52)

where

C4 = 1 − λΓ(p,Ω)Rr−p − λ ln(R)|Ω|
s1−r

s1 Cr(1−ϑ1)
p∗

( β

3λ ln(R)|Ω|Cr(1−v1)
p∗

) p−r(1−v1)
r(v1−1)

.

Since λ < R2, thus C4 > 0. By Lemma 2.6, we can obtain‖u(·, t)‖2 ≤
[(
‖u0‖

2−p
2 + 3C4

2β

)
e(p−2) 1

3βt −
3C4
2β

] 1
2−p
, t ∈ [0,T3),

‖u(·, t)‖2 ≡ 0, t ∈ [T3,∞),
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where
T3 =

3
(2 − p)β

ln
(
1 +

2β
3C4
‖u0‖

2−p
2

)
. (3.53)

When 1 < p ≤ 2N/(N + 2), p < r ≤ 2 and λ < R3. Taking ν = ul (l =
2N−(1+N)p

p ≥ 1) in Definition
1.1, we obtain

1
l + 1

d
dt
‖u‖l+1

l+1 +
lpp

(p + l − 1)p ‖∇u
l+p−1

p ‖p
p + β‖u‖l+1

l+1 =

∫
Ω

|u|r+l−1 ln |u|dx. (3.54)

By Lemma 2.1, we have

1
l + 1

d
dt
‖u‖l+1

l+1 +
lpp

(p + l − 1)p ‖∇u
l+p−1

p ‖p
p + β‖u‖l+1

l+1 ≤ λ
1

eσ
‖u‖p1

p1
, (3.55)

where p1 = l + p + σ − 1. Let

1
s2

=
v2

l0
+

1 − v2

p∗
, l0 =

p(l + 1)
l + p − 1

, v2 =
l0(l1 − p)
l1(l0 − p)

, l1 =
pp1

l + p − 1
.

Thus we have l0 > l1 > p, v1 ∈ (0, 1) and

1
l + 1

d
dt
‖u

l+p−1
p ‖

l0
l0

+
lpp

(p + l − 1)p ‖∇u
l+p−1

p ‖p
p + β‖u

l+p−1
p ‖

l0
l0
≤ λ

1
eσ
‖u

l+p−1
p ‖

l1
l1
. (3.56)

By the Hölder’s inequality, the following inequality holds

‖u
l+p−1

p ‖
l1
l1
≤ |Ω|

s2−l1
s2 ‖u

l+p−1
p ‖l1s2

≤ |Ω|
s2−l1

s2 C(1−v2)l1‖u
l+p−1

p ‖
l1v2
l0
‖u

l+p−1
p ‖

(1−v2)l1
1,Ω .

Further, by the Young inequality for any ε > 0, we get

‖u
l+p−1

p ‖
l1
l1
≤ |Ω|

s2−l1
s2 C(1−v2)l1

p∗
(
ε‖u

l+p−1
p ‖

p
1,Ω + ε

l1(v2−1)
p−l1(1−v2) ‖u

l+p−1
p ‖

l0
l0

)
. (3.57)

Substituting (3.57) into (3.56), we get

1
l + 1

d
dt
‖u

l+p−1
p ‖

l0
l0

+ C5‖∇u
l+p−1

p ‖p
p + C6‖u

l+p−1
p ‖

l0
l0
≤ 0, (3.58)

where
C5 =

lpp

(p + l − 1)p − λ
1

eσ
|Ω|

s2−l1
s2 C(1−v2)l1

p∗ , C6 = β − |Ω|
s2−l1

s2 C(1−V2)l1
p∗ λ

1
eσ
ε

l1(v2−1)
p−l1(1−v2) .

Taking ε = 1
3

lppeσ
(p+l−1)p |Ω|

l1−s2
s2 Cv2−1

p∗ in (3.58), we can obtain

1
l + 1

d
dt
‖u

l+p−1
p ‖

l0
l0

+
1
3

lpp

(p + l − 1)p ‖∇u
l+p−1

p ‖p
p + C7‖u

l+p−1
p ‖

l0
l0
≤ 0, (3.59)

where

C7 = β − |Ω|
s2−l1

s2 C(1−v2)l1
p∗ λ

1
eσ

(1
3

lppeσ
(p + l − 1)p |Ω|

l1−s2
s2 Cv2−1

p∗

) l1(v2−1)
p−l1(1−v2)

.
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Since l0 < p∗, by the Sobolev embedding theorem and the Hölder’s inequality, we get

‖u
l+p−1

p ‖
p
l0
≤ |Ω|

( 1
l0
− 1

p∗ )pCp
p∗‖u

l+p−1
p ‖

p
1,Ω = |Ω|

( 1
l0
− 1

p∗ )pCp
p∗‖∇u

l+p−1
p ‖p

p. (3.60)

Combining (3.59) with (3.60), we obtain

1
l + 1

d
dt
‖u

l+p−1
p ‖

l0
l0

+ C8‖u
l+p−1

p ‖
p
l0

+ C7‖u
l+p−1

p ‖
l0
l0
≤ 0, (3.61)

where
C8 =

1
3

lpp

(p + l − 1)p |Ω|
( 1

p∗ −
1
l0

)pC−p
p∗ > 0.

Since λ < R3, thus C7 > 0. By Lemma 2.6, we can obtain‖u‖l+1 ≤
[(
‖u0‖

2−p
l+1 + C8

C7

)
e(p−2)C7t −

C8
C7

] 1
2−p
, t ∈ [0,T4),

‖u‖l+1 ≡ 0, t ∈ [T4,∞),

where
T4 =

1
(2 − p)C7

ln(
C7

C8
‖u0‖

2−p
l+1 + 1). (3.62)

The proof is completed. �

4. Conclusions

In this work, we study the initial boundary value problem for a class of p-Laplacian diffusion
equations with logarithmic nonlinearity. Compared with the research in literature [26], we further
discussed the integer-order Laplacian equations when 1 < p < 2, and proved the global existence of
the solution of problem (1.1) by the Galerkin approximation method. Compared with problems (1.2)
and (1.5), we give the extinction and attenuation estimates of the weak solution of problem (1.1) by
using potential well theory and Nehari manifold. In addition, we also prove that the weak solution of
problem (1.1) is globally bounded and blows up at infinity. In the next work, we will further discuss
the properties of the solution of Eq (1.1) when r , p and q , 2, and study the diffusion p(x)-Laplacian
with logarithmic nonlinearity.
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