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Abstract: Objective: We aimed to explore key immune-related long non-coding RNAs (lncRNAs) 
and their effect in predicting of prognosis of triple-negative breast cancer (TNBC). Methods: Four 
datasets of TNBC were downloaded from TCGA and GEO databases. ImmPort database was 
utilized to acquire immune-related mRNAs. Single sample gene set enrichment analysis (ssGSEA) 
and correlation analysis were utilized to screen immune-related lncRNAs. Univariate and 
multivariate Cox regression analyses were utilized to screen independent prognostic lncRNAs to 
establish prognostic risk model, and the model was evaluated by survival analysis and nomogram. 
Differential functions and immune cells infiltration in high and low risk group were analyzed by 
Gene set variation analysis and ssGSEA. Finally, competitive endogenous RNAs was constructed. 
Results: We revealed 62 immune-related lncRNAs, of which four lncRNAs (RP11-890B15.3, 
RP11-1024P17.1, MFI2-AS1 and RP11-180N14.1) had independent prognostic value. These four 
lncRNAs-based prognostic risk model could stratify the TNBC patients into high and low risk 
groups, and patients with high risk displayed unfavorable outcomes. Nomogram indicated that the 
prognostic model could indicate TNBC patients survival very well. We further found that high risk 
group showed significantly enriched immune response to tumor cell, humoral immune response and 
high infiltrating abundance of regulatory T cell, Type 2 T helper cell, eosinophil, etc. LncRNAs 
RP11-180N14.1, RP11-1024P17.1 and RP11-890B15.3 regulated more mRNAs by targeting 
various miRNAs. While MFI2-AS1 regulated three mRNAs by sponging miR-3150a-3p. 
Conclusion: These four lncRNAs were prognostic biomarkers and could be possible therapeutic 
targets in TNBC. 
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competitive endogenous RNAs 

 

1. Introduction  

Breast cancer (BC) is one of the most common malignant tumors for women in the world [1]. 
The global incidence of BC had 1,960,681 incident cases and caused 181,004 deaths in 2017 and the 
incidence tends to be younger, causing serious troubles to the majority of women [2]. Triple-negative 
BC (TNBC) refers to the BC with estrogen receptor (ER)-negative, progesterone receptor 
(PR)-negative and human epidermal growth factor receptor2 (HER-2)-negative, which accounts for 
about 15% of BC [3]. TNBC has histological grade III or higher histologic grade and is more 
aggressive than other BC subtypes [4]. Additionally, TNBC is resistant to current HER2-targeted 
therapy, and chemotherapy is still the most effective method, but its long-term clinical effect is not 
ideal, with poor prognosis and high recurrence rate [5]. Immunotherapy enhances the tumor 
microenvironment of antitumor immunity to eliminate cancer cells through the stimulation or 
mobilization of the immune system of body [6]. Currently, immunotherapy has gained wide attention 
in terms of tumor therapy. 

Long non-coding RNAs (lncRNAs) act as major regulators of gene expression, and their 
mutations and misregulation have been found to be associated with a variety of biological processes 
in many diseases and cancers [7]. Especially, lncRNAs may act as competitive endogenous RNAs 
(ceRNAs) by competitively binding to microRNA (miRNAs) to mediate the expression of their 
downstream target genes in cancers [8]. For example, lncRNA HCP5 was implicated in pancreatic 
cancer progression and prognosis by HCP5-miR-29b-3p-MMP9/ITGB1 ceRNA regulatory axis [9]. 
Due to the important role of lncRNAs in cancers, lncRNAs exert promising application prospect as 
novel biomarkers and therapeutic targets for cancers, including BC. Dong et al. found that lncRNA 
TINCR could facilitate trastuzumab resistance and epithelial-mesenchymal transition process by 
sponging miR-125b to release HER-2 in BC cells, and its high expression showed correlations with 
worse response and prognosis for HER-2+ BC patients with trastuzumab therapy [10]. Based on 
systematic bioinformatics analysis, Fan et al. identified that four-lncRNA signature could be 
prognostic biomarker to independently predict the overall survival of BC patients [11]. Ma et al. 
constructed a 8 immune-related lncRNAs for the prediction of BC patient survival [12]. De Palma et 
al. suggested that long intergenic non-coding RNA 01087 could represent a noval biomarker for 
diagnosis and prognosis of BC and TNBC [13]. However, these findings were investigated based on 
small sample size or single dataset. 

Besides, current studies suggested that lncRNAs are implicated in the tumor immune 
microenvironment and mediate tumor immune evasion [14,15]. Considering the complexity and 
heterogeneity of tumor immune microenvironment and the importance of lncRNAs, it is needed to 
identify potential lncRNAs biomarkers on the basis of the landscape of tumors infiltrate immune 
cells. Therefore, a integrated analysis combining tumor immune microenvironment and lncRNAs 
was designed. In addition, only TNBC samples were included, which eliminated the interindividual 
differences. In this study, we identified immune-related lncRNAs that had independent prognostic 
value in TNBC by integrating analysis of four datasets from The Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus (GEO) databases. On the basis of these lncRNAs, we then constructed a 
prognostic risk model, which could stratify TNBC patients with different prognosis, and the 
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underlying regulatory mechanism was further investigated. This study will contribute to improve the 
prognosis prediction and treatment of TNBC. 

2. Methods 

2.1. Study design and datasets acquisition 

A total of four datasets were analyzed in this study, and the analysis procedure was shown in 
Figure 1. The log2 (FPKM+1) expression data and matched clinical data of breast invasive 
carcinoma (BRCA) in TCGA were acquired from UCSC Xene database (http://xena.ucsc.edu/). The 
platform of data was Illumina HiSeq 2000 RNA Sequencing. Based on the inclusion criteria of 
samples with ER-negative, PR-negative and HER-2-negative, a total of 8 TNBC samples had both 
tumor tissue and paracancerous tissue were screened. GSE115275 dataset (containing 6 TNBC 
samples and 6 adjacent nontunor samples) was downloaded from GEO database [16], and the 
platform of was Agilent-079487 Arraystar Human LncRNA microarray V4 (Probe Name version). 
GSE115275 was screened with search terms of “Triple negative breast cancer” and selected by 
inclusion criteria as follows: 1) expression profiling by array as the study type; 2) organism was 
homo sapiens; 3) publication dates were limited within one year; 4) samples had both tumor tissue 
and paracancerous tissue; 5) microarray was lncRNA chip. These two datasets (TCGA-TNBC 
dataset and GSE115275) were used for differential expression analysis. 

Datasets used in prognostic model construction were screened by criteria as follows: 1) 
expression profiling by array as the study type; 2) organism was homo sapiens; 3) publication dates 
were limited within one year; 4) samples had corresponding data about survival; 5) annotated more 
than 3000 lncRNAs. GSE135565 was screened with search terms of “Triple negative breast cancer” 
and selected from GEO database, which contained 84 TNBC samples, and the data platform was 
GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. Additionally, 
GSE58812 (containing 107 TNBC samples) was screened with search terms of “Triple negative 
breast cancer” and selected as validation dataset for prognostic model. This dataset was screened 
with criteria as follows: 1) expression profiling by array as the study type; 2) organism was homo 
sapiens; 3) publication dates from January 1, 2015 to December 30, 2020; 4) samples had 
corresponding data about survival; 5) platform was same with GSE135565. The clinical information 
of the samples in the four datasets was listed in Table 1. 

2.2. Data preprocessing and differential expression analysis 

For TCGA-TNBC dataset, the Ensemble Gene was converted into gene symbol to obtain 
mRNAs and lncRNAs utilizing the annotation file (hg38, gencode.v22.annotation.gene.probemap) of 
GENCODE database [17]. Only the mRNAs and lncRNAs with expression in more than 20% 
samples were included. For GEO datasets (GSE115275, GSE135565 and GSE58812), the probes 
were aligned to Reference genome (hg38, gencode.v22) by seqmap software [18] and were annotated 
to obtain mRNAs and lncRNAs based on the Release22 annotation file in GENCODE database. 
Probes matching no gene symbol was removed, and mean value was considered as the final 
expression value of the mRNAs/lncRNAs when different probes matching to one gene symbol. 

Differential expression analysis between tumor vs. normal was carried out on the TCGA-TNBC 
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and GSE115275 datasets utilizing the linear regression and empirical bayesian methods of limma 
package (Version 3.10.3) [19]. Differentially expressed mRNAs (DEmRNAs) and lncRNAs 
(DElncRNAs) were screened with P < 0.05 and |logFC| > 0.585. The overlapped up-regulated and 
down-regulated DEmRNAs and DElncRNAs were utilized in the following analysis. 

 

Figure 1. The workflow of this study. 

Table 1. The clinical information of the samples in the four datasets. 

TCGA-TNBC GSE115275 GSE135565 GSE58812 

Gender (female) 8 6 84 107 

Age (mean ± SD) 51.3 ± 13.3 − 50.2 ± 10.5 57.0 ± 12.8 

AJCC stage (1/2/3/4) 2/4/2/0 − 29/50/5/0 − 

SUV (mean ± SD) − − 7.1 ± 4.8 − 

Vital status (Alive/Dead) 6/2 − 77/7 78/29 

metastasize status (meta/non-meta) 0/8 − − 31/76 

2.3. Screening of immune-associated lncRNAs 

Immune-associated mRNAs were retrieved from ImmPort database [20], and then the 
calculation of immune score for samples in TCGA-TNBC and GSE115275 datasets was conducted 
utilizing single sample gene set enrichment analysis (ssGSEA) [21]. Then, the pearson correlation 
coefficient between DElncRNAs and immune score was calculated. The immune-associated 
lncRNAs were screened by Benjamini-Hochberg adjusted P < 0.01 and |r| > 0.3. The overlapped 
immune-related lncRNAs in TCGA-TNBC and GSE115275 datasets were selected. 
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2.4. Immune-associated prognostic lncRNAs 

GSE135565 dataset was utilized to screen immune-related prognostic lncRNAs. In brief, 
univariate Cox regression analysis was utilized to explore the correlations of immune-associated 
lncRNAs with overall survival (OS) and OS time, then the hazard ratio (HR) and P value were 
obtained. In which, immune-associated lncRNAs with P < 0.05 were regarded as immune- associated 
prognostic lncRNAs. On the basis of the optimal cutpoint determined by survminer (version 0.4.3) in 
R package, we categorized samples into high or low expression groups, and Kaplan-Meier (KM) 
survival curves as well as log-rank test were utilized to perform survival analysis by survival (version 
2.42-6) in R package. 

2.5. Prognostic risk model construction and validation  

Multivariate Cox regression analysis was carried out for the immune-associated prognostic 
lncRNAs to investigate the correlation coefficient of these lncRNAs with OS and OS time. Then the 
prognostic risk model was constructed according to the formula: Risk score = βgene1 × exprgene1 + 
βgene2 × exprgene2 + ... + βgenen × exprgenen. In the formula, β represents the correlation 
coefficient in multivariate Cox regression analysis, and expr represents the expression value of the 
lncRNAs. We categorized samples into high or low risk groups on the basis of the optimal cutpoint 
determined by survminer (version 0.4.3) in R package, and KM survival curves as well as log-rank 
test were utilized to perform survival analysis by survival (version 2.42-6) in R package. GSE58812 
dataset was utilized to validate the prognostic risk model. Additionally, GSE58812 contained the 
information of metastasis free survival (MFS) and metastasize status. We further constructed 
metastatic risk model based on the lncRNAs of prognostic risk model. We categorized samples into 
high or low risk groups on the basis of the optimal cutpoint, followed by MFS survival analysis. The 
selection of optimal cutpoint and the methods for survival analysis were same to the details described 
above. Then the predivtive and distinguishing ability of the risk model within 3, 5 and 10 years was 
evaluated using receiver operating characteristic (ROC) curve analysis. 

2.6. Nomogram model construction 

In order to investigate whether the prognostic risk model had the independent value for 
predicting prognosis, univariate and multivariate Cox regression analysis were carried out on 
GSE135565 dataset. First, univariate Cox regression analysis was performed for clinical variables 
and risk group, in which, the variables with P < 0.05 were further enrolled in multivariate Cox 
regression analysis, and factors with P < 0.05 were further selected to construct nomogram model. 

2.7. Differential immune-related GO-BP in high vs. low risk groups in GSE135565 dataset 

The immune-related Gene Ontology-biological processes (GO-BP) and gene sets were searched 
from c5.bp.v7.1.symbols.gmt gene set of MSIGdb v7.1 [22] by term of “immune”. Then Gene set 
variation analysis (GSVA) [23] was utilized to calculate the enrichment score of each biological 
process to obtain an enrichment score matrix. Differential analysis for immune-related GO-BP in 
high vs. low risk groups were performed utilizing limma package. Benjamini-Hochberg was utilized 
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for multiple-testing correction. Adjusted P < 0.05 was utilized to screen differential immune-related 
GO-BP. The heatmap was plotted utilizing pheatmap (version: 1.0.12) in R package. 

2.8. Immune cells infiltration in high vs. low risk groups in GSE135565 dataset 

The gene sets for labeling tumor infiltrating immune cells in tumor microenvironment were 
obtained from the study of Charoentong et al. [24]. Subsequently, on the basis of ssGSEA algorithm, 
the enrichment score of each immune cell type in samples were calculated to show the abundance of 
tumor infiltrating immune cells. Boxplot was visualized utilizing ggplot2 (version: 3.2.1) in R 
package. Wilcox test was utilized to compare the difference in high vs. low risk groups. 

2.9. LncRNA-miRNA-mRNA network 

Correlation analysis between lncRNAs in prognostic risk model and DEmRNAs were 
performed. After Benjamini-Hochberg correction, lncRNA-mRNA pairs with adjusted P < 0.01 and 
correlation coefficient r > 0 were selected. The clusterProfiler [25] in R package was utilized to 
explore the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of mRNAs to predict the 
function of lncRNAs. KEGG pathways with P < 0.05 and enrichment gene count ≥ 2 were 
considered as significantly enriched terms. In addition, DIANA-LncBase v2 [26] was utilized to 
predict the lncRNA-miRNA pairs based on the lncRNAs in prognostic risk model, and the 
lncRNA-miRNA pairs with score > 0.9 was selected. The miRNA-mRNA pairs were predicted 
utilizing miRWalk2.0 database [27], which contained the data in miRWalk, Microt4, miRanda, 
miRDB, PITA, RNA22, RNAhybrid and Targetscan databases. The miRNA-mRNA interactions 
existed in at least five databases were selected. Finally, the lncRNA-miRNA-mRNA interactions axis 
were integrated by the obtained interactions pairs of lncRNA-mRNA, lncRNA-miRNA as well as 
miRNA-mRNA, and the lncRNA-miRNA-mRNA network was built utilizing Cytoscape software 
(version:3.4.0) [28]. 

3. Results 

3.1. Screening of DEmRNAs and DElncRNAs 

From the TCGA-TNBC dataset, a total of 3884 DEmRNAs and 412 DElncRNAs were screened 
between tumor vs. normal tissue samples. While for GSE115275 dataset, there were 1559 
DEmRNAs and 1978 DElncRNAs between tumor vs. normal tissue samples. Table 2 listed the 
number of up-regulated and down-regulated DEmRNAs and DElncRNAs in the two datasets. After 
merging, a total of 128 overlapped DElncRNAs (Supplementary Table 1) (43 up-regulated and 85 
down-regulated) and 436 overlapped DEmRNAs (Supplementary Table 2) (182 up-regulated and 
254 down-regulated) were obtained (Figure 2A,B).  

3.2. Immune-associated lncRNAs 

We firstly retrieved 1181 immune-associated genes from ImmPort database, and followed by 
the calculation of immune score for samples in TCGA-TNBC and GSE115275 datasets utilizing 
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ssGSEA. Then, the correlation coefficient between the 128 overlapped DElncRNAs and immune 
score was calculated, and a total of 71 and 103 immune- associated lncRNAs were obtained with 
adjusted P < 0.01 and |r| > 0.3 from TCGA-TNBC and GSE115275 datasets, respectively. Of which, 
there were 62 common immune-related lncRNAs (Figure 2C; Supplementary Table 3). 

 

Figure 2. Screening of immune-related prognostic lncRNAs. Venn plots show the 
overlapped DEmRNAs (A), DElncRNAs (B) and immune-related lncRNAs (C) in 
TCGA-TNBC and GSE115275 datasets; KM survival curves show the prognostic value 
of the four immune-related prognostic lncRNAs RP11-890B15.3 (D), RP11-1024P17.1 
(E), MFI2-AS1 (F) and RP11-180N14.1 (G); Boxplots show the expression levels of the 
four lncRNAs in GSE115275 dataset (H) and TCGA cohort (I). DEmRNAs, 
differentially expressed mRNAs; DElncRNAs, differentially expressed long non-coding 
RNAs; TCGA: The Cancer Genome Atlas; TNBC: triple-negative breast cancer; K-M: 
Kaplan-Meier; lncRNA: long non-coding RNA. 
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Table 2. The number of up-regulated and down-regulated DEmRNAs and DElncRNAs 
in TCGA-TNBC and GSE115275 datasets. 

up down total 

TCGA-TNBC 
mRNA 1546 2338 3884 

lncRNA 143 269 412 

GSE115275 
mRNA 859 700 1559 

lncRNA 825 1153 1978 

3.3. Immune-related prognostic lncRNAs 

GSE135565 dataset was utilized to screen immune-related prognostic lncRNAs. Among the 62 
immune-related lncRNAs, only 28 lncRNAs were annotated in GSE135565 dataset (Supplementary 
Table 3). Univariate Cox regression analysis showed that RP11-890B15.3 (hazard ratio [HR] = 0.124, 
P = 0.027), RP11-1024P17.1 (HR = 0.110, P = 0.027) and RP11-180N14.1 (HR = 0.003, P = 0.035) 
overexpression levels were significantly associated with a good prognosis, and MFI2-AS1 (HR = 
7.642, P = 0.030) higher expression was correlated with a poor prognosis (Table 3). In addition, 
survival analysis showed higher expression of RP11-890B15.3 (84 samples, P = 0.055), 
RP11-1024P17.1 (84 samples, P = 0.037) and RP11-180N14.1 (84 samples, P = 0.0097) were 
associated with favorable prognosis. While high expression of MFI2-AS1 (84 samples, P = 0.0072) 
was associated with worse prognosis (Figure 2D–G). Additionally, the expression levels of these four 
lncRNAs were performed in GSE115275 dataset and TCGA cohort, and the results shown that 
RP11-890B15.3, RP11-1024P17.1 and RP11-180N14.1 were downregulated, and MFI2-AS1 was 
upregulated (Figure 2H,I). Therefore, these four lncRNAs (RP11-890B15.3, RP11-1024P17.1, 
MFI2-AS1 and RP11-180N14.1) were considered as immune-related prognostic lncRNAs. 

3.4. Prognostic risk model construction and validation  

The four lncRNAs associated with both immune and prognosis were utilized to establish 
prognostic risk model (OS risk model). As described in method, GSE135565 dataset was utilized as 
training set and GSE115275 was utilized as validation set. The samples were categorized into high or 
low risk groups on the basis of the optimal cutpoint. It could be seen from Figure 3A, the risk score 
could divide patients into two groups with different risk, and patients with high risk tended to display 
unfavorable outcomes. The heatmap of the four lncRNAs showed that the expression of 
RP11-890B15.3, RP11-1024P17.1 and RP11-180N14.1 were increased in high risk group, while the 
expression of MFI2-AS1 was decreased in high risk group. The K-M curves confirmed that patients 
with high risk had poor OS than patients with low risk both in training set (Figure 3B) and validation 
set (Figure 3C). In addition, we also constructed MFS risk score utilizing the information of MFS 
and metastasize status in GSE115275 dataset. We categorized samples into high or low risk groups 
on the basis of the optimal cutpoint, and K-M curve showed patients with high risk had poor MFS 
than that of low risk group (Figure 3D). The AUC values of survival prediction within 3, 5 and 10 
years were 0.814, 0.817 and 0.817, respectively, suggesting the favorable predictive ability of the 
lncRNA model (Figure 3E). The results suggested that these four lncRNAs could be predictive 
biomarkers for both OS and MFS in TNBC. 
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Figure 3. Prognostic performance of the prognostic risk model. Prognostic risk score 
distribution (upper panel), overall survival time distribution scatter plot of samples 
(middle panel) and heatmaps of methylation level pattern of the four lncRNAs with 
prognostic risk score changes (lower panel) in GSE135565 dataset (A); K-M survival 
curves show the OS of patients with high and low risk score in GSE135565 training set 
(B) and GSE115275 validation set (C); K-M survival curve shows the MFS of patients 
with high and low risk score in GSE115275 validation set (D); The ROC curves based on 
risk score level (E). K-M: Kaplan-Meier; OS: overall survival. 
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Table 3. Survival analysis and univariate Cox regression analysis of 4 immune-related 
lncRNAs. 

K-M analysis Univariate Cox regression analysis Differential expression analysis 

lncRNA p.value HR lower.95 upper.95 p.value up_down 

RP11-890B15.3 0.055 0.123567 0.019408 0.786726 0.026832 down_lnc 

RP11-1024P17.1 0.037 0.110413 0.015648 0.779107 0.027081 down_lnc 

MFI2-AS1 0.0072 7.642445 1.222606 47.77251 0.029637 up_lnc 

RP11-180N14.1 0.0097 0.002625 1.05E-05 0.659276 0.035054 down_lnc 

3.5. Nomogram model construction 

In order to investigate whether the prognostic risk model had the independent value for 
predicting prognosis, univariate and multivariate Cox regression analysis were carried out. The 
results showed that risk group (P = 0.003) and AJCC stage (P = 0.008) had significant impact on 
prognosis in univariate analysis. Multivariate analysis indicated that AJCC stage and risk group were 
all independent prognostic factors in TNBC with a hazard ratio of 18.327 (P = 0.008) and 17.619 (P 
= 0.013), respectively (Table 4). We further constructed a nomogram model to predict the 3-year, 
5-year, and 10-year survival of the TNBC patients utilizing independent prognostic factors risk group 
and AJCC stage. The results indicated that prognostic model could predict the survival for TNBC 
patients very well (Figure 4). 

 

Figure 4. Nomogram model. Nomogram model was constructed to predict the 3-year, 
5-year, and 10-year survival of the TNBC patients utilizing independent prognostic 
factors risk group and AJCC stage. TNBC: triple-negative breast cancer; AJCC: 
American Joint Committee on Cancer. 
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Table 4. Univariate and multivariate Cox regression analysis of the clinical factors. 

Univariate Multivariate 

Variables HR p.value HR p.value 

Age  1.000 0.990 

AJCC stage 5.705 0.008 18.327 0.008 

Suv 0.934 0.483 

RiskGroup 9.633 0.003 17.619 0.013 

3.6. Differential immune-related GO-BP in high vs. low risk groups 

A total of 84 immune-related GO-BP and gene sets were obtained, and then GSVA was utilized 
to calculate the enrichment score of each biological process to obtain an enrichment score matrix. 
After differential analysis in high vs. low risk groups, a total of eight immune-related GO-BPs were 
significant differential (Figure 5; Supplementary Tables 4 and 5). Of which, low risk group was 
involved in 5 GO-BPs, for example, activation of innate immune response. Differently, high risk 
group was obviously implicated in three GO-BPs, for instance, immune response to tumor cell. 

 

Figure 5. Gene set variation analysis. Heatmap show the differential immune-related 
GO-BP in high risk and low risk groups in gene set variation analysis. The raw color 
from blue to yellow represents significant from low to high. GO-BP: Gene 
ontology-biological process. 

3.7. Immune cells infiltration in high vs. low risk groups 

The enrichment score of 23 immune cell types were calculated to show the abundance of tumor 
infiltrating immune cells. As shown in Figure 6, infiltrating abundance of nine immune cell types had 
significant differences in high vs. low risk groups. Of which, activated dendritic cell, eosinophil, 
immature B cell, plasmacytoid dendritic cell, regulatory T cell (Treg cell) and Type 2 T helper cell 
(Th2) had high infiltrating abundance in high risk group, while CD56dim natural killer cell, 
monocyte and neutrophil had high infiltrating abundance in low risk group.  
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Figure 6. Boxplot of tumor infiltrating immune cells. Boxplot shows the infiltrating 
abundance of 23 tumor infiltrating immune cells in high risk and low risk groups. Red 
box represents high risk group, and blue bos represents low risk group.*P < 0.05; **P < 
0.01; ***P < 0.001; ns: not significant.  

3.8. ceRNA network 

Correlation analysis was performed for the four lncRNAs and DEmRNAs, and 110 positive 
lncRNA-mRNA pairs with P < 0.01 and correlation coefficient r > 0 were selected (Supplementary 
Table 6). Enrichment analysis was further performed for the co-expressed mRNAs to predict the 
function of lncRNAs. Significant pathways were enriched for three lncRNAs, including 
RP11-180N14.1, MFI2-AS1 and RP11-890B15.3 (Figure 7A; Supplementary Table 7). It could be 
seen that these three lncRNAs were associated with different KEGG pathways. MFI2-AS1 was 
mainly associated with apoptosis and protein processing in endoplasmic reticulum. RP11-180N14.1 
was mainly involved in ascorbate and aldarate metabolism, pentose and glucuronate interconversions, 
drug metabolism-other enzymes, etc. While RP11−890B15.3 was mainly implicated in ABC 
transporters and breast cancer pathways. Additionally, 62 lncRNA-miRNA pairs were obtained for 
the four lncRNAs, and 13852 miRNA-mRNA interactions were obtained for the mRNAs in 
lncRNA-mRNA pairs. Finally, 324 lncRNA-miRNA-mRNA interactions axis was integrated, 
containing 4 lncRNAs, 42 miRNAs and 48 mRNAs (Figure 7B; Supplementary Tables 8 and 9). 
LncRNAs RP11-180N14.1, RP11-1024P17.1 and RP11-890B15.3 regulated more mRNAs by 
targeting various miRNAs. While MFI2-AS1 regulated three mRNAs [TNF receptor associated 
factor 2 (TRAF2), suppressor APC domain containing 2 (SAPCD2) and G protein regulated inducer 
of neurite outgrowth 1 (GPRIN1)] by sponging miR-3150a-3p. 
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Figure 7. LncRNA-miRNA-mRNA network. (A), bubble diagram shows the significant 
enriched KEGG pathways of co-expressed mRNAs for lncRNAs; bubble size represents 
gene count; bubble color from blue to red represent significant from low to high; (B), 
lncRNA-miRNA-mRNA network. Yellow triangle represents miRNA; blue rhombus 
represents down-regulated lncRNA, and purple square represents up-regulated lncRNA; 
green hexagon represents down-regulated mRNA, and red node represents up-regulated 
mRNA; imaginary line represents the co-expression between lncRNA and mRNA; grey 
arrow represents miRNA-mRNA pairs and purple line represent lncRNA-miRNA pairs. 
KEGG: Kyoto Encyclopedia of Genes and Genomes; lncRNA: long non-coding RNA; 
miRNA: microRNA. 
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4. Discussion 

In recent years, great efforts have been made to explore the pathogenesis and improve the 
clinical outcomes of TNBC. However, the long-term clinical effect of TNBC is not ideal, and the 
prognosis remains worse. Accurate prognosis has been proved to be helpful for healthcare decisions 
and developing individualized therapy strategy [29]. Therefore, increasing prognostic biomarkers are 
identified, which can help to stratify the patients by predicting the potential outcome of tumor-related 
progression, relapse, or survival [30,31]. Immunotherapy has becoming a powerful treatment strategy 
for cancers, and the recent clinical successes emphasize the significance of understanding tumor 
immunity to the clinical translation in cancers treatment [32]. In this study, based on integrate 
analysis of four datasets from TCGA and GEO databases, we identified 62 immune-related lncRNAs, 
of which four lncRNAs (RP11-890B15.3, RP11-1024P17.1, MFI2-AS1 and RP11-180N14.1) with 
independent prognostic value were identified. These four lncRNAs-based prognostic risk model 
could stratify the TNBC patients into two groups with different risk, and patients in high risk group 
displayed unfavorable worse outcomes. 

In order to investigate the underlying mechanism, we firstly investigated the differences on 
immune-related GO-BP and tumor-infiltrating immune cells in high vs. low risk groups. We found 
that high risk group showed significantly enriched immune response to tumor cell, humoral 
immune response and high infiltrating abundance of Treg cell, Th2, eosinophil and so on. Treg 
cells act crucial roles in developing immunosuppressive tumor microenvironment [33]. Hashemi et 
al. had showed that high level of regulatory T cells was related to worse overall survival in BC 
patients, and Treg cell frequency showed independent prognostic value for patients with high risk 
of recurrence [34]. The Th1/Th2 balance was found to be involved in the antitumor immunity in BC. 
Plant extracts xanthohumol and saikosaponin A all showed anti-tumor activity by shifting Th1/Th2 
balance toward Th1 in BC [35,36]. Eosinophils had been demonstrated to infiltrate tumors, and was 
found to be correlated with prognosis. However, whether high level of eosinophils was associated 
with favorable or adverse prognosis remains debatable, which depends on various factors, for 
example tumor types [37]. Tumor-associated tissue eosinophilia was found in 15% of TNBC, and 
was correlated with increased neoantigen load and nonsilent mutation rate [38]. Tsuda et al. 
suggested that B cells was involved in tumor immunity by producing antibodies and 
immunosuppressive, and increased proportion of total B cells was found in BC patients than that of 
normal [39]. Therefore, we speculated that higher level of these immune cells might explain the poor 
outcomes of TNBC patients with high risk to some extent. 

Additionally, we identified four independent immune-related prognostic lncRNAs, including 
RP11-890B15.3, RP11-1024P17.1, MFI2-AS1 and RP11-180N14.1. LncRNA RP11 had been found 
to implicate in the development and progression of various cancers, containing BC [40,41]. Gao et al. 
showed that lncRNA RP11-480I12.5 displayed anti-tumor effect in BC by sponging miR-490-3p to 
elevate AURKA and Wnt/β-catenin pathway [42]. LncRNA MFI2-AS1 had also been reported to play 
important roles in different cancers, such as glioma [43], thyroid cancer [44], colorectal cancer [45], 
and clear-cell renal cell carcinoma [46]. For example, Wei et al. indicated that MFI2-AS1 could 
facilitate progression and metastasis of hepatocellular carcinoma by sponging miR-134 to increase 
the expression of FOXM1 [47]. In addition, Luo et al. suggested that MFI2-AS1 displayed 
independent value to indicate prognosis and might be served as a possible therapeutic target in 
colorectal cancer [48]. However, the role of MFI2-AS1 had not been investigated in BC. In our study, 
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we found that MFI2-AS1 might regulate the expression of TRAF2, SAPCD2, GPRIN1 by sponging 
miR-3150a-3p. Studies had suggested that TRAF2 was implicated in tumor cells apoptosis [49], 
invasion and migration of BC cells [50]. Zhang et al. indicated that SAPCD2 could facilitate the 
invasion and migration of BC cells [51]. Hence, we concluded that these four lncRNAs might play 
important roles in TNBC.  

However, there were still some limitations. First, the exact roles of the four lncRNAs and their 
involved regulatory axis should be further investigated in future. Second, the clinical value of the 
prognostic model should be confirmed in clinical. Third, the landscape of tumor-infiltrating immune 
cells should be further confirmed in clinical.  

In conclusion, a prognostic risk model was established on the basis of four independent 
prognostic lncRNAs, including RP11-890B15.3, RP11-1024P17.1, MFI2-AS1 and RP11-180N14.1. 
These four lncRNAs-based prognostic risk model could stratify the TNBC patients into high risk and 
low risk groups, and patients in high risk group displayed worse outcomes. Patients with high risk 
showed significant differences on immune-related GO-BP and tumor-infiltrating immune cells 
compared with patients with low risk. This might be one reason to explain the poor outcomes of high 
risk patients. 
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