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Abstract: This paper presents a stabilized formulation for the generalized Navier-Stokes equations for 
weak enforcement of essential boundary conditions. The non-Newtonian behavior of blood is modeled 
via shear-rate dependent constitutive equations. The boundary terms for weak enforcement of Dirichlet 
boundary conditions are derived via locally resolving the fine-scale variational equation facilitated by the 
Variational Multiscale (VMS) framework. The proposed method reproduces the consistency and 
stabilization terms that are present in the Nitsche type approaches. In addition, for the shear-rate fluids, 
two more boundary terms appear. One of these terms is the viscosity-derivative term and is a function of 
the shear-rate, while the other term is a zeroth-order term. These terms play an important role in attaining 
optimal convergence rates for the velocity and pressure fields in the norms considered. A most significant 
contribution is the form of the stabilization tensors that are also variationally derived. Employing edge 
functions the edge stabilization tensor is numerically evaluated, and it adaptively adjusts itself to the 
magnitude of the boundary residual. The resulting formulation is variationally consistent and the weakly 
imposed no-slip boundary condition leads to higher accuracy of the spatial gradients for coarse boundary-
layer meshes when compared with the traditional strongly imposed boundary conditions. This feature of 
the present approach will be of significance in imposing interfacial continuity conditions across non-
matching discretizations in blood-artery interaction problems. A set of test cases is presented to 
investigate the mathematical attributes of the method and a patient-specific case is presented to show its 
clinical relevance. 

Keywords: weakly imposed Dirichlet boundary conditions; non-Newtonian shear-rate dependent 
fluids; Variational Multiscale method; interface stabilization; blood flows 
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1. Introduction 

Cardiovascular blood flow simulations of clinical relevance require non-Newtonian blood flow 
models and invariably involve complex patient-specific geometries with branching arterial trees. The 
quality of the computed solutions is affected by the precise description of the geometric models as 
well as the quality of the computational grids. The use of boundary layer meshes helps in accurately 
calculating flow quantities such as wall shear stress (WSS) and surface pressure at the arterial walls, 
and several mesh adaptation techniques have been proposed in the literature for local refinement 
along the boundaries [1–3]. This however comes at an increased computational cost due to the 
insertion of elements in the boundary layer region to achieve higher spatial resolution of the velocity 
and pressure gradients [1,3]. In this context a numerical method that can yield higher spatio-temporal 
accuracy of the gradients in the fields and can facilitate the coupling of the primary fields across the 
blood-tissue interaction surfaces via weakly enforced continuity equation for the velocity field can 
open the doors for developing clinically relevant computational techniques. 

The methods for weakly enforced no-slip conditions embed the Dirichlet boundary 
conditions in the variational formulation rather than prescribing the value of the Dirichlet data 
directly at the nodal points. This strategy allows the fluid particles to slightly slide at the wall 
and it helps in capturing the high gradients of the velocity field near the boundaries. These 
methodologies are also reported to help increase the accuracy of the boundary layer fields [4]. 
Similarly, methods for weakly imposed boundary conditions have also been proposed for wall-
bounded turbulent flows [5] where they behave like wall function models and facilitate better 
performance as compared to the strongly imposed boundary conditions. In addition, the notion 
of weak imposition of boundary conditions has been effectively employed in advection-
dominated diffusion problems [6], in porous flows [7], and in buoyancy-driven flows [8]. 
These studies suggest the possibility of being able to use coarse discretizations in arterial flow 
analysis with dominant presence of the confining bounding surfaces, thereby significantly 
reducing the mesh sizes due to the computational efficiency engendered by the weakly imposed 
boundary conditions. 

Another advantage of the weakly imposed boundary conditions originates from the flexibility 
that these methods do not require nodally matched discretizations at the blood-artery interaction 
surfaces. The Dirichlet boundary is embedded in the variational equation via weakly imposed 
boundary conditions, thereby implicitly accounting for the continuity of the fields across the fluid-
solid interface. Consequently, the computational meshes do not need to be nodally aligned, and this 
flexibility opens the door to develop methods for non-matching boundaries and interfaces [9–11] that 
are beneficial in complex geometries encountered in patient-specific models. 

A literature review reveals that Nitsche-type methods have often been employed to variationally 
apply the no-slip boundary conditions [4,7,8,11,12]. The Nitsche method for constraining the 
primary unknown fields is comprised of the consistency terms and the penalty or stability term. A 
major technical issue has been the value of the stability parameter that largely remains unspecified by 
the theory. Since the condition number of the system is a function of the stability parameter, the 
optimal value of the parameter needs to be identified. This value needs to be small enough to 
preserve consistency of the method, while it needs to be sufficiently large for ensuring stability. If 
the parameter is too large, the stabilization term plays the role of penalizing the boundary conditions, 
and the formulation loses the variational consistency, thereby deteriorating the conditioning of the 
tangent matrix. If the value is too small, the formulation becomes unstable. 
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An important ingredient of the present paper is the use of shear-rate dependent non-Newtonian 
model for blood [13–15]. The flow of shear-thinning fluids generally gives rise to pseudo-plastic 
velocity profiles which is characterized by lower velocities due to a less convective flow but sharper 
and thinner boundary layers [15]. Therefore, the ability of the method to capture the boundary layer 
is of significant importance for the shear-thinning models than for the Newtonian models. The 
stabilized methods for this class of fluids were developed by the senior author, and the interested 
reader is referred to [15,17–21]. 

This paper develops a stabilized formulation for the weak imposition of Dirichlet 
boundary conditions for non-Newtonian fluids. We derive the boundary terms by exploiting the 
edge-based functions that model fine scales in the Variational Multiscale (VMS) equations. 
Similar ideas have been applied to develop Discontinuous Galerkin (DG) methods for coupling 
multiple PDEs [22], in damage modeling for finite strain solid mechanics problems with weak 
and strong discontinuities across common interfaces [23], and in the immersed boundary 
conditions in fluid mechanics [10]. A unique contribution of the proposed method is the 
variationally derived consistency terms as well as the stabilization tensor that possesses a self-
adjusting feature for optimal enforcement of the boundary conditions. This feature is 
highlighted with the help of numerical examples in Section 4. 

An outline of the paper is as follows: Section 2 presents the governing equations and the 
constitutive model. Section 3 presents the derivation of the stabilized formulation. Section 4 presents 
numerical test cases to validate the proposed method and to investigate its mathematical and 
computational attributes. An application to patient-specific arterial geometry illustrates its clinical 
relevance. Conclusions are drawn in Section 5. 

2. Governing equations and non-Newtonian fluid models 

2.1. The strong form of governing equations 

Let sdn  be an open bounded region with piecewise smooth boundary  . The number of 
spatial dimensions, sdn , is equal to 2 or 3. The domain boundary assumes the usual split g h     

and g h   , where g  and h  are parts of the boundary with essential and natural boundary 

conditions, respectively. The governing equations and boundary conditions are given as: 

 ( )v p
t

  
      


v

v v v f  in   (1)

 0  v  in   (2)

 v g  on g  (3)

  n h  on h  (4)

where v  and p  are the fluid velocity and pressure, respectively.   is the density of the fluid, v  is 

the deviatoric stress tensor,   is the Cauchy stress tensor defined as vp  I  , I  is the identity 

tensor, f  is the body force per unit mass, g  is the prescribed velocity on the boundary g , h  is the 

prescribed traction on the boundary h , and n  is the unit outward normal to the boundary of the 
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domain  . Equations (1)–(4) represent balance of momentum, the continuity equation, the Dirichlet 
and Neumann boundary conditions, respectively. The shear-rate dependent deviatoric stress tensor is 
defined as 
 2 ( ) ( )v    v   (5)

where ( )v  is the rate-of-deformation tensor defined as 
1

2
( ) ( )T  v v v ,   is the shear-rate 

defined as 2 ( ) : ( )  v v  , and ( )   is the effective viscosity which is a function of the shear-

rate. 

2.2. Non-Newtonian fluid models 

In this work, we employ the power-law model and the Carreau-Yasuda model to represent the 

shear-thinning behavior of blood, which are the two commonly used models in computational 

hemodynamics [13–15,18,24]. The power-law model is: 

 1( ) n       (6)

where   represents the viscosity of Newtonian fluids if 1n  . A drawback with this model is the 

singularity that appears at zero shear-rate, and various techniques have been proposed in the 

literature to establish a lower-bound on the effective viscosity.  

In the Carreau-Yasuda model, the nonlinear function of the viscosity is given by 

 ( 1) /
0( ) ( )[1 ( ) ]a n a      

       (7)

where 0  and   are asymptotic viscosities at zero and infinite shear-rate, respectively, and a , n  

and   are empirically determined constitutive parameters. Coefficients a  and n  are non-

dimensional parameters that control the shear-thinning or shear-thickening behavior of fluids in the 

non-Newtonian regime between the two asymptotic viscosities. The model reverts to the Newtonian 

fluid model by setting 0  . 

2.3. The mixed weak formulation 

Our objective is to develop the formulation that weakly imposes the Dirichlet boundary 
conditions for the velocity field in Eq (3). We start from the classical mixed formulation and derive 
the expression for the Lagrange multiplier field at the Dirichlet boundary g . Let w  and q  denote 

the weighting functions for the velocity and the pressure fields, and   denotes the weighting 

function for the boundary condition. The appropriate spaces of trial solutions and weighting 
functions are specified as follows: 

  sd1[ ( )] ,  on 
n

gH    v v v g  (8)

  sd1[ ( )] ,  on 
n

gH    0 w w w  (9)
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  2 ( )p p L    (10)

  sd1/2[ ( )]
n

gH       (11)

The mixed weak form associated with Eqs (1)–(4) is: Find  , p   v ,   such that for 

all  , q   w ,  : 

 
       

     

, , , 2 ( ) ( ) , ,

, , ,
g h

p q
t

   



   


  

 
          

  

v
w w v v w v w v

w w h w f




 (12)

  , 0
g

 v g  (13)

where ( , ) ( )d 
      is the 2 ( )L   inner product. In this work shear-rate dependent deviatoric 

stress is considered. The mixed formulation in Eqs (12) and (13) consistently enforces the boundary 
condition Eq (3) through the Lagrange multiplier   which acts as the numerical flux or the traction 
at g . The downside of the mixed formulation is the presence of additional unknown fields and the 

instability associated with the inf-sup conditions. To overcome these issues while holding the virtue 
of variational consistency, we derive the expression for the Lagrange multiplier   that will eliminate 
the auxiliary unknown field from the formulation. 

3. The stabilized formulation for weakly imposed boundary conditions 

This section presents the derivation of the stabilized formulation for the weakly imposed 
Dirichlet boundary conditions. We apply the VMS framework to the narrow band     along 
the Dirichlet boundary g  shown in Figure 1. Overall procedure underlying the derivation 

comprises three steps, (i) split the problem into coarse- and fine-scale sub-problems, (ii) solve 
the fine-scale problem along the boundary g , and (iii) embed the fine-scale models into the 

coarse-scale formulation. 

 

Figure 1. Narrow band along the Dirichlet boundary where the fine-scale field is active. 
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3.1. Multiscale decomposition 

We discretize the domain   into disjoint elements e  with element boundaries e , such that 
el

1
n e
e     where eln  is the total number of elements in the mesh. We apply a multiscale 

overlapping decomposition to the velocity field and the weighting functions only in the narrow band 

  along the Dirichlet boundary. 

 ˆ  v v v  (14)

 ˆ  w w w  (15)

where v̂  and v  are the coarse and fine scale velocity fields, respectively. ŵ  and w  are the 
corresponding weighting functions for the coarse and fine scales, respectively. The coarse scale is 
associated with finite element spaces and the fine scale is represented by piecewise polynomials of 
sufficiently high order. Substituting Eqs (14) and (15) into the mixed weak form in Eqs (12) and (13) 
and using the linearity of the bilinear forms, we obtain two variational forms: 
Coarse-scale sub-problem 

 
   

         

ˆ( )
ˆ ˆ ˆ ˆ ˆ ˆ, , ( ) ( ) , 2 ( ) ( )

ˆ ˆ ˆ ˆ ˆ, , ( ) , , ,
g h

t

p q

   



 


    

  
        

         

    



v v
w w v v v v w v v

w v v w w h w f




 (16)

  ˆ, 0
g

  v v g   (17)

Fine-scale sub-problem 

   

       

ˆ( )
ˆ ˆ ˆ, , ( ) ( ) , 2 ( ) ( )

, , , ,
g h

t

p

   



 


   

  
        

     

      

   

v v
w w v v v v w v v

w w w h w f




 

(18)

The coarse-scale sub-problem governs the computable scales along g , while the fine-scale 

sub-problem governs the residual-based error part along g . Because we apply the scale 

decomposition only at  , the fine-scale problem Eq (18) is localized around the Dirichlet boundary 

g . Accordingly, the fine scales v  are assumed to be non-zero only within elements at the boundary 

g  and they vanish in the interior of the domain  . 

3.2. Derivation of the fine-scale models 

We assume that the fine-scale field is operational over the first layer of elements that are 
adjacent to the boundary g . Consequently, it is nonzero on  , attaining maximum value at g  and 

becoming zero at distance h   perpendicular to g , where h  is the width of the element normal to 

the boundary. This modeling assumption allows the continuity of the overlapping coarse and fine 
fields. It also yields a simpler method for numerical integration and therefore for the approximation 
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of the conditions at the edges. We approximate the fine-scale fields using edge functions ( )eb   
defined in the natural coordinate system ( , , )   . They are non-zero at the segment of Dirichlet 

boundaries e
g  and zero at the other element boundaries. An example of edge function is shown in 

Figure 2 and Table 1 lists the edge functions for 2D and 3D elements. The fine scales are represented 
as follows: 

 ebv α  (19)

 ebw   (20)

where   and   is the coefficient for the trial solutions and weighting functions of the fine scale 

velocities, respectively. We make a simplifying assumption that v  is quasi-static so that the effect of 

its time-derivative is negligible, i.e., / t  v 0 . 

 

Figure 2. Edge function eb . 

Table 1. Edge functions to represent the fine-scale fields. 

Element Edge function

Linear triangle (T3) 4 (1 )     

Linear quadrilateral (Q4) 21

2
( 1)(1 )    

Quadratic triangle (T6) 2 24 (1 )     

Linear tetrahedron (T4) 27 (1 )       

Linear hexahedron (B8) 2 21

2
(1 )(1 )(1 )      

Quadratic tetrahedron (T10) 2 2 227 (1 )        

We linearize the fine-scale problem with respect to v  by applying the variational derivative, 

  0
[ ] ( )D 

 



   v G v G v v . We gather the coarse-scale terms on the right-hand side and 

apply integration-by-parts and the divergence theorem to them. The resulting linearized problem for 
the incremental fine scales v  is 
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     

        
, ( ) , ( ) , 2 ( ) ( )

, 2 [ ( ) ] ( ) , , ,
g h

D

   

 
  

  

       

          v

w v v w v v w v

w v v w r w n w n h



   

  

 

      

     
 (21)

where r  is the residual of the Euler Lagrange equations of the coarse scale formulation, and is given 

as 

 ( )v p
t

  
       


v

r v v v f  (22)

The variation of the viscosity field is expressed as 

    

 

1/2

1

[ ( )] ( ) [ ]

1
( ) 2 ( ) : ( ) 2 ( ) : ( )

2

2 ( ) ( ) : ( )

D D

D

    

 

  





  

 

 

 



    

 

  

v v

v

v v

v v v v v

v v

   

 

 (23)

By substituting expressions Eqs (19), (20) and (23) into Eq (21), the fine-scale problem can be 
segregated into local problems over the elements e  that lie along the Dirichlet boundaries g .  

 

     
      

 

1

, ( ) , ( ) , 2 ( ) ( )

, 4 ( ) ( ) : ( ) ( ) , ,

,

e e e

e ee
g

e
h

e e e e e e

e e e e

e

b b b b b b

b b b b

b

   

  

  



 



       

       

  

v v

v v r n

n h

      

        

 



   (24)

We solve the linear problem for the fine-scale coefficients   and get the closed form 
expression for the fine-scale velocity field. 

 ( ) ( )ee e
g h

e e e eb b d b d b d
  

                v r n n h      (25)

where 

 

   

2

2

1

( )

( ) ( ) ( )

4 ( ) ( ) ( )

e e

e e

e

e T e e

e e e

e e

b d b b d

b b d b d

b b d

 

   

  

 

 




     

      

     

 

 


v v I

I

v v



 



 

 

 (26)

The last boundary term in Eq (25) vanishes because the edge function eb  is zero at the element 

edges on the traction boundary e
h . To further simplify the fine-scale expression Eq (25), we employ 

three modeling assumptions [22,25]. (i) The edge bubble function eb  is orthogonal to the coarse-

scale residual r , so the domain-interior term in Eq (25) is neglected, i.e., e

eb d


  r 0 . 

Consequently, the fine-scale problem is driven by the boundary residual at the Dirichlet boundary 
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e
g . (ii) The boundary residual is taken out of the integral by applying the mean-value theorem, i.e., 

( ) ( )e e
g g

e eb d b d
 

       n n    . (iii) The edge function is averaged along the boundary, i.e., 

1[meas ( )] e
g

e e e
gb b d


    where meas ( )e

g  is the length or the area of the element edge on e
g . 

With these modeling assumptions, we arrive at the fine-scale model at the boundary e
g  that is driven 

by the boundary residual of the corresponding coarse scales. 

 1 ( )g
    v n    (27)

where the stability tensor is defined as 

 
2

meas ( ) e
g

e e
g g b d





           (28)

where   is given by Eq (26).  

Remark: The last term in Eq (26) involves spatial gradient of nonlinear viscosity. This term would 
drop out for element-wise constant viscosity over a boundary element [19]. To keep the formulation 
general, we assume the viscosity to vary spatially over the element, and consequently we keep this 
term in the definition of the stability tensor. 

3.3. Variational embedding in the coarse-scale formulation 

In Section 3.2, we derived the fine-scale model for the incremental velocity field along the 
Dirichlet boundaries g . The fine-scale velocity in Eq (27) is expressed in terms of the Lagrange 

multiplier   which is still an unknown field. To derive a closed-form expression for  , we 
substitute Eq (27) into Eq (17). 

  1, ( ) 0
e
g

g



    v g n     (29)

Assuming a piecewise constant projection of   along e
g , we solve Eq (29) locally to obtain 

the expression for the Lagrange multiplier  . 

 ( )g    n v g    (30)

Notice that the Lagrange multiplier comprises the Cauchy traction and a penalty force to 
enforce the boundary condition. Substitution of Eq (30) in Eq (27) leads to an explicit form of the 
fine-scale model. 

 ( )   v v g  (31)

The fine scale in the current framework can be viewed as the residual or the error of the 
Dirichlet boundary condition Eq (3) at the boundary g .  

To embed the fine-scale model, we linearize the coarse-scale formulation Eq (16) with respect 
to the fine-scale velocity field v . 



 3864 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 3855–3886. 
 

       

       

    
   

1

ˆ
ˆ ˆ ˆ ˆ, , , 2 ( ) ( ) , ,

ˆ ˆ ˆ ˆ, , ( ) , ( ) , 2 ( ) ( )

ˆ , 4 ( ) ( ) : ( ) ( ) , ( )

ˆ ˆ, ,

g

h

p q
t

q

   

   

  



   


   




 

 
          

         

     

 

  





   

   

v
w w v v w v w v

w w v v w v v w v

w v v v v

w h w f



 

  

 (32)

To convert the fine-scale terms that are integrated over the narrow band   into the boundary 
terms, we apply integration-by-parts. We keep only the boundary contributions and neglect the 
interior terms following the assumption that fine-scales are only active at the boundary g . 

Substituting Eqs (30) and (31) in the linearized form Eq (32) yields the stabilized boundary 
formulation. The technical details of the steps for conversion from the domain-interior terms in   to 
the boundary terms on g  are provided in Appendix A. Furthermore, we add the residual-based 

interior stabilization  , r   for flows of the shear-rate dependent fluids developed in [18,19]. 

Hereon, we drop the superposed hats from the coarse-scale velocity field and its weighting function. 
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where 
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Note that the stability tensor   is computed using the regular bubble function ( )b  , while the 

boundary stability tensor g  is computed using the edge function ( )eb  . 

In Eq (33), the stabilized formulation is augmented by the weakly imposed boundary 
condition. The boundary terms integrated over g  weakly enforce the Dirichlet boundary 

condition. The first three boundary terms ensure the consistency of the formulation, which is 
required for optimal convergence. The fourth boundary term emanates from the linearization of 
the shear stress term of the fine-scale problem, which disappears for the Newtonian fluid case. 
The last boundary term stabilizes the boundary formulation, where the stability tensor is self-
calculated without user-parameter. 
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Remark: The derived formulation Eq (33) can be used with any shear-rate dependent fluid model. In 
this work, we have employed the power-law and the Carreau-Yasuda models. The formulation also 
accommodates the degenerate case of Newtonian fluids where the viscosity becomes constant and the 
viscosity-gradient term drops out. 

Remark: An important point to note is that all the boundary terms are variationally derived and 
therefore the resulting formulation Eq (33) is variationally consistent. 

Remark: The fourth boundary term in the formulation Eq (33) involving the gradient of viscosity 
emanates from the linearization of the fine-scale problem. The effects of this term on the convergence 
of the formulation are discussed in Section 4.1.2. In the numerical experiment of shear-thinning flow 
in a curved tube discussed in Section 4.3.2, simulations without this term diverge unless the time-step 
size is substantially reduced. It shows that this term helps in preserving unconditional stability of the 
implicit time integration methods. 

Remark: The fourth boundary term in the formulation Eq (33) involves the inverse of the shear-rate, 
which can cause singularity at 0  . The boundedness of this term is shown in Appendix B. In our 

numerical implementation, this boundary term is deactivated if    where 1610  . 

4. Numerical results 

We have implemented the stabilized boundary formulation Eq (33) and its consistent tangent 
tensors using linear quadrilateral elements for 2D problems and quadratic tetrahedral elements for 3D 
problems. The generalized-α method is used for time integration. It is an implicit, second-order 
accurate scheme with a free parameter 0 1   that controls the damping of high frequency 

modes. In this work, we have used 0.5   for all the transient test cases. The nonlinear problems 

are solved using the Newton-Raphson method with the consistent tangent. We solve the linear 
system of equations using the direct solver for convergence tests and 2D cavity flow, and the 
GMRES solver with additive Schwarz preconditioner for the 3D arterial flow test cases.  

4.1. Rate of convergence study 

4.1.1. Domain with no-penetration boundaries 

This test case [18] investigates the convergence-rates for the strongly and weakly imposed 
boundary conditions. The domain is a 3D block, 0.5 , , 0.5x y z   , and it is discretized using 

evenly spaced quadratic tetrahedral elements. The number of elements per edge is N  2, 4, 8, 16, 32. 
The exact solution for the velocity and pressure fields is given as follows  
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v  (36)

 sin(2 ) sin(2 ) sin(2 )p x y z    (37)

Note that the velocity field is divergence-free. The corresponding body force for the exact 
velocity and pressure fields is given in Appendix A in [18]. 
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The density of the fluid is 31.0 kg m   . The material parameters for Carreau-Yasuda 
models are set as 0.00345 Pa s   , 0 0.056 Pa s   , 1.902  , 0.22n   and 1.25a  . Based 
on the maximum velocity and the viscosity at the infinite shear-rate  , the Reynolds number is 

435Re  . The flow is driven by the body force given in [18]. The values of the exact velocities are 
applied as nodal coefficients on all boundaries for the case of strongly imposed boundary conditions, 
while they are enforced via the formulation in Eq (33) for the weakly imposed boundary conditions. 

Figure 3 presents the velocity and pressure fields computed on the finest mesh with the weakly 
imposed boundary conditions. Figure 4 shows the convergence rates for the 2L -norm and the 1H -
seminorm of error that shows optimal convergence rates for the velocity field and its divergence. 
Both strong and weak boundary conditions show equivalent convergence properties for the finer 
meshes, while the weak boundary condition results in smaller error for the coarse mesh. This shows 
that the weakly imposed boundary conditions help improve the accuracy of calculations on cruder 
spatial discretizations. 

         
           (a) Velocity streamlines (m/s)    (b) Pressure contours (Pa) 

Figure 3. Computed streamlines and pressure contours in the domain 0.5 , , 0.5x y z   . 

 

Figure 4. Rate of convergence study for the quadratic tetrahedral elements ( h  is the side 
length of the element). 
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4.1.2. Domain with penetration boundaries 

We now develop a harder test case for the convergence-rate study presented in Section 4.1.1. 
We alter the computational domain by cutting the original domain right through the vortex such 
that 0.5 , , 0.25x y z   . Since exact solution for this problem exists, which is given in Eq (36), the 
boundary conditions at this bounding surface can be applied both strongly as well as weakly. It is 
important to realize that in this problem where the domain boundary cuts through the vortex 
structure as shown in Figure 5, imposing the boundary conditions becomes more involved. 
Figure 6(a) compares the convergence rates for the strongly and weakly imposed boundary 
conditions. We observe that for the case of strongly imposed boundary conditions the 2L -norm 
of error for the pressure field does not converge for the finest mesh, while the errors for the 
weakly imposed boundary conditions uniformly converge for all the meshes. Figure 6(b) 
compares the convergence properties between the complete formulation Eq (33) and the 
incomplete formulation that is obtained by deactivating the boundary term that accounts for the 
viscosity gradient, i.e., the fourth boundary term in Eq (33). We realize that not including the 
boundary term with the shear-rate effects leads to catastrophic divergence of the method for the 
finest mesh, while keeping this term in the formulation leads to uniform convergence all through 
the mesh refinement. This numerical study justifies the crucial importance of this term in 
practical applications with non-Newtonian shear-rate fluids.  

            
         (a) Velocity streamlines (m/s)    (b) Pressure contours (Pa) 

Figure 5. Computed streamlines and pressure contours in the domain 0.5 , , 0.25x y z   . 
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        (a)          (b) 

Figure 6. Rate of convergence study: (a) comparison between the strongly and weakly 
imposed boundary conditions, (b) comparison between the complete and the incomplete 
formulations. 

4.2. Lid-driven cavity flow 

Steady lid-driven cavity flow is chosen to verify the spatial accuracy of the formulation 
presented in Eq (33) for both Newtonian and non-Newtonian fluids. We compare the results 
with the benchmark data [15,26–28] and with the numerical results for the strongly imposed 
boundary conditions. 

Figure 7 shows the biunit domain with the Dirichlet boundary conditions for the velocity field 
applied along all the faces. A constant unit velocity 1U   is applied in the x -direction at the top 
surface while no-slip boundary condition is applied at the other three surfaces. The zero pressure 
condition is specified at the left bottom corner to eliminate the arbitrary constant. We test both the 
Newtonian and the shear-thinning models as presented below. 

 

Figure 7. Spatial configuration and boundary conditions for the steady lid-driven cavity flow. 

4.2.1 Newtonian fluids 

For Newtonian fluids, Reynolds number is defined based on the lid-velocity U  and domain 
width L . We consider three cases of Reynolds number 1000,  5000Re   by setting the density 1   
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and the viscosity 310  , 42 10 , respectively. The computational domain is discretized using 
uniformly distributed N N  (where 40N  , 80) quadrilateral elements. 

Figure 8 presents the profiles of the horizontal velocity along the vertical center line at 0.5x  . 
We compare the computed results of strongly and weakly imposed boundary conditions with the 
reference results that are computed on the stretched meshes [26,26]. We observe that the weakly 
imposed boundary conditions successfully capture the reference profile and they outperform the 
strongly imposed boundary conditions on all the meshes. 

           

(a) 1000Re          (b) 5000Re   

Figure 8. Horizontal velocity along the vertical line passing through the center for the 
lid-driven cavity flow with Newtonian fluids. 

4.2.2. Shear-thinning non-Newtonian fluids 

In this section, we employ the power-law and the Carreau-Yasuda models given in Eqs (6) and (7), 
respectively, for the shear-thinning fluids. The Reynolds number for the power-law fluids is defined by 

2 /n nRe U L  , as given in reference [15]. We set the exponent 0.5n  , the density 1  , and the 

viscosity parameter 32 10   , which yields 500Re  . The material parameters for Carreau-Yasuda 

fluids are set equal to 0.00345  , 0 0.056  , 1.902  , 0.22n  , 1.25a  , and 1  , which 

yields the Reynolds number 290Re   based on  . We employ (i) stretched, and (ii) uniform 

quadrilateral meshes, where the number of elements along an edge is N  40, 80, 160 for the power-law 
model, and N  20, 40, 80 for the Carreau-Yasuda model. 

Remark: The power-law model gives rise to singularity when 0  . To keep the viscosity bounded at 
very low shear-rates, we impose a lower cap on the shear-rate,   , where we have employed 

1610  . This treatment is equivalent to applying an upper bound for the viscosity, ( ) ( )    . For 
the shear-thinning power-law fluids in Section 4.2.2, the viscosity is bounded by ( ) 200,000   . 

Figures 9–12 present the comparison of the computed velocity profiles on the stretched and on the 
uniform meshes with the reference results [15,28]. The reference results for the power-law and the 
Carreau-Yasuda models are computed on 180 180  and 128 128  meshes, respectively. We achieve 
good comparative results on meshes of different resolution for the power-law and Carreau-Yasuda 
models which indicates that the proposed method can handle different non-Newtonian constitutive 
equations. For the case of stretched meshes, all mesh configurations yield very accurate results in the 
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boundary layer region, as shown in Figures 9 and 11. For the case of uniform meshes, the numerical 
results for both strongly and weakly imposed boundary conditions approach the reference results as a 
function of mesh refinement, as shown in Figures 10 and 12. However, the weakly imposed boundary 
conditions result in higher accuracy in the boundary layer region as compared to the strongly 
imposed boundary conditions. This feature demonstrates the enhanced mathematical attributes of the 
weakly imposed boundary conditions on the uniform meshes that may not have optimal mesh 
resolution for the boundary-layer flows. 

         

(a) Horizontal velocity          (b) Vertical velocity 

Figure 9. Horizontal and vertical velocity along the vertical and horizontal center line for 
the lid-driven cavity flow with the power-law model on the stretched meshes. 

       

(a) Horizontal velocity          (b) Vertical velocity 

Figure 10. Horizontal and vertical velocity along the vertical and horizontal center line 
for the lid-driven cavity flow with the power-law model on the uniform meshes. 
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(a) Horizontal velocity          (b) Vertical velocity 

Figure 11. Horizontal and vertical velocity along the vertical and horizontal center line for 
the lid-driven cavity flow with the Carreau-Yasuda model on the stretched meshes. 

     

(a) Horizontal velocity      (b) Vertical velocity 

Figure 12. Horizontal and vertical velocity along the vertical and horizontal center line for 
the lid-driven cavity flow with the Carreau-Yasuda model on the uniform meshes. 

Figure 13 shows the magnitude of the non-dimensionalized stabilization tensor /g h   

computed on the uniform meshes along the left vertical boundary for the case of Carreau-Yasuda 
model. The stabilization tensor g  defined in Eq (28) is calculated over the layer of elements 

adjacent to the boundary g . The magnitude of the tensor is computed as :g g g   , h  is the 

length of the element edge, and   is the asymptotic viscosity at the infinite shear-rate in Carreau-

Yasuda model. As the meshes are refined, the width of the spatial domain comprising the first layer 
of elements adjacent to g  reduces, thereby asymptoting to the dimension sd 1n  . Figure 13 shows 

that all the meshes yield similar spatial distribution of the non-dimensional stability parameter and 
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they gradually converge to the results from the finest mesh that yields a better representation of the 
notion of the edge. 

 

Figure 13. The magnitude of the non-dimensionalized stabilization tensor /g h   

along the vertical boundary at 1x  . 

4.3. Flow in a curved tube 

This test case is a model for flow in an idealized femoral artery [29] where we investigate both 
Newtonian and non-Newtonian constitutive equations. The geometry of the curved tube and its 
dimensions are shown in Figure 14. The diameter of the tube is 0.8 cmD  , the length of the straight 
segment is 1.6 cmL  , the radius of curvature is 2.4 cmR  , and the angle from the inlet is 

0 ~ 90   . The parabolic inflow velocity profile is prescribed at the bottom surface. The no-slip 
boundary condition is strongly or weakly imposed over the cylindrical surface, and the traction-free 
condition is applied at the outflow surface. We employ two successively refined quadratic tetrahedral 
meshes where the refined mesh is generated by reducing the element size by half. The description of 
the two meshes is given in Table 2. 

 

Figure 14. Geometry and dimensions of the curved tube. 
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Table 2. Description of the meshes for the curved tube ( h  is the side length of the element). 

Mesh h Number of nodes Number of elements 

Coarse 0.1 27,837 17,432 

Fine 0.05 192,634 132,157 

4.3.1. Verification of the method with the Newtonian fluid model 

We first test our method with Newtonian fluids and compare the computed results with the 
experimental data [29] that was obtained via laser-Doppler velocity measurements. The density 

of fluid is 30.8028 g/cm   and the dynamic viscosity is 20.1 dyne s/cm   . The average 
velocity at the inlet is 109 cm/sU  , which yields Reynolds number / 700Re UD   . 

Figure 15 presents the streamwise velocity along the cross sections subtended at various 
angles as shown in Figure 14. A good agreement between the computed results and 
experimental data is attained on the fine mesh. The coarse mesh has only eight quadratic 
elements along the diameter, with no-slip condition at the ends of the diameter, thereby giving 
rise to boundary layers at either end. Despite being relatively crude, the mesh is able to capture 
the profile quite accurately and this is attributed to the fine-scale modeling feature of the 
method. We also observe that both strongly and weakly imposed boundary conditions produce 
similar results on each mesh. 

4.3.2 Shear-thinning non-Newtonian blood flow 

In this section, we consider pulsatility of blood flow in addition to the shear-thinning 
effects of blood. We employ the Carreau-Yasuda model in Eq (7) with the coefficients given in 

Table 3 that are taken from [13]. The density of blood is 31.06 g/cm  . The prescribed time-

varying velocity at the center of the inlet is presented in Figure 16. We simulate three cardiac 
cycles with a time step size of 0.01 st   and take the numerical results from the last cycle for 
comparative study. 

Table 3. Values of coefficients for the Carreau-Yasuda model. 

2
0  (dyne s/cm )   2 (dyne s/cm )     a  n  

0.56  0.0345 1.902 1.25 0.22 
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                     (a) 0        (b) 4.6    

   

                 (c) 11.7        (d) 23.4    

   

                 (e) 39.8        (f) 58.5    

 

(g) 81.9    

Figure 15. Profiles of the streamwise velocity across the cross-sections at various angles 
(The radial distance is normalized with respect to the radius of the tube, and the velocity 
is normalized with respect to the average velocity at the inlet). 
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Figure 16. The velocity waveform applied at the center of the inflow surface (Time 
points AT  and BT  correspond to the maximum and minimum inflow velocity). 

Figure 17 presents the computed velocity field on the fine mesh by weakly imposing the no-
slip condition at the wall. It shows that the boundary terms in Eq (33) accurately enforce the no-
slip condition that leads to the boundary layer near the wall.  Figure 18 compares the computed 
streamwise velocity at various angles between the strongly and weakly imposed boundary 
conditions. Figure 19 shows the wall shear stress (WSS) along the outermost curve of the bent 
tube. The WSS is averaged in time for a cardiac cycle. The comparisons of the velocity and WSS 
verify that both methods for imposing the essential boundary condition produce comparable 
results on the coarse and fine meshes. Table 4 summarizes the range of eigenvalues of the 
stabilization tensor   for the case of weakly imposed boundary conditions. Since the eigenvalues 
remain positive, it shows that the stability tensor also stays bounded and positive-definite. 

                          

(a) Velocity field at AT  (cm/s)    (b) Velocity field at BT  (cm/s) 

Figure 17. Numerical results for the velocity field on the fine mesh by weakly imposed 
no-slip condition. 
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                   (a) 0        (b) 4.6    

   

                  (c) 11.7        (d) 23.4    

   

                  (e) 39.8        (f) 58.5    

 

(g) 81.9    

Figure 18. Profiles of the streamwise velocity across the cross-sections at various angles 
at the time point AT  where the inflow velocity is the maximum (The radial distance is 

normalized with respect to the radius of the tube). 
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Figure 19. Time-averaged wall shear stress (WSS) for a cardiac cycle along the 
outermost circular curve in the bent tube. 

Table 4. Range of minimum and maximum eigenvalues of the domain-interior 
stabilization tensor  . 

Mesh Time point Minimum eigenvalue Maximum eigenvalue 

Coarse 
AT  67.62 10  ~ 44.31 10  68.17 10  ~ 45.35 10  

BT  69.60 10  ~ 45.23 10  51.09 10  ~ 46.92 10  

Fine 
AT  62.73 10  ~ 41.97 10  63.07 10  ~ 42.28 10  

BT  62.60 10  ~ 42.24 10  63.77 10  ~ 42.55 10  

A unique attribute of the proposed method is the variationally derived stabilization tensor g  

that enforces the Dirichlet boundary condition. It is explicitly defined in Eq (28) and it results in 
element-wise optimal values for g  that are automatically calculated locally. Figure 20 displays the 

spatial distribution of the magnitude of the stabilization tensor g  computed at two time points AT  

and BT  in a typical cardiac cycle. It shows that the value of g  tends to be larger where the velocity 

and its gradient are higher on the top surface and near the outlet. It also shows that the value of g  

varies with time and is larger at the time point AT  than at the time point BT  because the inflow 

velocity is also higher at AT . 

4.4. Blood flow in a representative patient-specific arterial model 

In this test case we take the method for weakly imposed boundary conditions to patient-specific 
aortic and femoral arteries of clinical relevance. We constructed a patient-specific geometric model 
using the cross-sectional CT scan images and the 3D geometry of the arterial tree branching from the 
thoracic aorta to the femoral arteries as shown in Figure 21. The geometric model was discretized 
using quadratic tetrahedral elements where the number of nodes and elements in the mesh are 
586,116 and 388,810, respectively. We simulated three cardiac cycles with a time increment of 

0.005 st  , which corresponds to 220 time steps during a typical cardiac cycle. 
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(a) AT         (b) BT  

Figure 20. Spatial distribution of the magnitude of the non-dimensionalized stabilization 
tensor /g h   computed on the intermediate mesh at two time points AT  and BT  

indicated in Figure 16. The magnitude of the tensor is computed as :g g g   , h  is 

the element length-scale, and   is the asymptotic viscosity at the infinite shear-rate in 

Carreau-Yasuda model. 

 

Figure 21. Geometric model of patient-specific arteries. 

The non-Newtonian effects of blood are accounted for via the Carreau-Yasuda model with 

parameters given in Table 3. The density of blood is 31.06 g/cm  . The flowrate shown in Figure 22 is 
specified at the inflow surface of the thoracic artery by imposing the parabolic distribution of 
velocity. The artery wall is considered as no-slip surface. The resistance boundary condition in Eq 
(38) that produces physiological pressure waveform at the outlets is imposed at all the outlets to 
incorporate the downstream resistive effects of the arteries [17,30]. 
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Figure 22. Flowrate at the inlet of the aortic artery. 

 
0

outflow

p R d p


    v n  (38)

where R  is the resistance parameter and 0 80 mmHgp   is the constant downstream pressure. 

The resistance parameter for each branch is tuned based on the flow-rate in the branches, which is 
calculated with the traction-free conditions, to obtain a pressure amplitude between 80–110 mmHg at 
the outlets. Table 5 summarizes the value of the resistance parameter for each branch. 

Table 5. Resistance parameters ( 5dyne s/cm ) for the outlets numbered in Figure 21. 

Outlet 1 2 3 4 5 6, 7 8 9, 10 

R  6072 420359 9676 7048 25318 6221 27848 7526 

Non-physical backflow at the outlet is often encountered in cardiovascular simulations, and it 
can destabilize the solution. To address this issue, we apply backflow stabilization [31,32] to the 
outflow boundary surface by adding the following term to the left-hand side of Eq (33). 

  
0                              

, ( )      if

 o

   0

i
( , )

     therw se
outflowB

      


w v n v v n
w v  (39)

This term is only activated where the velocity is pointed inwards to the fluid domain at the 
outflow surface. 

Remark: In this patient-specific test case, where no-slip condition is weakly imposed all over the 
arterial wall surface, the derived stabilization tensor g  defined in Eq (28) is multiplied by a 

constant 20a  , which leads to better convergence in the non-linear solution.  

Figure 23 compares the flowrate at the outlets of some representative branches for the cases of 
strongly and weakly imposed essential boundary conditions, and a good agreement between the 
computed solutions is observed. Figure 24 shows that the computed pressure profiles with the strong 
and weak imposition of boundary conditions closely match for the inflow boundary and the outflow 
boundary, respectively. This test case verifies that the weakly imposed boundary condition produces 
equivalent blood flow patterns in the arterial system as are produced by the strongly imposed 
boundary conditions. 
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                (a) Outlet 1       (b) Outlet 2 

    

                 (c) Outlet 5       (d) Outlet 7 

Figure 23. Comparison of the flowrate at the outlets (marked in Figure 21) between the 
strong and weak BC cases. 

 

Figure 24. Comparison of the pressure at the inflow and outflow surfaces between the 
strongly and weakly imposed BC cases.  (The outflow pressure is computed at outlet 7 
marked in Figure 21). 

Figures 25–27 present the numerical results for blood flow in the patient-specific arteries 
computed via the weakly imposed boundary conditions. Figure 25 shows the volume rendering of the 
magnitude of velocity field. Figure 26 shows the instantaneous snapshots of the viscosity field at the 
peak systole and the mid diastole, where the viscosity tends to be lower at the systole due to higher 
blood velocity. We observe the wide spread of the high-viscosity region during the diastole, 
especially around the thoracic aorta near the inlet, and the bifurcating parts of arteries. The high 
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viscosity shows the propensity of blood to coagulate. Figure 27 shows the spatial distribution of the 
wall shear stress (WSS), which is the tangential component of the stress acting on the arterial wall, 
and is considered a significant factor for the progression of arterial disease. We want to note that the 
viscosity and WSS data is difficult to obtain via in vivo experiments. Computational methods can 
enable us to identify the regions where viscosity or WSS are higher, and therefore can serve as 
virtual platforms for patient specific care and surgical planning. 

                                     
(a) Peak systole     (b) Mid diastole 

Figure 25. Volume rendering of the velocity magnitude computed via the weakly 
imposed boundary condition at the peak systole and the mid diastole. (Unit: cm/s). 

                           

                           (a) Peak systole     (b) Mid diastole 

Figure 26. Viscosity contours computed via the weakly imposed boundary condition at 

the peak systole and the mid diastole. (Unit: 2dyne s/cm ). 



 3882 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 3855–3886. 
 

                       

 

(a) Peak systole    (b) Mid diastole 

Figure 27. Wall shear stress (WSS) computed via the weakly imposed boundary 

condition at the peak systole and the mid diastole. (Unit: 2dyne s/cm ). 

5. Conclusions 

We have presented a stabilized method for weakly enforcing the Dirichlet boundary conditions 
for non-Newtonian shear-rate dependent fluids. The consistency and stabilization terms are derived 
by locally resolving the fine-scale variational equation along the Dirichlet boundary. For shear-rate 
fluids, additional boundary terms appear that are not present in the Nitsche type approaches that are 
otherwise employed for weak enforcement of Dirichlet boundary conditions. One of these terms is 
the viscosity gradient term and is a function of the shear-rate, while the other term is a zeroth-order 
term. The structure of the edge stabilization tensor that weights the boundary terms appears naturally, 
and it is free of user defined parameters. Employing edge functions the edge stabilization tensor is 
calculated automatically, and it adaptively adjusts itself to the magnitude of the boundary residual. 
Another significant advantage of the method for weakly imposed boundary conditions originates 
from the flexibility of not requiring nodally matched discretizations at blood-artery interaction 
surfaces to enforce continuity of primary fields in blood-tissue interaction problems. This relaxation 
in the generation of meshes for the blood and tissue sub-regions will be beneficial in complex 
geometries arising in patient-specific models. 

The convergence rate tests show that the weakly imposed boundary conditions achieve optimal 
order of convergence for the velocity and pressure fields in the norms considered. Furthermore, the 
boundary term containing viscosity-derivative and shear-rate of the fluid is essential to obtain stable 
and convergent solution as a function of mesh refinement. The weakly imposed boundary conditions 
for 2D cavity flow outperform the strongly imposed boundary conditions in resolving the boundary 
layers and yield higher spatial accuracy of velocity gradients. The test case of 3D bent tube verifies 
the spatial accuracy of the solution in comparison with the experimental data for Newtonian fluids, 
and via comparison with the case of strongly imposed boundary conditions for non-Newtonian fluids. 
The distribution of the magnitude of the stability parameter at the boundary highlights that it 
adaptively adjusts itself spatially and temporally in response to the magnitude of the residual at the 
boundary. The test case of patient-specific arteries combines the various mathematical attributes of 
the method and shows its potential for the clinically relevant applications. 
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Appendix A. Derivation of the boundary term 

The domain-interior terms in the narrow band along the interface,  , are converted to the 
boundary term on g  in four steps: (i) applying integration-by-parts, (ii) applying the divergence 

theorem and assuming the boundary term to be active only on g , (iii) neglecting the domain-

interior term based on the assumption that  v 0  in  , and (iv) substituting the expression for the 
fine-scales. Two modeling assumptions are employed in the second and third steps. 

Assumption 1. The incremental fine-scales vanish,  v 0 , on the non-Dirichlet boundaries 
\ g  . 

Assumption 2. The incremental fine-scales are non-zero only at the Dirichlet boundary g  and 

vanishingly small,  v 0 , in the domain interior. 
The following example shows the application of these transformations for the viscous term. 

  2 ( ) : ( )B d 


    w v    (40)

STEP 1: Apply the integration-by parts. 
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STEP 2: Apply the divergence theorem to the first term. 
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Assuming that the incremental fine-scale field is active,  v 0 , only at the Dirichlet boundaries 

g  (Assumption 1), the boundary term on   is relegated to the boundary term on g . Additionally, 

we neglect the domain-interior terms including v  based on the assumption that the fine-scale field 
is vanishingly small,  v 0 , in the domain interior near the boundary   (Assumption 2). 

  2 ( ) ( )
g

B d 


    w n v   (43)

STEP 3: Substituting the expression for the fine-scale in Eq (31) in the above equation, we 
complete the derivation of the boundary term. 
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  2 ( ) ( ) ( )
g

B d 


      w n v g  (44)

Appendix B. Boundedness of the boundary term involving the inverse of the shear-rate 

The boundary term in Eq (33) involving the inverse of the shear-rate 1   can be written as 

  14 ( ) : ( ) ( ) ( )
g

B d   


      w v n v v g    (45)

In 1D case, Eq (45) can be simplified to 
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where 1n    or 1.  

Since the shear-rate is defined by 2 /v x    , 
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We realize that this term converges to zero when the shear-rate approaches to zero, 0  . 

In 2D or 3D case, substituting 2 ( )  v  in Eq (45) yields 
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where : :   . When 0  , 0ij   and the term ( ) / ( )v v   converges to zero in the view 

of the L’Hopital’s rule. Therefore, the boundary term in Eq (48) also converges to zero in the limit of 
 . 
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