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Abstract: Feature selection (FS) is a classic and challenging optimization task in the field of machine 

learning and data mining. Gradient-based optimizer (GBO) is a recently developed metaheuristic with 

population-based characteristics inspired by gradient-based Newton’s method that uses two main 

operators: the gradient search rule (GSR), the local escape operator (LEO) and a set of vectors to 

explore the search space for solving continuous problems. This article presents a binary GBO (BGBO) 

algorithm and for feature selecting problems. The eight independent GBO variants are proposed, and 

eight transfer functions divided into two families of S-shaped and V-shaped are evaluated to map the 

search space to a discrete space of research. To verify the performance of the proposed binary GBO 

algorithm, 18 well-known UCI datasets and 10 high-dimensional datasets are tested and compared 

with other advanced FS methods. The experimental results show that among the proposed binary GBO 

algorithms has the best comprehensive performance and has better performance than other well known 

metaheuristic algorithms in terms of the performance measures. 

Keywords: Gradient-based optimizer (GBO); transfer function; binary gradient-based optimizer; 

feature selection (FS) 

 

1. Introduction 

With the rapid development of information technology, big data has been a persistently hot topic 

and the hotly anticipated artificial intelligence relies on the development of big data [1]. One of the 

reasons why big data has become a buzzing topic is that due to the increasing computing power of 

computers, the datasets to be processed have become larger and larger, where the datasets contain more 
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and more attributes, making the task of machine learning in data mining complicated. If a dataset 

contains n  features, then 2n  solutions need to be generated and evaluated [2,3]. If n is small, then 

the total number of feature subsets is small and the optimal feature subset can usually be obtained by 

exhaustive search. However, when n becomes large enough to reach a defined value, it is no longer 

possible to enumerate all the feature subsets, which is computationally expensive. How to handle these 

large datasets becomes paramount. Because these datasets often contain unimportant, redundant, and 

noisy features that reduce the efficiency of the classifier, choosing the right features is the key to 

solving this problem [4,5]. Pre-processing functions in the data mining process include Feature 

selection (FS), which aims to reduce the dimensionality of the data by eliminating irrelevant, redundant, 

or noisy features, thereby improving the efficiency of machine learning algorithms, such as 

classification accuracy [6]. FS approach, an important technique in machine learning and data mining, 

has been extensively researched over the past 20 years. Feature selection has been widely applied in areas 

including e.g., text classification [7,8], face recognition [9,10], cancer classification [11], genetic 

classification [12,13], financial [14], recommendation systems [15], customer relationship 

management [16], cancer diagnosis [17], image classification [18], medical technology [19], etc. 

As usually, FS methods can be classified as Filter [20,21] or Wrapper [22,23], depending on 

whether they are independent of the subsequent learning algorithm. Filter is independent of the 

subsequent learning algorithm and generally uses the statistical performance of all training data to 

evaluate features directly, which has the advantage of being fast, but the evaluation deviates 

significantly from the performance of the subsequent learning algorithm. Wrapper uses the training 

accuracy of subsequent learning algorithms to evaluate a subset of features, which has the advantage 

of being less biased but is computationally intensive and relatively difficult for large data sets. It is 

based on the fact that the selected subset is ultimately used to construct the classification model so that 

if the features that achieve high classification performance are used directly in the construction of the 

classification model, a classification model with high classification performance is obtained. This 

method is slower than the Filter method, but the size of the optimized feature subset is much smaller, 

which is good for identifying key features; it is also more accurate, but less generalized and has higher 

time complexity.  

There is another FS method which is the embedded FS method [24,25]. In the filtered and 

wrapped FS methods, the FS process is clearly separated from the learner training process. In contrast, 

embedded FS automatically performs FS during the learner training process, which is an integration 

of the FS process and the learner training process, and both are done in the same optimization process, 

i.e., FS is performed automatically during the learner training process. Embedded FS is most 

commonly used for L1 regularization and L2 regularization. Generally, the larger the regularization 

term, the simpler the model and the smaller the coefficients, when the regularization term increases to 

a certain level, all the feature coefficients will tend to 0. In this process, some of the feature coefficients 

will become 0 first, and the feature selection process is realized. Logistic regression, linear regression, 

and decision tree can be used as base learners for regularized feature selection, and only algorithms 

that can get feature coefficients or can get feature importance can be used as base learners for 

embedded selection.  

The FS process can be divided into supervised feature selection [26] and unsupervised feature 

selection [27,28], depending on whether the original data sample contains information about the 

pattern category or not. Supervised feature selection is the process of selecting a feature set using the 

relationships between features and between features and categories, given a pattern category. 
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Unsupervised feature selection refers to the selection of features in the original dataset by the 

relationship between the features themselves in the dataset.  

How to adopt the right method to solve the FS problem is crucial. Through the study of many 

researchers, the FS problems can be solved by using a variety of search methods, such as exhaustive 

search, greedy algorithms, and random search. However, most of the existing FS methods tend to fall 

into local optima or are computationally expensive. FS problem is an NP-hard problem where the 

optimal solution can only be guaranteed by exhaustive search. The use of metaheuristics makes it 

possible to obtain suboptimal solutions without examining the entire space of solutions. The 

superiority of metaheuristics stems from the ability to find an acceptable solution in a reasonable 

amount of time. [29] Recently, metaheuristic algorithms have shown superior performance in FS 

problems to find the best features. [30,31] Genetic Algorithms (GA) [32], Particle Swarm Optimization 

(PSO) [33], Ant Colony Optimization (ACO) [34], Whale Optimization Algorithm (WOA) [35], Grey 

Wolf Optimization (GWO) [36], Grasshopper Optimization Algorithm (GOA) [37], Gravitational Search 

Algorithms (GSA) [38], Slime Mould Algorithm (SMA) [39], Hunger Games Search (HGS) [40], 

Gradient-based optimizer (GBO) [41], and Dragonfly Algorithms (DA) [42] are some of the well-known 

metaheuristic algorithms. Compared to traditional algorithms, metaheuristics algorithms have better 

solutions. 

The Gradient-based optimizer (GBO) is a novel gradient-based Newton’s method [43] 

optimization algorithm proposed by Iman Ahmadianfar in 2020. The GBO is a new metaheuristic 

approach with population-based characteristics inspired by the gradient-based Newton’s method, uses 

two main operators: gradient search rule (GSR) and local escaping operator (LEO), and a set of vectors 

to explore the search space. In general, the GBO has better optimization outcomes compared to other 

established metaheuristics. The GBO demonstrates its best performance among competitor algorithms 

in terms of exploration and exploitation. The GSR adopts the gradient-based approach, which enhances 

the exploration tendency and speeds up the convergence, hence obtaining a better position in the search 

space. The LEO enables the proposed GBO to get rid of local optima. The original version of GBO 

was designed to solve continuous optimization problems. However, many optimization problems (e.g., 

FS) have discrete decision variables and search spaces, and for discrete problems with discrete search 

spaces, the GBO does not provide the best solution. We are inspired to improve the binary version of 

the GBO by the superior performance of the GBO in continuous search space. In this paper, a binary 

version of GBO is proposed and designed to solve the FS problem. In this approach, two transfer 

functions [44] belonging to two families (i.e., S-shaped and V-shaped) are used to convert the 

continuous solution into the binary solution. This method is called BGBO_S and BGBO_V. The 

proposed method provides a new idea for solving the FS problem, which should not be limited to the 

improvement of the inherent algorithm, but can try to get good results as well when the newly proposed 

algorithm is applied to the FS problem. Meanwhile, many real-world problems are discrete, and GBO 

itself is a metaheuristic algorithm with a good mechanism. Since it has just been proposed, there is no 

binary version yet. The proposed method also provides a wider application of the GBO algorithm 

The remaining paper is organized as follows. The related works on feature selection are described 

in Section 2. The original GBO is introduced in Section 3. The proposed binary GBO (BGBO) is 

proposed in Section 4. In Section 5, the BGBO are tested on 18 standard UCI datasets and 10 high-

dimensional datasets, and the results are compared with the well known binary metaheuristic 

algorithms. We conclude in Section 6. 
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2. Related works 

There has been quite a bit of work in the area of metaheuristics for the FS problem, and variables 

and FS problem have been the focus of research in many application areas [45], and FS plays an 

important role in classification [46]. A large number of metaheuristic algorithms for FS problem have 

been proposed in the literature. The search capability of binary metaheuristic algorithms is dominated 

by wrapper-based feature selection algorithms. Traditional optimization methods cannot solve 

complex optimization problems better and it is difficult to obtain satisfactory solutions. Thus, a more 

effective method, the metaheuristic algorithm, has been proposed and applied by an increasing number 

of scholars. Metaheuristic algorithms are the product of combining stochastic algorithms and local search 

algorithms. Metaheuristic algorithms can be divided into four categories: evolutionary algorithms, 

swarm intelligence, physics-based methods, and human-based methods. 

The first category of metaheuristic algorithms is inspired by the Darwinian Theory of evolution, 

and evolutionary algorithms simulate the rules of evolution in nature. Genetic algorithms (GA) [32] 

are one of the representatives of evolutionary algorithms. The three steps of selection, crossover, and 

mutation are the main steps of genetic algorithms to update the population for optimization purposes. 

There are various improved versions of genetic algorithms as well as applications to feature selection 

problems. Siedlecki et al. [47] used genetic algorithms (GA) to select features and find near-optimal 

feature subsets from large feature sets. Leardi et al. [48] demonstrated that the subsets of variables 

selected by genetic algorithms are generally more efficient than those obtained by classical feature 

selection methods. Oh et al. [49] proposed a novel hybrid genetic algorithm for feature selection. The 

method embeds the local search operation into the hybrid GA to tune the search, which improves the 

algorithm performance and effectively controls the subset size. The convergence of the algorithm is 

enhanced. In addition, evolutionary algorithms include Differential Evolution (DE) algorithms [50], 

and Xue et al. [51] studied Differential Evolution (DE) for multi-objective feature selection in 

classification. 

The second class of metaheuristic algorithms: swarm intelligence, inspired by the social behavior 

of animals in a herd, shares information about all individuals in the optimization process. Particle Swarm 

Optimization (PSO) [33], Gray Wolf Optimizer (GWO) [36], Ant Colony Optimization (ACO) [34], 

Artificial Bee Colony (ABC) [52], Whale Optimization Algorithm (WOA) [35], Harris hawks 

optimization (HHO) [53], and Marine Predators Algorithm (MPA) [54] are among the representative 

algorithms of this class of metaheuristics. In particular, QO Saber et al. [55] proposed a particle swarm 

optimization algorithm with a logistic regression model and proved that the proposed method has a 

competitive performance. K Chen et al. [56] proposed hybrid particle swarm optimization (HPSO-

SSM) with a spiral mechanism, and the results showed that the HPSO-SSM method has high 

performance in solving classification problems. B Xue et al. [57] proposed a multi-objective particle 

swarm optimization (PSO) study for feature selection. Emery, E et al. [58] proposed a novel binary 

version of gray wolf optimization (GWO) and used it to select the best subset of features for 

classification purposes. P Hu et al. [59] analyzed the range of values of an under-binary condition and 

proposed a new parameter update equation to balance the ability of global search and local search. The 

proposed method introduces new transfer functions and proposes new parameter update equations. 

These methods show remarkable performance and have fast convergence, but they tend to fall into 

local optimal states. Q. Tu et al. [60] proposed a multi-strategy ensemble GWO (MEGWO). The 

proposed MEGWO contains three different search strategies to update the solution. Mafarja et al. [61] 
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proposed two binary variants of the WOA algorithm to search for the optimal feature subset for 

classification purposes. MM Mafarja et al. [62] used two hybridization models to design different feature 

selection techniques based on the whale optimization algorithm (WOA). R. K Agrawal et al. [63] 

proposed the quantum whale optimization algorithm (QWOA) for feature selection, which is a 

combination of quantum concept and whale optimization algorithm (WOA). The approach enhances 

the versatility and convergence of the classical WOA for feature selection and extends the prospects 

of nature-inspired feature selection methods based on high-performance but low-complexity wrappers. 

The third category of metaheuristic algorithms: physics-based methods, inspired by the physical 

laws of nature, simulate the physical laws in the optimization process to find the best. Common 

algorithms include Simulated Annealing (SA) [64], Gravitational Search Algorithm (GSA) [38], 

Lightning Search Algorithm (LSA) [65], Multi-verse Optimizer (MVO) [66], Electromagnetic Field 

Optimization (EFO) [67], Chemical Reaction Optimization (CRO) [68], and Henry Gas Solubility 

Optimization (HGSO) [69]. Meiri et al. [70] used simulated annealing (SA) method for specifying 

large-scale linear regression models. Lin et al. [71] proposed a simulated annealing (SA) method for 

parameter determination and feature selection of SVM, called SA-SVM. Rashedi et al. [72] introduced 

a binary version of the algorithm (GSA). Sushama et al. [73] used a wrapper-based approach for 

disease prediction analysis of medical data using GSA and k-NN. Rao et al. [74] proposed a feature 

selection technique based on a hybrid of binary chemical reaction optimization (BCRO) and binary 

chemical reaction optimization-binary particle swarm optimization (HBCRO-BPSO) in this paper to 

optimize the number of selected features and improve the classification accuracy. This method 

optimizes the number of features and improves the classification accuracy and computational 

efficiency of the ML algorithm. However, it still does not attempt to handle ultra-high-dimensional 

datasets with a large number of samples in FS. Neggaz et al. [75] proposed a novel dimensionality 

reduction method by using Henry Gas Solubility Optimization (HGSO) algorithm to select important 

features to improve classification accuracy. The method generates 100% accuracy for classification 

problems with more than 11,000 features and is valid on both low and high-dimensional datasets. 

However, HGSO also maintains certain limitations. Since HGSO maintains multiple control 

parameters, this may compromise its applicability compared to other well-known methods such as 

GWO [36] and HHO [53]. 

The last type of metaheuristic algorithms: human-based approaches, inspired by human 

interactions or human behavior in society. For examples: Teaching–learning-based optimization 

(TLBO) [76], Imperialist Competitive Algorithm (ICA) [77], Volleyball Premier League Algorithm 

(VPL) [78] and Cultural Evolution Algorithm (CEA) [79]. In which, Mohan Allam et al. [80] proposed 

a new wrapper-based feature selection method called the binary teaching learning based optimization 

(FS-BTLBO) algorithm. Mousavirad et al. [81] proposed an improved imperialist competition 

algorithm to apply this proposed algorithm to the feature selection process. Keramati et al. [82] 

proposed a new FS method based on cultural evolution. The proposed methods provide new solutions 

to the feature selection problem, but there are still problems of insufficient accuracy and excessive 

number of features. 

From the above work related to metaheuristics, we can know that a great number of metaheuristics 

are successful applied to the FS problem. The above work related to different types of metaheuristic 

algorithms on feature selection problem proves that metaheuristic algorithms have promising 

performance in solving FS problems, especially in terms of accuracy. In addition, they can produce 

better results by using a smaller number of features. However, there are still some problems, such as 
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the number of tested datasets is small and not comprehensive enough to include low-dimensional, 

high-dimensional or different types of datasets, the problem of slow convergence that exists in most 

metaheuristics, and the lack of significant effect on the number of features selected for high-

dimensional datasets. Based on the No Free Lunch (NFL) rule [83], no single metaheuristic algorithm 

can solve all problems, which indicates that a particular algorithm may provide very promising results 

for a set of problems, but the same method may be inefficient for a different set of problems. Gradient-

based optimizer is a novel gradient-based metaheuristic algorithm proposed by Iman Ahmadianfar [41] 

in 2020. The GBO algorithm is a new metaheuristic algorithm that has been recently proposed and has 

not been systematically applied to feature selection problems. The gradient-based optimization-

seeking mechanism (GSR and LEO) of the GBO algorithm makes it feasible to make an appropriate 

trade-off between exploration and exploitation. Therefore, in this paper, we propose binary GBO for 

solving FS problems, mapping continuous GBO into discrete forms using S-shaped and V-shaped 

transfer functions, and try to apply it in solving high-dimensional dataset problems. The following is 

a brief description of the GBO algorithm. 

3. Gradient-based optimizer (GBO) 

The metaheuristic algorithm was first proposed by Iman Ahmadianfar et al. in 2020 to solve 

optimization problems related to engineering applications. Exploration and exploitation are the two 

main phases in metaheuristic algorithms, which aim to improve the speed of convergence and/or local 

optimum avoidance of the algorithm when searching for a target/position. The GBO is managed to 

create a proper trade-off between exploration and exploitation to uses two main operators: gradient 

search rule (GSR) and local escaping operator (LEO). A simple introduction of this algorithm is 

described below: 

3.1. Gradient search rule (GSR )  

First, GBO proposes the first operator GSR, which helps the GBO to consider stochastic behavior 

in the optimization process to facilitate the exploration and avoidance of local optima. And the 

direction movement (DM) is added to GSR, which is used to perform a suitable local search trend to 

facilitate the convergence speed of the GBO algorithm. Based on the GSR and DM, the following 

equation is used to update the position of current vector ( )m

nx . 

1 2

2
1 ( )

m
m m mn
n n best n

worst best

x x
X x randn rand x x

x x
 



 
       

 
              (1) 

where 

1 x rand                                     (2) 

3 3
sin( sin( ))

2 2

 
                                  (3) 
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3 2

min max min( ) (1 ( ) )
m

M
                                (4) 

where min and max  are 0.2 and 1.2, respectively, m is the number of iterations, and M is the total 

number of iterations. randn is a normally distributed random number, and is a small number within 

the range of [0, 0.1]. 2 can be given by:  

2 2 rand                                    (5)                                                             

(1: )x rand N step                                (6) 

1( )

2

m

best rx x
step

 
                               (7) 

1 2 3 42 ( )
4

m m m m
mr r r r
n

x x x x
rand x

  
                            (8) 

where (1: )rand N  is a random number with N  dimensions, 1, 2, 3  4r r r and r   1 2 3 4r r r r n     

are different integers randomly chosen from [1, N], step is a step size, which is determined by bestx  

and 1

m

rx . By replacing the position of the best vector ( bestx ) with the current vector (
m

nx ) in Eq (1), the 

new vector ( 2m

nX ) can be generated as follows: 

1 2 1 2

2
2 ( )

m
m m mn
n best r rm m

n n

x x
X x randn rand x x

yp yq
 



 
       

 
          (9) 

where 

 1
( )

2

n n

n

z x
yp rand rand x

 
                           (10) 

 1
( )

2

n n

n

z x
yq rand rand x

 
                            (11) 

Based on the positions 1m

nX  , 2m

nX   , and the current position (
m

nX  ), the new solution at the next 

iteration (
1m

nx 
) can be defined as: 

1 ( 1 (1 ) 2 ) (1 ) 3m m m m

n a b n a n a nx r r X r X r X                       (12) 

13 ( 2 1 )m m m m

n n n nX X X X                                 (13) 

3.2. Local escaping operator (LEO) 

LEO is the second operator introduced by GBO. LEO is introduced to make GBO still effective 
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in the face of complex high-dimensional problems. The LEO generates a solution with a superior 

performance (
m

LEOx ) by using several solutions, which include the best position ( bestx ), the solutions 

1m

nX  and 2m

nX , two random solutions 1

m

rx  and 2

m

rx , and a new randomly generated solution (
m

kx ). The 

solution 
m

LEOX  is generated by the following scheme:  

 if rand pr  

 0.5if rand    

1

1 1 2 2 1 3 2 1 2( ) ( ( 2 1 ) ( )) / 2m m m m m m m

LEO n best k n n r rX X f u x u x f u X X u x x               

1m m

n LEOX X                                                         (14) 

else  

1 1 2 2 1 3 2 1 2( ) ( ( 2 1 ) ( )) / 2m m m m m m

LEO best best k n n r rX X f u x u x f u X X u x x               

1m m

n LEOX X                                                          (15) 

End   

End  

where 1f  is a uniform random number in the range of [-1,1], 2f is a random number from a normal 

distribution with mean of 0 and standard deviation of 1, pr is the probability, and 1 2 3, ,  u u and u are 

three random numbers, which are defined as: 

1

1

2  0.5

1             

rand if
u

otherwise

 
 


                              (16) 

1

2

 0.5

1        

rand if
u

otherwise

 
 


                                 (17) 

1

3

 0.5

1        

rand if
u

otherwise

 
 


                                      (18) 

where rand  is a random number in the range of [0, 1], and 1 is a number in the range of [0, 1]. The 

above equations can be simplified:  

1 1 12 (1 )u L rand L                                   (19) 

2 1 1(1 )u L rand L                                    (20) 

3 1 1(1 )u L rand L                                    (21) 

where 1L  is a binary parameter with a value of 0 or 1. If parameter 1  is less than 0.5, the value of 1L  

is 1, otherwise, it is 0. To determine the solution 
m

kx  in Eq (12), the following scheme is suggested. 
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2  0.5

     

randm

k m

p

x if
x

x otherwise

 
 


                                (22) 

min max min(0,1) ( )randx X rand X X                           (23) 

where randx  is a new solution, 
m

px is a randomly selected solution of the population (  1, 2, ,p N ), 

and 2 is a random number in the range of [0, 1]. Eq (22) can be simplified as: 

2 2(1 )m m

k p randx L x L x                                (24) 

where 2L is a binary parameter with a value of 0 or 1. If 2 is less than 0.5, the value of 2L is 1, 

otherwise, it is 0. The pseudo code of the GBO algorithm is shown in Algorithm 1. 

Algorithm 1. Pseudo code of the GBO algorithm. 

1. Initialization 

2. Assign values for parameters ,   pr and M  

3. Generate an initial population 0 0,1 0,2 0,, , , DX x x x     

4. Evaluate the objective function value NnXf ,..,2,1),( 0  . 

5. Specify the best and worst solutions 
m

bestX  and 
m

worstX  

6.             While (m < M) 

7.                for n = 1 : N  

8.                  for i = 1 : D 

9.                   Select randomly 1 2 3 4r r r r n    in the range of [1, N] 

10.                    Calculate the position 
1

,

m

n ix 
using Eq (12) 

11.                  end for 

12.                  Local escaping operator 

13.                  if rand < pr 

14.                   Calculate the position
m

LEOX  using Eq (14) or Eq (15) 

15.                   
1m m

n LEOX x   

16.                 end 

17.              Update the positions
m

bestX  and 
m

worstX  

18.             end for 

19.            m = m + 1 

20.          end  

21. Return
m

bestX  
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4. Proposed binary gradient-based optimizer (BGBO) 

4.1. Motivation 

The GBO algorithm is a novel population-based metaheuristic search method to solving the 

continuous problem [84]. The GBO algorithm is derived from a gradient-based search method that 

uses Newton’s method to explore the better regions in the search space. Two operators (i.e., gradient-

based rule (GSR) and local escape operator (LEO)) were introduced in GBO and mathematically 

computed to facilitate the exploration and exploitation of the search. Newton’s method is used as a 

search engine in GSR to enhance the exploration and exploitation process, while LEO is used to deal 

with complex problems in GBO. GBO shows superior performance in solving optimization problems 

compared to other optimization methods in the literature. Due to the above advantages of GBO and 

since it has not been used to solve FS problems, searching for the best subset of features in FS is a 

challenging problem, especially in wrapper-based methods. This is because the selected subset needs 

to be evaluated by a learning algorithm (e.g., classifier) in each optimization step. Therefore, a suitable 

optimization method is needed to reduce the number of evaluations in this paper; we propose a method 

for solving the FS problem. On this basis, we present the motivation for using this algorithm as a search 

method in a wrapper-based FS process. According to the nature of FS probability, the search space can 

be represented by binary values [0, 1], and binary arithmetic is much simpler than continuous arithmetic, 

so we propose a binary version of GBO to solve the FS problem. 

4.2. Our proposed binary GBO (BGBO) 

The proposed binary GBO has two key parts, the first one is how to map from continuous values 

to [0, 1] and the second one is how to update the position of the population. Transfer function [44] 

is the simplest method in binary GBO, which maps continuous values to [0, 1] and then decomposes 

them into 0 and 1 based on probability. It preserves the structure of GBO and other operations that 

move the position of the population in the binary space. The transfer functions are divided into two 

main categories according to their shapes: S-shaped and V-shaped. Figure 1 shows these two families 

of transfer functions. 

In the S-shaped transfer function, the vectors values are converted into probability values within 

the [0, 1] range. As shown in Eq (25) [85]. 

1
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i X
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e



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                                    (25) 

where 
d

iX represents the position in the d-th dimension of the i-th individual in the GBO algorithm. 

The location of each vector, based on the probability values obtained from ( )d

iT X , will be updated. 

1
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t d

t

if rand T X
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 
 


                          (26) 

where 1

d

tX  represents the t-th vectors’ position at next-iteration in the d-th dimension. 

For next, the Hyperbolic tan (V-shaped) function [86] is another transfer function and 

mathematical formulation is given below: 
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( ) tanh( )d d

i iT X X                                 (27) 

where 
d

iX represents the position in the d-th dimension of the i-th individual in the GBO algorithm. 

Based on the probability values obtained from Eq (27), the current position of each vector is updated 

in the next iteration. Using Eq (28), the search space is transformed into a binary search space. 

1

     ( )

       ( )

d d

t td

t d d

t t

X if rand T X
X

X if rand T X


 
 


                         (28) 

Table 1 shows the mathematical expressions of all transfer functions that S-shaped and V-shaped 

transfer functions are included. There are four S-shaped transfer functions: S1, S2, S3, and S4. There 

are also four V-shaped transfer functions, namely: V1, V2, V3, and V4. 

Start

Initialize the population of  individuals and  

assign  parameters

Calculate and evaluate the fitness function 

value of each individuals

 Set the best and worst solutions

Update position of individuals using 

Eq.(12) Calculate and evaluate the fitness 

function value of each individuals

Update position of individuals using Eq. 

(14) or Eq. (15)

Convert the position of an individual to 

binary space using Eq. (26) or 

Eq. (28)

rand<pr ?

No

Yes

Update the best and worst solutionsStopping condition met?

Return the best and worst solutions

Initialize the population of  individuals and  

assign  parameters

Initialize the population of  individuals and  

assign  parameters

No

Yes

End

 

Figure 1. Flowchart of the BGBO. 

S-shaped functions and V-shaped functions, with a suitable probability, the exploration and 

exploitation ability of individuals in the population is the best. And at the beginning of the iteration, 

the exploration ratio of these functions is high relative to the exploitation ratio. As the value is higher, 

the probability of individuals in the population changing their current position is higher. These transfer 

functions are designed to facilitate the exploration and utilization of the binary search space by the 

individuals of the population. Therefore, both families of transfer functions (S-shaped and V-shaped) 

are used to transfer continuous solutions of GBO into the binary search space “0” and “1”, and the 
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methods are called BGBO_S and BGBO_V. Algorithm 2 is the pseudo-code for this method, as shown 

in the following. Meanwhile the flow chart of BGBO algorithm is shown in Figure 1. 

4.3. Binary GBO for FS problems 

There are usually a large number of noisy and irrelevant features in data mining, and for these 

irrelevant features, partial processing is usually needed, otherwise, it will cause the waste of data 

processing resources and make the error probability of processing results more difficult, thus 

increasing the difficulty of the learning task. For example, in the classification task, if there are a large 

number of irrelevant features, the learning time of the classifier may be longer and the classification 

accuracy may be lower. As the dimensionality of the data increases and the dataset contains more and 

more messages, it is very difficult to handle large data, and the cost of computation time increases. 

Algorithm 2 Pseudo code of the BGBO algorithm 

1. Initialization 

2. Assign values for parameters ,   pr and M  

3. Generate an initial population 0 0,1 0,2 0,, , , DX x x x     

4. Evaluate the objective function value NnXf ,..,2,1),( 0   

5. Specify the best and worst solutions
m

bestX  and 
m

worstX  

6.         while (m < M) 

7.              for n = 1 : N 

8.                   for i = 1 : D 

9.                   Select randomly 1 2 3 4r r r r n    in the range of [1, N] 

10.                     Calculate the position 
1

,

m

n ix 
using Eq (12) 

11.                    end for 

12.                Local escaping operator 

13.                if r and < pr 

14.                   Calculate the position
m

LEOX using Eq (14) or Eq (15) 

15.                   
1m m

n LEOX x   

16.                end 

17.   The probability of converting a population to a binary space 0 or 1. Using Eq (26) or Eq (28) 

18.                Compute the fitness of all populations 

19.                Update the positions
m

bestX  and 
m

worstX  

20.              end for 

21.            m = m + 1 

22.        end 

23. Return
m

bestX  
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Therefore, it needs to reduce the features of the dataset effectively and keep the key features. Datasets 

are usually represented by a matrix whose rows represent instances (or samples) and columns represent 

attributes (or features). Feature selection is a common technique used in data mining and machine 

learning and is an effective and well-proven method. Most researchers focus on high precision and low 

feature methods, and feature selection is one such method. In this section, the wrapper method is used 

to implement feature selection. The binary version of the algorithm corresponding to the above eight 

transfer functions (BGBO_S1, BGBO_S2, BGBO_S3, BGBO_S4, BGBO_V1, BGBO_V2, 

BGBO_V3, and BGBO_V4) is applied to the feature selection problem. 

Table 1. V-Shaped and S-Shaped Family. 

S-shaped Transfer function                       V-shaped Transfer function 

Name            Mathematical formulation        Name           Mathematical formulation 

S1               
xe

x
21
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4.3.1. Fitness function 

As already known in the previous subsections, it is significant to choose an effective search 

strategy for FS methods. Since the proposed method is a wrapper-based approach, then a learning 

algorithm (e.g., a classifier) should be involved in the evaluation process. In this work, a well-known 

classifier, namely, the k-NN classifier [87] is used as an evaluator, and the k-NN classifier classifies 

unlabeled instances by measuring the distance between a given unlabeled instance and its k nearest 

instances [88]. It is based on the principle that if a majority of the k most similar samples of a sample 

in a given feature space belongs to a certain class, then that sample also belongs to that class. The 

classification accuracy of the selected features is incorporated into the proposed fitness function. The 

classification accuracy obtained is better when the features in the subset are correlated. The 

classification accuracy obtained is better when the number of features in the subset is smaller. Having 

a higher classification accuracy is one of the goals of the FS method, and another important goal is to 

recalculate the number of selected features; the fewer the number of features in the solution, the better 

the solution will be. The mathematical formulation of the fitness function is shown below:  

N

M
Dfitness R   )(                            (29) 

where )(DR  represents the classification error rate corresponding to the currently selected feature 

subset of the classifier, M   represents the number of features currently selected, N   is the total 
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number of features, and  are two weight coefficients to reflect the classification rate and length of the 

subset, is the random number between [0, 1], and  -1 . 

4.3.2. Computational complexity 

To have a better understanding of the implementation process of the BGBO feature selection 

algorithm proposed in this paper, the following subsections analyze the computational complexity of 

BGBO. The time complexity is first analyzed as follows. 

1) Population initialization O (n*d), where n is the population size and d is the dimension size 

(i.e., the number of features size). 

2) The k-NN classifier training takes O (n*m), where n is still the population size and m is the 

instance size. 

3) The time required to evaluate the fitness value of each population individual is O (n). 

4) The time required for BGBO execution (i.e., the process of updating the position of population 

individuals) is O (n*d). 

5) The time required to map the population of individuals to the binary space O (n*d). 

6) Repeat steps 2-5 above until the maximum number of iterations T is satisfied. 

The time complexity required to perform steps 2-6 above is O (n*d*m*T), and the final time 

complexity is O (n*d*m*T*K) when run independently K times. 

The space complexity is then analyzed as follows. 

1) The space required for population initialization is O (n*d). 

2) The space required for the k-NN classifier is O (m*s), where s is the number of features that 

have been selected. 

From the above analysis, n and s can be ignored, so the space complexity is O (m*d). 

The above is the analysis of the time complexity and space complexity of the BGBO algorithm 

proposed in this paper when applied to feature selection, for which the time complexity and space 

complexity are mutually affected. When pursuing a better time complexity, the performance of the 

space complexity may be worse, i.e., it may lead to occupying more storage space; on the contrary, 

when pursuing a better space complexity, the performance of the time complexity may be worse, i.e., 

it may lead to occupying a longer running time. Time complexity and space complexity are 

incompatible, and we need to strike a balance between them. 

5. Experiment results and discuss 

The detailed descriptions of the 18 benchmark datasets are shown in Table 2. These datasets have 

distinct characteristics in nature. These datasets were extracted from the UCI repository [89]. These 

datasets were used to test the proposed method. All experiments were implemented in MatlabR2017a 

and executed on an Intel Core i3 machine with a CPU frequency of 3.70 GHz and 8 GB of RAM. The 

maximum number of iterations was 100. 

As a preliminary study, we conducted experiments on the effect of different population sizes on 

the basic method (i.e., on the classification accuracy of BGBO), and thus evaluated BGBO at different 

population sizes (i.e., 10, 20, 30, and 50). The PenglungEW dataset was used for the experiments, and 

the average accuracy and time spent by the classifier were used as evaluation criteria. Because of the 

large dimensionality of this dataset, the sensitivity is high. The higher sensitivity allows the algorithm 
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to respond significantly too small changes in parameters. Table 3 shows the experimental results for 

the PenglungEW dataset with different population sizes and the maximum number of iterations. 

Table 2. List of used datasets.  

No. Datasets Instances Number of features (d) Number of classes (k) 

1 Breast_cancer_wisconsin 569 32 2 

2 IonosphereEW 351 34 2 

3 SonarEW 208 60 2 

4 zoo 101 17 6 

5 Parliment1984 435 17 2 

6 Iris 150 4 3 

7 Wdbc 569 30 2 

8 PenglungEW 73 325 2 

9 Lymphography 148 18 4 

10 KrvskpEW 3196 36 2 

11 SPECT 267 22 2 

12 Clean1 476 166 2 

13 Semeion 1593 256 10 

14 Glass 214 9 6 

15 Coil 1440 1024 20 

16 Wine 178 13 3 

17 Segmentation 178 13 3 

18 Vote 300 16 2 

Table 3. Average accuracy results and Time according to different combinations of 

population size (n) and the number of max iteration on the PenglungEW dataset. 

Population Size(n) Max Iterations Accuracy Time 

10 100 1.0000 202.23 s 

20 100 0.9978 401.84 s 

30 100 1.0000 590.49 s 

50 100 0.9956 985.71 s 

10 150 1.0000 298.56 s 

20 150 1.0000 605.30 s 

30 150 1.0000 886.67 s 

50 150 1.0000 1481.35 s 

The effect of varying the population size (10, 20, 30, and 50) and varying the number of iterations 

(100 and 150) on the classification accuracy of the dataset PenglungEW can be seen in Table 3, where 

it can be seen that the range of variation in classification accuracy is small and that increasing the 

population size does not always improve the results, and similarly, increasing the number of iterations 

has little effect on the results. Therefore, we set the population size to 10 and set the number of 

iterations to 100 in all the next experiments as a trade-off between classification accuracy and the 

overhead of the algorithm running time. 
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As mentioned in the previous subsection, there are two weighting coefficients and  in the fitness 

function. They reflect the importance of the classification error rate and the number of selected features 

on the performance of the algorithm, respectively. To further investigate the effect of different weight 

coefficients and  on the experimental results, different combinations are set up for experiments, and 

Table 4 shows the experimental results for different combinations. 

Table 4. Average accuracy results, Time, Average fitness and Average number of feature 

according to different combinations of  and  on the PenglungEW dataset. 

    Accuracy Fitness Number of feature Time 

0.5 0.5 0.9807 0.0284 12.2000 199.64 

0.6 0.4 0.9863 0.0218 11.1000 199.33 

0.7 0.3 1.0000 0.0132 14.4000 201.50 

0.8 0.2 1.0000 0.0070 11.5000 201.70 

0.9 0.1 1.0000 0.0051 16.8000 202.94 

0.99 0.01 1.0000 0.0002 6.9667 209.04 

The results are shown in Table 4. In general, decreasing the value of  and increasing the value of 

 , the accuracy has improved, but when    is 0.7 and    is 0.3, the accuracy has reached 1. 

Therefore, increasing the reference standard, the fitness value, and the number of selected features, 

according to the results, when the value of   is determined to be 0.99 and the value of   is 0.01, 

the fitness value and the number of selected features are the best, so to be able to make a reasonable 

comparison with other methods. In this paper,   and   are set to 0.99 and 0.01 in the subsequent 

experiments, respectively. Additionally, k in the Euclidean distance formula used to evaluate the 

feature subset of the k-NN classifier was set to 5 [90]. 

Table 5. Parameters setup for the variations of BGBO. 

Parameter Values 

Population size 10 

Number of iterations 100 

Dimension Number of features 

Number of runs for each method 30 
  0.99 
  0.01 

k  5 

Other parameters Pr = 0.5 

The parameters used in BGBO are shown in Table 5. Each variation of BGBO has tested 30 

independent runs. The measurement criteria used in the comparison of BGBO are fitness values, 

classification accuracy and selection feature size. 

1) Fitness values are obtained from fitness function by using the selected features on the benchmark 

datasets. (The mean, standard deviation of the fitness function is calculated).  

2) Classification accuracy is obtained from the classifier by using the selected features on the 

benchmark datasets. 

3) Selection feature size is the mean number of the selected features. 
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Table 6. Comparison between different variations of BGBO on the mean of fitness values (as Mean) and the standard 

deviation of fitness values (as S.D). 

Dataset 
BGBO_S1 BGBO_S2 BGBO_S3 BGBO_S4 BGBO_V1 BGBO_V2 BGBO_V3 BGBO_V4 

Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D 

Breast_cancer 

_wisconsin 
0.0054  0.0006  0.0044  0.0006  0.0040  0.0007  0.0038  0.0005  0.0020  0.0012  0.0018  0.0010  0.0017  0.0008  0.0020  0.0013  

IonosphereEW 0.1635  0.0064  0.1572  0.0074  0.1516  0.0082  0.1526  0.0079  0.0679  0.0180  0.0676  0.0188  0.0326  0.0114  0.0697  0.0205  

SonarEW 0.0661  0.0114  0.0583  0.0094  0.0654  0.0123  0.0556  0.0096  0.0763  0.0135  0.0390  0.0218  0.0543  0.0194  0.0704  0.0217  

zoo 0.0038  0.0000  0.0031  0.0001  0.0029  0.0006  0.0021  0.0004  0.0019  0.0001  0.0028  0.0004  0.0012  0.0002  0.0020  0.0003  

Parliment1984 0.0099  0.0045  0.0277  0.0070  0.0162  0.0023  0.0099  0.0049  0.0120  0.0000  0.0088  0.0058  0.0020  0.0003  0.0229  0.0020  

Iris 0.0710  0.0000  0.0355  0.0000  0.0355  0.0000  0.0355  0.0000  0.0025  0.0000  0.0075  0.0000  0.0025  0.0000  0.0050  0.0000  

Wdbc 0.0046  0.0007  0.0312  0.0006  0.0076  0.0035  0.0281  0.0035  0.0018  0.0004  0.0052  0.0040  0.0013  0.0002  0.0086  0.0036  

PenglungEW 0.1418  0.0121  0.0750  0.0010  0.0052  0.0002  0.0046  0.0001  0.0511  0.0331  0.0002  0.0001  0.0004  0.0001  0.0423  0.0323  

Lymphography 0.0867  0.0165  0.0796  0.0202  0.0660  0.0154  0.0960  0.0221  0.0844  0.0287  0.0537  0.0170  0.0279  0.0128  0.0348  0.0003  

KrvskpEW 0.0491  0.0039  0.0416  0.0051  0.0474  0.0077  0.0426  0.0047  0.0374  0.0092  0.0433  0.0092  0.0423  0.0089  0.0428  0.0110  

SPECT 0.2343  0.0140  0.1519  0.0138  0.2111  0.0152  0.1623  0.0133  0.1903  0.0180  0.1664  0.0160  0.1606  0.0132  0.1509  0.0161  

Clean1 0.0687  0.0051  0.0760  0.0066  0.0723  0.0070  0.0772  0.0082  0.0803  0.0146  0.0801  0.0083  0.0544  0.0135  0.0536  0.0089  

Semeion 0.0229  0.0010  0.0194  0.0017  0.0308  0.0021  0.0316  0.0017  0.0204  0.0041  0.0181  0.0035  0.0094  0.0023  0.0271  0.0060  

Glass 0.0297  0.0185  0.0230  0.0084  0.0101  0.0129  0.0246  0.0007  0.0701  0.0000  0.0470  0.0000  0.0010  0.0000  0.0010  0.0000  

Coil 0.0250  0.0023  0.0271  0.0017  0.0261  0.0028  0.0247  0.0022  0.0204  0.0053  0.0154  0.0042  0.0059  0.0027  0.0123  0.0037  

Wine 0.0053  0.0007  0.0033  0.0006  0.0028  0.0004  0.0030  0.0004  0.0024  0.0002  0.0025  0.0003  0.0015  0.0000  0.0024  0.0002  

Segmentation 0.0045  0.0006  0.0060  0.0069  0.0030  0.0003  0.0026  0.0004  0.0023  0.0000  0.0017  0.0003  0.0016  0.0004  0.0024  0.0002  

Vote 0.0113  0.0083  0.0546  0.0041  0.0040  0.0006  0.0194  0.0009  0.0178  0.0000  0.0126  0.0074  0.0013  0.0000  0.0483  0.0047  

Rand first 0 0 0 0 2 2 13 3 

Sum rank 113 106 94 94 76 63 25 70 

Average rank 6.27 5.88 5.22 5.22 4.22 3.50 1.38 3.88 

Final rank 8 7 5 6 4 2 1 3 
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Table 7. Comparison between different variations of BGBO on the mean of accuracy values (M.Acc) and the standard 

deviation of accuracy values (as S.D). 

Dataset 
BGBO_S1 BGBO_S2 BGBO_S3 BGBO_S4 BGBO_V1 BGBO_V2 BGBO_V3 BGBO_V4 

M.Acc S.D M.Acc S.D M.Acc S.D M.Acc S.D M.Acc S.D M.Acc S.D M.Acc S.D M.Acc S.D 

Breast_cancer 

_wisconsin 
1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  

IonosphereEW 0.8467  0.0130  0.8533  0.0099  0.8595  0.0093  0.8576  0.0109  0.9457  0.0121  0.9481  0.0109  0.9652  0.0153  0.9457  0.0165  

SonarEW 0.9524  0.0084  0.9482  0.0126  0.9482  0.0094  0.9496  0.0079  0.9412  0.0171  0.9412  0.0240  0.9612  0.0200  0.9405  0.0174  

zoo 1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  

Parliment1984 0.9958  0.0056  0.9770  0.0074  0.9877  0.0029  0.9939  0.0058  0.9885  0.0000  0.9943  0.0066  1.0000  0.0000  0.9778  0.0030  

Iris 0.9333  0.0000  0.9667  0.0000  0.9667  0.0000  0.9667  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  

Wdbc 1.0000  0.0000  0.9737  0.0000  0.9974  0.0041  0.9766  0.0042  1.0000  0.0000  0.9971  0.0043  1.0000  0.0000  0.9938  0.0041  

PenglungEW 0.8629  0.0124  0.9291  0.0015  1.0000  0.0000  1.0000  0.0000  0.9489  0.0336  1.0000  0.0000  0.9933  0.0203  0.9578  0.0327  

Lymphography 0.9189  0.0168  0.9256  0.0209  0.9389  0.0154  0.9067  0.0221  0.9176  0.0294  0.9485  0.0174  0.9689  0.0153  0.9666  0.0002  

KrvskpEW 0.9580  0.0038  0.9643  0.0047  0.9576  0.0075  0.9625  0.0046  0.9644  0.0099  0.9593  0.0096  0.9604  0.0088  0.9598  0.0115  

SPECT 0.7704  0.0141  0.8522  0.0141  0.7912  0.0156  0.8415  0.0137  0.8094  0.0188  0.8342  0.0165  0.8377  0.0103  0.8501  0.0165  

Clean1 0.9379  0.0051  0.9295  0.0069  0.9323  0.0071  0.9274  0.0085  0.9207  0.0148  0.9207  0.0086  0.9463  0.0136  0.9477  0.0094  

Semeion 0.9842  0.0010  0.9863  0.0019  0.9743  0.0022  0.9733  0.0018  0.9814  0.0039  0.9840  0.0034  0.9883  0.0038  0.9746  0.0058  

Glass 0.9736  0.0181  0.9798  0.0080  0.9923  0.0127  0.9767  0.0002  0.9302  0.0000  0.9535  0.0000  1.0000  0.0000  1.0000  0.0000  

Coil 0.9815  0.0025  0.9787  0.0018  0.9793  0.9793  0.9804  0.0023  0.9798  0.0054  0.9853  0.0040  0.9946  0.0028  0.9881  0.0037  

Wine 1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  

Segmentation 1.0000  0.0000  0.9982  0.0070  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  

Vote 0.9928  0.0084  0.9500  0.0044  1.0000  0.0000  0.9833  0.0000  0.9833  0.0000  0.9889  0.0080  1.0000  0.0000  0.9522  0.0058  

Rand first 5 4 6 5 7 6 14 7 

Sum rank 72 85 70 73 71 61 27 59 

Average rank 4 4.72 3.89 4.05 3.94 2.39 1.5 3.33 

Final rank 6 8 4 7 5 2 1 3 
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Table 8. Comparison between different variations of BGBO on the mean number of the selected features (M.NF) and the 

standard deviation of the mean number of the selected features (as S.D). 

Dataset 
BGBO_S1 BGBO_S2 BGBO_S3 BGBO_S4 BGBO_V1 BGBO_V2 BGBO_V3 BGBO_V4 

M.NF S.D M.NF S.D M.NF S.D M.NF S.D M.NF S.D M.NF S.D M.NF S.D M.NF S.D 

Breast_cancer 

_wisconsin 
15.0667  1.6386  12.1667  0.9499  10.8333  0.9855  10.2000  1.0635  10.8333  0.9855  3.7667  0.9353  4.1667  1.3153  3.9333  1.4126  

IonosphereEW 19.3667  3.7645  16.4667  3.0141  14.1667  2.7803  13.0000  2.5997  14.1667  2.7803  3.4000  0.8137  3.3667  0.6150  3.3333  0.8841  

SonarEW 44.0588  4.1754  35.7647  3.7170  32.0000  2.7157  30.3529  4.6360  32.0000  2.7157  10.1765  2.8990  10.2222  4.8780  11.2500  6.5676  

zoo 5.6500  0.5871  4.8500  0.6708  3.9000  0.6407  4.1000  0.5525  3.9000  0.6407  3.1053  0.3153  3.1053  0.3153  3.0526  0.2294  

Parliment1984 9.2000  1.4563  7.8667  1.0080  6.5667  1.2229  6.2000  1.6060  1.0000  0.0000  5.0000  1.1547  3.1538  0.5547  1.4138  1.5473  

Iris 2.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  3.0000  0.0000  1.0000  0.0000  2.0000  0.0000  

Wdbc 13.9333  1.9640  15.5667  1.9241  14.9667  2.6061  14.8667  2.8374  5.4000  1.2421  6.9167  1.7299  3.9333  0.6397  7.5294  2.5029  

PenglungEW 194.7667  35.5699  155.8333  14.2492  170.0000  7.3250  149.5333  3.6647  17.0000  8.1325  5.6000  2.6987  12.5667  3.6359  15.5000  7.6508  

Lymphography 11.5667  1.6750  10.6667  1.5830  9.9000  2.6826  6.5333  1.3060  5.1111  1.4530  4.9091  0.7007  3.2000  0.7746  3.1000  0.3051  

KrvskpEW 27.0667  3.0618  22.6333  2.9182  19.8333  2.8416  19.7333  3.2582  7.6333  3.6340  10.8095  2.4417  11.1200  3.0458  10.6333  3.0792  

SPECT 15.5333  1.5253  12.2667  1.9815  9.7333  1.9815  11.8667  1.8889  3.6333  1.5643  5.0714  2.2596  5.0000  0.7071  5.4444  1.2935  

Clean1 120.2000  14.3657  103.2667  8.7491  87.0667  6.7156  87.9000  7.0042  30.2333  12.8404  27.1000  12.5240  20.9000  10.4958  31.5667  15.9410  

Semeion 192.6667  18.0370  155.6000  10.8329  142.7000  7.1252  135.2000  6.8249  52.5000  12.5114  59.6000  21.3519  56.1667  19.2158  51.5000  21.0316  

Glass 3.4667  1.0417  3.0000  1.1447  2.4000  1.0034  1.5000  0.5724  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  

Coil 680.8000  115.9005  617.0333  46.2366  567.7000  25.2752  543.5667  17.8281  34.7333  14.5435  86.6000  88.7467  53.4667  23.3722  54.4000  21.1702  

Wine 6.8333  0.9499  4.2667  0.7397  3.6000  0.4983  3.8667  0.5074  3.0667  0.2537  3.2333  0.4302  2.0667  0.2537  3.0667  0.2537  

Segmentation 5.8333  0.7466  5.4667  1.0080  3.8667  0.4342  3.4333  0.5040  3.0000  0.0000  2.1667  0.3791  2.1000  0.5477  3.0667  0.2537  

Vote 6.6333  1.6078  8.1000  1.6049  6.4000  1.0372  4.6667  1.4700  2.0000  0.0000  2.5333  0.8996  2.0000  0.0000  1.6333  1.6501  

Rand first 5 4 6 5 7 6 14 7 

Sum rank 72 85 70 73 71 61 27 59 

Average rank 4 4.72 3.89 4.05 3.94 2.39 1.5 3.33 

Final rank 6 8 4 7 5 2 1 3 
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5.1. Comparison between the BGBO based approaches 

The results of the average classification accuracy are shown in Table 7. Among them, BGBO_V3 

achieved the best results, it managed to reach the highest precision in nine data sets, and in addition, it 

had the highest precision value among all methods in five data sets, so it was placed in the first place 

in the overall ranking. BGBO_V2 ranked second, it achieved the highest precision in six data sets, but 

it ranked better overall, so it ranked second. BGBO_V4 is in third place, and although it has six datasets 

that achieve the highest precision and additionally has the highest precision value of all methods in 

one dataset. It ranks relatively low in the overall ranking compared to BGBO_V2. Similarly, 

BGBO_S3 ranks fourth and BGBO_V1 ranks fifth. BGBO_S1, BGBO_S4, and BGBO_S2 rank sixth 

seventh, and eighth, respectively. In addition, their standard deviation, we can see that the standard 

deviation of BGBO_V3 in all nine data sets is 0, which is sufficient to prove that it is BGBO_V3 a 

robust method. 

In Table 8, the proposed BGBO method is compared in terms of the average number of selected 

features.BGBO_V3 has the smallest average number of features in 14 datasets, while BGBO_V1 and 

BGBO_V4 have the smallest values in 7 datasets. BGBO_V3 and BGBO-S3 had the smallest values 

in 6 data sets, while BGBO_S1, BGBO_S2, and BGBO-S4 had the smallest number of features in 5, 

4, and 5 data sets, respectively. As for the standard deviation values, BGBO_V3 proved to be a robust 

method that obtained small deviation values in the data set of 7. The superiority of BGBO_V3 was 

also confirmed by the average adaptation results shown in Table 6. 

5.2. Comparison with other metaheuristic-based approaches  

Table 9. Parameters of BGBO and comparison algorithms. 

10 Parameters Values 

BPSO 
1 2,c c  2, 2 

  0.1 

BWOA 
au  [2, 0] 

b  1 

BDA 
  0.99 

  0.01 

BBA 
min max,Q Q  0, 2 

 A Loudess ,   r Pulse rate  0.5, 0.5 

BGOA 
interval [0, 2.079] 

,l f  1.5, 0.5 

BGWO au  [2, 0] 

BHHO au  [2, 0] 

BGBO pr  0.5 

In this section, BGBO_V3, which has the best performance among the eight methods introduced 
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above, is considered as the best method among the methods proposed in this work. The proposed 

BGBO_V3 is compared with other existing state-of-the-art binary metaheuristics such as BPSO, 

BWOA, BDA, BBA, BGOA, BGWO, and BHHO. Table 9 shows the used parameters of all algorithms 

in the next experiments. Again, the performance is compared and analyzed by the average fitness value, 

the average classification accuracy, and the average number of selected features. 

Table 10 shows the experimental results of the average fitness values of BGBO_V3 and other 

metaheuristic-based methods. From Table 10, it can be seen that BGBO_V3 has the best results in 89% 

of the datasets (16 out of 18), which indicates that BGBO_V3 has the best performance. BDA and 

BBA achieved first place in two datasets, KrvskpEW and SonarEW, respectively, and BPSO, BWOA, 

BGOA, BGWO, and BHHO are not ranked first in any of the 18 datasets. This indicates that the 

performance of the proposed method is significant. In addition, it can be seen from Table 10 that 

BGBO_V3 performs significantly better than other methods in some datasets, such as Lymphography 

and IonosphereEW. In addition, comparing the standard deviations of the various methods, BGBO_V3 

is also more stable. In terms of the final average ranking, BGBO_V3 ranked first, followed by BHHO, 

BDA, BWOA, BGOA, BBA, BGWO, and BPSO. 

In Table 11, BGBO_V3 is compared with other methods based on the average classification 

accuracy. Among the 18 datasets, BGBO_V3 ranked first with 13 datasets compared to 1, 1, 4, 6, 2, 3, 

and 7 for BPSO, BWOA, BDA, BBA, BGOA, BGWO, and BHHO, respectively. The comparison with 

k-NN classifier also shows that BGBO_V3 has higher classification accuracy. In terms of the number 

of top-ranked methods, BGBO_V3 performed much better than the other methods. In addition, 

BGBO_V3 achieves an average classification accuracy of 100% on the Breast_cancer_wisconsin, Zoo, 

Parliment1984, Iris, Glass, Wine, Segmentation, and Vote datasets. Specifically, the classification 

accuracy of BGBO_V3 reaches 99% for both the high-dimensional datasets PenglungEW and Coil, 

indicating that the proposed method in this paper can better solve high-dimensional data. This indicates 

that the proposed method is important in practical applications. In addition, the standard deviation 

results show that BGBO_V3 is more stable than other methods on some data sets. The final ranking 

BGBO_V3 is also in the first place. It is followed by BHHO, BBA, BDA, BGOA, BGWO, BPSO, 

and BWOA. 

Inspecting the results of the number of selected features from Table 12, we observe that 

BGBO_V3 outperforms the other algorithms, followed by BPSO, BBA, BDA, BWOA, BHHO, 

BGWO, and BGOA, with very competitive results. For most of the datasets, the differences between 

the average numbers of features selected between the algorithms are very small. However, it is worth 

noting that for the PenglungEW dataset, the highest dimensional dataset with 325 features, BGBO_V3 

achieves the best classification accuracy of 99.78% with the smallest number of features (only 12.5667 

features on average). As well as for Coil, the highest dimensional dataset with 1024 features, 

BGBO_V3 achieves the best classification accuracy of 99.46% with the smallest number of features 

(only 53.4667 features on average). This shows the advantage of this method when dealing with high-

dimensional datasets. 



3834 

Mathematical Biosciences and Engineering      Volume 18, Issue 4, 3813-3854. 

Table 10. Comparison between BGBO_V3 and state-of-art methods based on the mean of fitness values (Mean) and the 

standard deviation of fitness values (as S.D). 

Dataset 
BGBO_V3 BPSO BWOA BDA BBA BGOA BGWO BHHO 

Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D 

Breast_cancer 
_wisconsin 

0.0017  0.0008  0.0324  0.0038  0.0225  0.0033  0.0106  0.0022  0.0131  0.0074  0.0025  0.0026  0.0290  0.0021  0.0047  0.0008  

IonosphereEW 0.0326  0.0114  0.0642  0.0080  0.0890  0.0086  0.0729  0.0183  0.0683  0.0114  0.0910  0.0083  0.1172  0.0087  0.0719  0.0061  

SonarEW 0.0543  0.0194  0.1547  0.0128  0.1206  0.0182  0.0582  0.0198  0.0523  0.0261  0.1182  0.0160  0.0571  0.0122  0.0801  0.0132  

zoo 0.0020  0.0002  0.1251  0.0073  0.0035  0.0010  0.0032  0.0002  0.0022  0.0003  0.0089  0.0122  0.0029  0.0004  0.0034  0.0005  

Parliment1984 0.0020  0.0003  0.0634  0.0103  0.0182  0.0053  0.0167  0.0027  0.0229  0.0038  0.0269  0.0028  0.0493  0.0005  0.0426  0.0047  

Iris 0.0025  0.0000  0.0750  0.0000  0.0355  0.0000  0.0050  0.0000  0.0355  0.0000  0.0358  0.0013  0.0355  0.0000  0.0380  0.0000  

Wdbc 0.0013  0.0002  0.0724  0.0096  0.0048  0.0027  0.0128  0.0031  0.0051  0.0043  0.0213  0.0006  0.0309  0.0068  0.0038  0.0008  

PenglungEW 0.0004  0.0001  0.1710  0.0081  0.1242  0.0383  0.0700  0.0011  0.0675  0.0177  0.1528  0.0256  0.2539  0.0271  0.0034  0.0004  

Lymphography 0.0279  0.0128  0.1143  0.0079  0.1292  0.0371  0.1044  0.0197  0.1361  0.0170  0.0730  0.0146  0.0430  0.0112  0.1371  0.0011  

KrvskpEW 0.0423  0.0089  0.1322  0.0085  0.0570  0.0102  0.0407  0.0074  0.0787  0.0053  0.0519  0.0048  0.0650  0.0080  0.0455  0.0043  

SPECT 0.1606  0.0132  0.1836  0.0274  0.2251  0.0243  0.1943  0.0171  0.2172  0.0258  0.1811  0.0142  0.1859  0.0132  0.1724  0.0114  

Clean1 0.0544  0.0135  0.1954  0.0071  0.0784  0.0081  0.0633  0.0157  0.1479  0.0113  0.0711  0.0057  0.0653  0.0077  0.0647  0.0067  

Semeion 0.0094  0.0023  0.1384  0.0035  0.0235  0.0053  0.0169  0.0033  0.0957  0.0052  0.0152  0.0018  0.0160  0.0024  0.0169  0.0014  

Glass 0.0010  0.0000  0.0788  0.0000  0.0176  0.0104  0.0246  0.0010  0.0626  0.0000  0.0061  0.0099  0.0659  0.0106  0.0022  0.0004  

Coil 0.0059  0.0027  0.1548  0.0024  0.0163  0.0033  0.0231  0.0024  0.1358  0.0043  0.0206  0.0019  0.0485  0.0019  0.0183  0.0027  

Wine 0.0015  0.0000  0.0687  0.0035  0.0026  0.0008  0.0056  0.0061  0.0034  0.0006  0.0039  0.0005  0.0043  0.0005  0.0032  0.0006  

Segmentation 0.0016  0.0004  0.0864  0.0020  0.0027  0.0005  0.0812  0.0115  0.0030  0.0005  0.0031  0.0005  0.0042  0.0005  0.0032  0.0007  

Vote 0.0013  0.0000  0.0590  0.0124  0.0109  0.0079  0.0022  0.0009  0.0576  0.0119  0.0220  0.0040  0.0034  0.0030  0.0176  0.0048  

Rand first 16 0 0 1 1 0 0 0 

Sum rank 20 127 83 71 86 85 94 70 

Average rank 1.11 7.06 4.61 3.94 4.78 4.72 5.22 3.89 

Final rank 1 8 4 3 6 5 7 2 
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Table 11. Comparison between BGBO_V3 and state-of-art methods based on the mean of accuracy values (M.Acc) and 

the standard deviation of fitness values (as S.D). 

Dataset 
BGBO_V3 BPSO BWOA BDA BBA BGOA BGWO BHHO k-NN 

M.Acc S.D M.Acc S.D M.Acc S.D M.Acc S.D M.Acc S.D M.Acc S.D M.Acc S.D M.Acc S.D Acc 

Breast_cancer 

_wisconsin 
1.0000  0.0000  0.9737  0.0124  0.9820  0.0035  0.9918  0.0022  1.0000  0.0000  0.9901  0.0030  0.9743  0.0022  1.0000  0.0000  0.9912 

IonosphereEW 0.9681  0.0117  0.9391  0.0083  0.9136  0.0086  0.9291  0.0182  0.9314  0.0060  0.9119  0.0085  0.8862  0.0088  0.9314  0.0060  0.8571 

SonarEW 0.9476  0.0202  0.9333  0.0202  0.8833  0.0188  0.9452  0.0199  0.9508  0.0265  0.8865  0.0162  0.9460  0.0124  0.9235  0.0138  0.8571 

zoo 1.0000  0.0000  0.9400  0.0423  0.9481  0.0761  1.0000  0.0000  1.0000  0.0000  0.9967  0.0127  1.0000  0.0000  1.0000  0.0000  0.9500 

Parliment1984 1.0000  0.0000  0.9540  0.0000  0.9773  0.0607  0.9877  0.0029  0.9793  0.0047  0.9778  0.0029  0.9540  0.0000  0.9621  0.0056  0.9770 

Iris 1.0000  0.0000  1.0000  0.0000  0.8389  0.0619  1.0000  0.0000  0.9667  0.0000  0.9667  0.0000  0.9667  0.0000  0.9667  0.0000  1.0000 

Wdbc 1.0000  0.0000  0.9819  0.0128  0.9619  0.0121  0.9899  0.0032  0.9977  0.0046  0.9825  0.0000  0.9740  0.0071  1.0000  0.0000  0.9825 

PenglungEW 0.9978  0.0122  0.9356  0.0122  0.9942  0.0088  0.9331  0.0011  0.9349  0.0178  0.8505  0.0005  0.8305  0.0025  1.0000  0.0000  0.8667 

Lymphography 0.9736  0.0137  0.9367  0.0237  0.7851  0.0411  0.8983  0.0202  0.8667  0.0175  0.9310  0.0150  0.9622  0.0115  0.8667  0.0000  0.9000 

KrvskpEW 0.9604  0.0088  0.9425  0.0104  0.7567  0.1432  0.9639  0.0070  0.9566  0.0118  0.9541  0.0046  0.9393  0.0082  0.9601  0.0044  0.9296 

SPECT 0.8393  0.0135  0.8377  0.0320  0.9145  0.0787  0.8076  0.0294  0.7843  0.0261  0.8226  0.0145  0.8170  0.0132  0.8302  0.0119  0.6604 

Clean1 0.9463  0.0136  0.9042  0.0150  0.9382  0.1012  0.9405  0.0158  0.9512  0.0098  0.9330  0.0059  0.9404  0.0080  0.9400  0.0071  0.8842 

Semeion 0.9925  0.0023  0.9732  0.0079  0.9737  0.0913  0.9875  0.0033  0.9832  0.0052  0.9896  0.0019  0.9903  0.0025  0.9885  0.0016  0.9781 

Glass 1.0000  0.0000  0.9302  0.0000  0.9716  0.0062  0.9767  0.0000  0.9535  0.0000  0.9969  0.0081  0.9357  0.0100  1.0000  0.0000  0.9250 

Coil 0.9946  0.0028  0.9740  0.0034  0.9736  0.0203  0.9813  0.0023  0.9858  0.0041  0.9841  0.0020  0.9574  0.0020  0.9861  0.0030  0.9757 

Wine 1.0000  0.0000  0.9898  0.0154  0.9764  0.0717  0.9986  0.0062  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000 

Segmentation 1.0000  0.0000  0.9546  0.0154  0.9444  0.1126  0.9681  0.0316  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  1.0000 

Vote 1.0000  0.0000  0.9667  0.0000  0.9925  0.0085  1.0000  0.0000  0.9456  0.0123  0.9822  0.0042  0.9994  0.0030  0.9850  0.0051  0.9333 

Rand first 13 1 1 4 6 2 3 7 3 

Sum rank 23 112 123 73 67 87 92 58 113 

Average rank 1.27 6.22 6.83 4.05 3.72 4.83 5.11 3.22 6.27 

Final rank 1 7 9 4 3 5 6 2 8 
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Table 12. Comparison between BGBO_V3 and state-of-art methods based on the mean number of the selected features 

(M.NF) and the standard deviation of the mean number of the selected features (asS.D). 

Dataset 
BGBO_V3 BPSO BWOA BDA BBA BGOA BGWO BHHO 

M.NF S.D M.NF S.D M.NF S.D M.NF S.D M.NF S.D M.NF S.D M.NF S.D M.NF S.D 

Breast_cancer 

_wisconsin 
4.1667 1.3153 6.0000 0.0000 14.1500 2.8149 7.4000 1.5669 8.7667 2.0457 16.9000 2.6307 10.6667 1.8998 14.0000 2.5495 

IonosphereEW 3.3667 1.0554 12.9667 3.0454 11.5500 2.8186 9.0333 2.6061 7.8000 2.0240 12.9000 2.2796 15.4333 2.0957 13.5000 3.2059 

SonarEW 10.2222 5.8765 21.6000 2.7990 30.7500 4.7780 24.0667 3.5129 21.3667 4.5975 34.8333 4.9416 22.0000 3.8952 26.0000 5.0839 

zoo 3.1053 0.3153 4.4333 1.4065 25.3000 7.2410 5.1000 0.3078 3.5000 0.5086 9.0000 1.2594 4.6667 0.6609 5.4000 0.8433 

Parliment1984 3.1538 0.5547 1.6667 0.5467 6.8182 1.8878 7.3333 1.1244 3.8500 1.6311 7.8000 1.7301 6.0333 0.8087 8.0000 2.1602 

Iris 1.0000 0.0000 1.0000 0.0000 8.7000 2.7549 2.0000 0.0000 1.0000 0.0000 1.1333 0.5074 1.0000 0.0000 2.0000 0.0000 

Wdbc 3.9333 0.6397 5.9667 1.3257 1.3571 0.7450 8.5000 1.7622 8.3000 1.8597 11.7667 1.6955 15.3000 1.9502 11.3333 2.3452 

PenglungEW 12.5667 5.5207 136.3333 5.4414 15.6667 5.6347 123.0000 8.8318 99.4667 7.3237 156.9667 10.3140 157.9333 19.0985 110.4286 14.1287 

Lymphography 3.2000 1.5102 4.2000 0.8469 112.0500 56.4880 6.7500 1.5517 7.4000 1.6103 8.5000 2.3007 10.0000 1.6189 9.2000 1.9322 

KrvskpEW 11.1200 3.0458 11.0333 1.5196 6.8000 3.7947 18.0500 3.9799 5.8000 0.6644 23.1667 4.4728 17.4333 2.7753 21.7000 3.6833 

SPECT 5.0000 0.6633 5.1333 1.4559 23.6842 7.3866 8.2500 2.4895 7.9000 2.2644 12.1667 1.7237 10.3667 2.0759 9.5000 2.0736 

Clean1 20.9000 10.4958 71.4333 5.5936 8.0588 4.6834 73.4000 6.8626 63.3333 5.2413 80.4667 5.2636 104.9000 5.9094 88.7000 26.9528 

Semeion 56.1667 15.9300 105.6333 4.4216 86.3333 39.1504 118.3333 9.5171 74.1333 5.2176 128.9667 7.1943 168.0667 6.0168 147.3333 26.8229 

Glass 1.0000 0.0000 1.0000 0.0000 136.6500 38.8875 1.5667 0.9714 1.0000 0.0000 2.9667 2.5527 2.1667 1.1167 2.2000 0.4216 

Coil 53.4667 23.3722 466.1667 8.4897 438.1000 194.4766 467.9000 21.7895 429.6667 14.6836 502.3667 17.5528 650.0333 17.0162 469.6667 70.6417 

Wine 2.0667 0.0000 2.6667 0.4795 5.1000 1.6190 5.4500 1.0501 4.4000 0.8208 5.4000 0.6992 5.6500 0.5871 4.1250 0.8345 

Segmentation 2.1000 0.5477 2.3667 0.5561 5.4000 2.0633 2.5500 0.6048 3.8500 0.5871 4.4000 0.6992 5.5000 0.6883 4.1000 0.8756 

Vote 2.0000 0.0000 1.9000 0.6618 5.5500 1.4318 3.5500 1.5035 5.9667 2.0083 7.1000 1.2959 4.6333 0.8503 4.3500 0.6708 

Rand first 13 4 2 0 3 0 1 0 

Sum rank 25 48 94 83 52 120 112 104 

Average rank 1.39 2.67 5.22 4.61 2.88 6.67 6.22 5.78 

Final rank 1 2 5 4 3 8 7 6 
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In terms of the fitness function of feature selection, the fitness function is optimal only when the 

accuracy and the number of selected features are simultaneously good. From the analysis of the 

experimental results in Tables 10–12, the fitness value of the BGBO_V3 algorithm proposed in this 

paper is superior to other algorithms in most data sets. Besides, the BGBO_V3 algorithm obtains a 

better subset of features while maintaining high accuracy. Although the other algorithms have higher 

accuracy, the optimal feature subsets obtained by them are not satisfactory. Figures 2–10 shows the 

average convergence curves of various algorithms on different data sets. It is clear from the 

convergence plots that BGBO_V3 outperforms the other methods in terms of the average fitness value 

from the beginning of the iteration. It is worth mentioning that BGBO_V3 has the fastest convergence 

on most of the datasets, obtaining better results in balancing the exploration and exploitation 

capabilities. 

 

Figure 2. Convergence curves for the Breast_cancer_wisconsin and IonosphereEW dataset. 

 

Figure 3. Convergence curves for the SonarEW and Zoo dataset. 
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Figure 4. Convergence curves for the Parliment1984 and Iris dataset. 

 

Figure 5. Convergence curves for the Wdbc and PenglungEW dataset. 

 

Figure 6. Convergence curves for the Lymphography and KrvskpEW dataset. 

20 40 60 80 100

Iteration

10
-2

10
-1

A
v
e
ra

g
e
 F

it
n

e
s
s
 v

a
lu

e
 

Parliment1984

BGBOV3

BGOA

BBA

BDA

BHHO

BPSO

BWOA

BGWO

20 40 60 80 100

Iteration

10
-2

10
-1

A
v
e
ra

g
e
 F

it
n

e
s
s
 v

a
lu

e
 

Iris

BGBOV3

BGOA

BBA

BDA

BHHO

BPSO

BWOA

BGWO

20 40 60 80 100

Iteration

10
-2

10
-1

A
v
e
ra

g
e
 F

it
n

e
s
s
 v

a
lu

e
 

Wdbc

BGBOV3

BGOA

BBA

BDA

BHHO

BPSO

BWOA

BGWO

20 40 60 80 100

Iteration

10
-3

10
-2

10
-1

A
v
e
ra

g
e
 F

it
n

e
s
s
 v

a
lu

e
 

PenglungEW

BGBOV3

BGOA

BBA

BDA

BHHO

BPSO

BWOA

BGWO

20 40 60 80 100

Iteration

10
-2

10
-1

A
v
e
ra

g
e
 F

it
n

e
s
s
 v

a
lu

e
 

Lymphography

BGBOV3

BGOA

BBA

BDA

BHHO

BPSO

BWOA

BGWO

20 40 60 80 100

Iteration

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

A
v
e
ra

g
e
 F

it
n

e
s
s
 v

a
lu

e
 

KrvskpEW

BGBOV3

BGOA

BBA

BDA

BHHO

BPSO

BWOA

BGWO



3839 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 3813-3854. 

 

Figure 7. Convergence curves for the SPECT and Clean1 dataset. 

 

Figure 8. Convergence curves for the semeion and Glass dataset. 

 

Figure 9. Convergence curves for the Coil and Wine dataset. 
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Figure 10. Convergence curves for the segmentation and Vote dataset. 

Table 13 The p-values of Wilcoxon signed-rank test for the fitness value result of the 

BGBO_V3 vs. other algorithms (p   0.05 are underlined). 

Dataset BPSO BWOA BDA BBA BGOA BGWO BHHO 

Breast_cancer 

_wisconsin 
2.46E-11 2.42E-09 3.82E-11 5.60E-11 2.30E-11 2.40E-11 4.20E-09 

IonosphereEW 2.75E-11 2.70E-09 1.16E-10 2.68E-11 2.74E-11 2.73E-11 2.67E-10 

SonarEW 2.94E-11 4.77E-09 0.023159 0.899934 2.96E-11 0.023094 4.71E-10 

zoo 2.83E-12 1.13E-11 4.71E-11 0.002544 3.32E-12 6.81E-11 5.83E-11 

Parliment1984 4.86E-08 1.57E-05 1.46E-07 3.40E-07 1.58E-07 6.99E-08 1.57E-09 

Iris 1.38E-09 5.58E-06 1.61E-05 1.38E-09 2.60E-08 1.38E-09 4.57E-08 

Wdbc 1.50E-11 3.20E-10 1.10E-09 1.40E-11 1.25E-11 1.14E-09 2.12E-09 

PenglungEW 2.88E-11 3.72E-09 2.92E-09 3.58E-11 2.95E-11 2.94E-11 1.52E-07 

Lymphography 1.77E-11 1.49E-11 1.99E-09 2.55E-11 2.70E-11 2.53E-11 1.48E-11 

KrvskpEW 2.81E-11 5.18E-10 0.013447 2.23E-12 1.24E-06 3.12E-11 0.582786 

SPECT 1.73E-04 3.81E-08 7.27E-08 1.99E-10 7.24E-09 5.76E-08 3.36E-06 

Clean 3.00E-11 2.47E-05 0.025874 3.00E-11 4.66E-08 5.86E-04 1.09E-05 

Semeion 3.01E-11 1.05E-07 0.01122 3.00E-11 0.08234 0.006661 0.023141 

Glass 1.69E-14 3.79E-11 2.49E-13 1.69E-14 5.31E-06 5.79E-13 6.29E-10 

Coil 3.00E-11 4.86E-09 3.02E-11 3.02E-11 3.00E-11 3.02E-11 7.34E-06 

Wine 7.29E-13 1.31E-07 5.63E-11 3.10E-11 7.80E-09 4.39E-11 5.34E-08 

Segmentation 5.15E-13 2.86E-09 3.06E-11 3.76E-10 2.85E-08 5.96E-11 1.81E-08 

Vote 5.59E-13 1.86E-11 5.59E-07 1.14E-12 1.00E-12 7.43E-13 1.37E-11 

A nonparametric Wilcoxon rank-sum test was performed at the 5% significance level to verify 

whether there was a statistical difference between the results of the fitness values of BGBO_V3 and 

the respective comparison methods. Table 13 shows the p-values of BGBO_V3 concerning each 

comparison method. In terms of fitness values, we observed that BGBO_V3 exhibited statistically 

significant classification accuracy in all datasets compared to BPSO, BWOA, BDA, and BGWO. 

Significant differences (p-values less than 0.05) exist for all datasets. Comparing BGBO_V3 with BBA, 
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BGOA, and BHHO, we can note that BGBO_V3 has p-values greater than 0.05 in the SonarEW, 

Semeion, and KrvskpEW datasets, respectively. 

5.3. Comparison on high-dimensional datasets 

From the previous subsection, we know that BGBO_V3 achieves excellent results on high-

dimensional datasets (PenglungEW and Coil). Therefore, to further test the performance of the 

algorithm proposed in this paper, this section conducts experiments with 10 high-dimensional datasets. 

These datasets were downloaded from the UCI database and the database of Arizona State University 

(ASU) [91]. The information (number of instances, features, and classes) of the high-dimensional 

datasets is shown in Table 14. Tables 15–17 show the experimental results of the average fitness value, 

average classification accuracy and, the average number of selected features obtained by various 

methods on the high-dimensional datasets. 

Table 14. List of used high-dimensional datasets.  

No. Datasets Instances Number of features (d) Number of classes (k) 

1. arcene 200 10,000 2 

2. ORL 400 1024 40 

3. orlraws10P 100 10,304 10 

4. PCMAC 1943 3289 2 

5. pixraw10P 100 10,000 10 

6. warpPIE10P 210 2420 10 

7. RELATHE 1427 4322 2 

8. Yale 165 1024 15 

9. warpAR10P 130 2400 10 

10. Leukemia 72 7129 2 

We first inspect the fitness function averages of all the compared algorithms on the high-

dimensional datasets. The results are shown in Table 15. From Table 15, we can notice that BGBO_V3 

proposed in this paper achieves the best results in 80% of the datasets (8 out of 10), among the other 

methods, only BWOA and BBA achieve the best results in ORL and Yale, respectively. In addition, 

looking at the standard deviation again, we can see that BGBO_V3 achieves 0 for all four datasets (i.e., 

arcene, PCMAC, RELATHE, and Leukemia), indicating that the method has excellent stability on 

high-dimensional datasets. In the final comparative ranking, BGBO_V3 is first, followed by BDA, 

BGWO, BBA, BPSO, BHHO, BWOA, and BGOA in order. 

Table 16 shows the experimental results of the average classification accuracy of all methods on 

high-dimensional datasets. From the comparison of the average classification accuracy, BGBO_V3 

ranks first in the average classification accuracy on 8 out of 10 high-dimensional datasets, accounting 

for 80% of all datasets. Other methods ranked first in the number of datasets far less than BGBO_V3. 

In particular, the average classification accuracy of BGBO_V3 reached 100% on the three datasets of 

arcene, RELATHE, and Leukemia. In addition, the standard deviation, it can be seen that BGBO_V3 

achieves 0 on all four datasets (i.e., arcene, PCMAC, RELATHE, and Leukemia), which indicates from 

both the average fitness value and the average accuracy that BGBO_V3 has excellent performance as 

well as good stability on high-dimensional datasets. In the final ranking of the average classification 
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accuracy comparison, BGBO_V3 is still the first, while the KNN machine learning method is ranked 

last among all methods. The remaining rankings are BGWO, BDA, BHHO, BBA, BPSO, BWOA, and 

BGOA in that order. 

Finally, Table 17 shows the experimental results of all methods for the average number of selected 

features. As can be seen from the table, BGBO_V3 can obtain the smallest number of features on all 

data sets. Especially from the numerical point of view, the feature values obtained by BGBO_V3 are 

far smaller than those obtained by the other methods, even with a difference of hundreds of times. This 

indicates that BGBO_V3 can find a smaller subset of features compared to other methods. Similarly, 

the standard deviation of BGBO_V3 is within the acceptable range. In terms of the final ranking, 

BGBO_V3 ranks first, followed by BHHO, BDA, BBA, BPSO, BWOA, BGOA, and BGWO. 

Figures 11–15 show the average convergence curves of the various algorithms on the high-dimensional 

dataset. From the convergence plots, it is clear that BGBO_V3 achieves a good convergence rate from 

the beginning of the iteration to about the 50th generation, and the average fitness value is better than 

the other methods. The convergence curve of BGBO_V3 can be clearly distinguished from 50 to 100 

generations, which shows the advantage of the method relative to other methods. This is due to the 

excellent mechanism of the GBO algorithm itself, which enables us to balance the process of 

exploration and exploitation in the algorithm. 

5.4. Comparisons with metaheuristics in the literature  

In this section, the average classification accuracy of BGBO_V3 is compared with other methods 

in the literature. These experimental results are also obtained in the same experimental setting with a 

good reference effect. Since the selected datasets are only partially the same, 10 datasets are selected 

for comparison and analysis in this work, which contains some important low-dimensional, high-

dimensional datasets, respectively. Table 18 shows the experimental data of the average classification 

accuracy of BGBO_V3 with various methods in the literature. 

 

Figure 11. Convergence curves for the arcene and ORL dataset. 
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Figure 12. Convergence curves for the orlraws10P and PCMAC dataset. 

 

Figure 13. Convergence curves for the pixraw10P and warpPIE10P dataset. 

 

Figure 14. Convergence curves for the RELATHE and Yale dataset. 
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Table 15. Comparison between different variations of BGBO on the mean of fitness values (as Mean) and the standard 

deviation of fitness values (as S.D). 

Dataset 
BGBO_V3 BPSO BWOA BDA BBA BGOA BGWO BHHO 

Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D 

arcene 0.0001  0.0000  0.3405  0.2431  0.4996  0.4949  0.0045  0.0003  0.4557  0.1617  0.4999  0.0000  0.5265  0.0728  0.0034  0.0003  

ORL 0.8134  0.0087  0.8418  0.0072  0.8799  0.0019  0.8983  0.0093  0.9081  0.0207  0.9023  0.0021  0.8155  0.0073  0.8838  0.0028  

orlraws10P 0.0441  0.1141  0.7473  0.0000  0.9949  0.0000  0.7194  0.0298  0.7449  0.0472  0.9949  0.0000  0.6379  0.0622  0.9916  0.0001  

PCMAC 0.0025  0.0000  0.0123  0.0000  0.0074  0.0001  0.0057  0.0003  0.0118  0.0000  0.0073  0.0000  0.0074  0.0000  0.0042  0.0002  

pixraw10P 0.1461  0.0383  0.6348  0.0000  0.4973  0.0091  0.4278  0.0004  0.4545  0.0000  0.4947  0.0143  0.3956  0.0185  0.4937  0.0158  

warpPIE10P 0.5047  0.0531  0.8230  0.0059  0.8481  0.0013  0.7580  0.0126  0.8710  0.0027  0.8366  0.0042  0.6779  0.0142  0.7579  0.0079  

RELATHE 0.0035  0.0000  0.0047  0.0000  0.0049  0.0001  0.0103  0.0003  0.0078  0.0000  0.0084  0.0000  0.0049  0.0001  0.0121  0.0001  

Yale 0.2731  0.0877  0.3858  0.0239  0.7983  0.0131  0.4054  0.0446  0.2507  0.0325  0.5573  0.0132  0.4999  0.0069  0.6664  0.0173  

warpAR10P 0.1210  0.0557  0.2815  0.0231  0.4967  0.0159  0.4063  0.0361  0.2031  0.0605  0.4486  0.0170  0.5068  0.0168  0.3502  0.0224  

Leukemia 0.0000  0.0000  0.1463  0.0000  0.0756  0.0000  0.0036  0.0004  0.0044  0.0000  0.1915  0.0341  0.0049  0.0001  0.1419  0.0129  

Rand first 9 0 1 0 1 0 0 0 

Sum rank 11 48 57 41 47 62 42 51 

Average rank 1.1 4.8 5.7 4.1 4.7 6.2 4.2 5.1 

Final rank 1 5 7 2 4 8 3 6 
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Table 16. Comparison between BGBO_V3 and state-of-art methods based on the mean of accuracy values (M.Acc) and 

the standard deviation of fitness values (as S.D). 

Dataset 
BGBO_V3 BPSO BWOA BDA BBA BGOA BGWO BHHO k-NN 

M.Acc S.D M.Acc S.D M.Acc S.D M.Acc S.D M.Acc S.D M.Acc S.D M.Acc S.D M.Acc S.D S.D 

arcene 1.0000  0.0000  0.6611  0.2456  0.5000  0.5000  1.0000  0.0000  0.5444  0.1634  0.5000  0.0000  0.4732  0.0735  1.0000  0.0000  0 

ORL 0.1799  0.0085  0.1546  0.0072  0.1176  0.0016  0.0974  0.0094  0.0873  0.0209  0.0949  0.0022  0.1828  0.0074  0.1126  0.0024  0.0968 

orlraws10P 0.9556  0.1153  0.2500  0.0000  0.2000  0.1010  0.2778  0.0302  0.2522  0.0477  0.2100  0.0100  0.3611  0.0632  0.3310  0.0130  0.2000 

PCMAC 0.9974  0.0000  0.9923  0.0000  0.9974  0.0000  0.9974  0.0000  0.9923  0.0000  0.9974  0.0000  0.9974  0.0000  0.9974  0.0000  0.9974 

pixraw10P 0.8524  0.0387  0.3636  0.0000  0.5035  0.0091  0.5714  0.0000  0.5455  0.0000  0.5064  0.0146  0.6066  0.0188  0.5042  0.0161  0.5455 

warpPIE10P 0.4904  0.0537  0.1736  0.0060  0.1498  0.0013  0.2388  0.0129  0.1245  0.0028  0.1611  0.0043  0.3211  0.0146  0.2381  0.0079  0.2353 

RELATHE 1.0000  0.0000  1.0000  0.0000  1.0000  0.0000  0.9930  0.0000  0.9965  0.0000  0.9965  0.0000  1.0000  0.0000  0.9895  0.0000  0.9930 

Yale 0.7244  0.0886  0.6152  0.0242  0.2000  0.0133  0.5951  0.0450  0.7508  0.0329  0.4434  0.0133  0.5013  0.0070  0.3305  0.0176  0.2143 

warpAR10P 0.8779  0.0562  0.7205  0.0235  0.5042  0.0162  0.5941  0.0365  0.7991  0.0611  0.5529  0.0172  0.4944  0.0170  0.6499  0.0230  0.3636 

Leukemia 1.0000  0.0000  0.8571  0.0000  0.9286  0.0000  1.0000  0.0000  1.0000  0.0000  0.8119  0.0350  1.0000  0.0000  0.8595  0.0130  0.9286 

Rand first 9 1 3 2 1 1 3 2 1 

Sum rank 11 52 54 35 49 61 33 48 63 

Average rank 1.1 5.2 5.4 3.5 4.9 6.1 3.3 4.8 6.3 

Final rank 1 6 7 3 5 8 2 4 9 
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Table 17. Comparison between BGBO_V3 and state-of-art methods based on the mean number of the selected features 

(M.NF) and the standard deviation of the mean number of the selected features (as S.D). 

Dataset 
BGBO_V3 BPSO BWOA BDA BBA BGOA BGWO BHHO 

Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D 

arcene 75.5000  40.7361  4965.8333  47.3964  4583.0667  70.8706  4516.3333  275.6651  4700.6333  67.5862  4924.8000  46.1195  4968.5333  50.3969  3393.0667  348.4594  

ORL 163.6667  49.8879  506.2667  16.1222  661.6000  19.7809  486.8667  21.2225  469.2667  17.5655  636.3667  45.4870  656.7333  17.7627  537.9231  106.9778  

orlraws10P 72.4333  68.2403  4959.2333  19.0692  5073.4000  30.8965  4529.3000  505.7059  4747.5333  53.6642  5074.5667  29.0833  5585.3333  600.5217  1691.8667  107.3013  

PCMAC 1.2000  0.6325  1528.9375  8.5827  1603.9000  18.3216  1041.1000  94.7599  1362.4000  13.6154  1552.5185  8.0640  1603.9333  14.4149  556.5000  55.2816  

pixraw10P 61.2000  72.6135  4793.8000  18.8833  5817.2333  725.0792  3471.0000  398.1363  4535.0667  25.3540  6013.4333  420.9199  6148.7000  535.0142  2825.2000  230.9463  

warpPIE10P 31.6667  21.9440  1183.5333  22.6529  1536.4333  92.6490  1059.2000  93.3722  1027.9000  22.1474  1472.0000  83.6120  1404.7000  150.2690  880.1333  108.0991  

RELATHE 2.5000  1.7171  2040.4333  17.4488  2129.6667  25.7177  1449.7667  125.4453  1852.4000  16.9779  2112.2000  17.4877  2128.1000  31.9378  721.9333  55.4520  

Yale 24.1000  20.0213  502.1667  12.3095  637.1333  45.6876  465.9000  22.4136  410.7667  11.9241  646.6667  16.8448  632.0667  33.1859  375.8000  104.6683  

warpAR10P 31.0667  29.0896  1152.1333  29.6377  1417.1667  156.5142  1064.7000  87.4505  1016.9000  26.3705  1423.4333  111.6959  1501.8333  94.6464  857.8660  149.6586  

Leukemia 18.0333  22.2842  3452.6333  24.9171  3498.6333  26.9885  2560.7667  277.5908  3170.1000  23.1701  3787.0667  418.3822  3524.7667  40.7784  1997.3000  136.6206  

Rand first 10 0 0 0 0 0 0 0 

Sum rank 10 50 66 32 36 67 72 22 

Average rank 1 5 6.6 3.2 3.6 6.7 7.2 2.2 

Final rank 1 5 6 3 4 7 8 2 
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Figure 15. Convergence curves for the warpAR10P and Leukemia dataset. 

Table 18. Classification accuracies of the BGBO_V3 versus other metaheuristics from the 

specialized literature. 

Dataset BGBO_V3 
BSSA_S3_CP 

[93] 

WOA-

CM 

[94] 

BGOA-M 

[95] 

GA 

[93] 

RBDA 

[92] 

BGSA 

[92] 

bGWO1 

[96] 

Wine 1.000 0.993 0.959 0.989 0.937 0.991 0.951 0.930 

IonosphereEW 0.968 0.918 0.919 0.946 0.876 0.970 0.881 0.807 

Lymphography 0.973 0.890 0.807 0.912 0.758 0.930 0.781 0.744 

Zoo 1.000 1.000 0.980 0.958 0.946 1.000 0.939 0.879 

SonarEW 0.948 0.937 0.852 0.915 0.754 0.964 0.888 0.731 

Vote 1.000 0.951 0.939 0.963 0.808 0.996 0.931 0.912 

KrvskpEW 0.960 0.964 0.866 0.974 0.940 0.975 0.908 0.944 

PenglungEW 0.998 0.877 0.972 0.934 0.672 0.959 0.919 0.600 

Leukemia 1.000 0.989 0.982 - 0.705 - - - 

Clean1 0.946 0.879 - - 0.862 - -  

Rank first 7 1 0 0 0 4 0 0 

Sum rank 15 33 42 28 61 14 48 60 

Average rank 1.50 3.30 4.67 3.50 6.10 1.75 6.00 7.5 

Final rank 1 3 5 4 7 2 6 8 

From Table 18, we can see that the proposed method in this paper ranks first in seven datasets, 

including low-dimensional datasets and high-dimensional datasets, respectively, and we can see that 

BGBO_V3 can achieve excellent results not only in low-dimensional but also in high-dimensional 

with good performance. Secondly, RBDA has four datasets ranked first, and BSSA_S3_CP has one 

dataset ranked first. The final ranking of BGBO_V3 is first, and RBDA, BSSA_S3_CP, BGOA-M, 

WOA-CM, BGSA, GA, and bGWO1 are ranked in order. Thus, the BGBO_V3 proposed in this paper 

achieves better performance than other methods in solving the FS problem. 
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In this paper, eight variants of BGBO are proposed using transfer functions. This corresponds to 

s-shaped and v-shaped eight transfer functions, respectively, for mapping continuous search spatial to 

discrete search spatial, and in applying to the feature selection problem. The experimental results show 

that very promising results are achieved compared to the currently popular wrapper-based FS methods. 

The primary reason is that the algorithm is very reliable and efficient due to the excellent performance 

of GBO itself, making the algorithm a better choice for the wrapper-based FS method. Moreover, on 

challenging high-dimensional datasets, the results show clearly that the proposed BGBO has better 

results in solving high-dimensional problems compared to other methods. Thus, the algorithm has 

excellent performance and outstanding stability in dealing with challenging problems such as high-

dimensional datasets, which shows the potential of the algorithm in solving high-dimensional problems. 

Among the eight variants proposed in this paper, BGBO_V3 has the best performance. The main 

reason for the analysis is that different transfer functions have different slopes of curves and different 

probabilities of changing the position of population individuals. A reasonable probability can balance 

the exploration and exploitation ability of population individuals, and it is not idealized that the larger 

the probability of changing the location of the population individuals is better. In addition, an excellent 

exploration mechanism of the algorithm itself is essential. In the BGBO algorithm based on Newton's 

method, the GBO algorithm has good two operators (GSR) and (LEO), both of which have their own 

merit-seeking mechanism, and its perfect mechanism and simple variable parameters balance the 

exploration and exploitation of the algorithm well, making the individuals better able to make the 

algorithm proceed in the optimal direction. The transfer function also deserves credit for its own simple 

and easy-to-understand mechanism. So the combination of the algorithm itself and the transfer function 

has a clear advantage overall. 

6. Conclusions and future works  

In this paper, a binary version of the GBO algorithm is proposed to solve the FS problem, and 

eight variants of the binary gradient optimizer are proposed using transfer functions (i.e., s-shaped and 

v-shaped). The transfer functions are used to map the continuous search space to the discrete search 

space and are used in the proposed algorithm. To benchmark the proposed algorithm, 18 standard UCI 

benchmark datasets are used. The experimental results show that BGBO_V3 has the best performance 

among the proposed algorithms. The experimental results compare BGBO_V3 with the most popular 

and better-performing methods in the literature. By analyzing the experimental results, it is 

demonstrated that the BGBO_V3 algorithm has a high performance among the existing methods for 

solving FS problems, especially in high-dimensional data sets. Besides, the proposed algorithm has a 

high convergence speed, which enables the algorithm to find the exact minimum feature set faster. 

Combining the above experimental results, process discussion and conclusion analysis, it can be 

concluded that the proposed binary version of the GBO algorithm has advantages in solving FS, and 

it is worth considering when facing high-dimensional data sets. 

In future work, more practical discrete applications combining the method, such as 0-1 

backpack problem, TSP problem, scheduling tasks, etc.. The use of other classifiers as evaluators is 

also a very good research direction, such as extreme learning machines, neural networks and support 

vector machines, etc.. The performance of the algorithm can be further investigated by comparing 

different classifiers. 
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