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Abstract: In the era of Industry4.0, cloud-assisted industrial control system (ICS) is considered to be 
the most promising technology for industrial processing automation systems. However, the emerging 
attack techniques targeted at ICS underlines the importance of data security. To protect the data from 
the unauthorized accesses, attribute-based encryption is utilized to meet the requirement of 
confidentiality and access control demand of an open network environment. In ICS scenarios, it is 
critically important to offer the timely and efficient service, especially in the emergency situations. 
This paper proposes an efficient access control strategy that enables two access modes: attribute-based 
access and emergency break-glass access. Normally, users can access the encrypted data as long as 
their attributes satisfy the access policy specified by the data owner. In emergency cases, emergency 
situation handlers can override the access control policy of the encrypted data by the break-glass access 
capability. To eliminate the overhead for data consumers, the scheme outsources the data decryption 
and policy updating to the semi-trusted fog and cloud. The scheme also implements the CP-ABE 
scheme in terms of an asymmetric Type-3 pairings instead of the symmetric Type-1 pairings, which 
are inefficient and have security issues. Finally, the paper analyses the security of the scheme, evaluates 
its performance, and compares it with related works. 

Keywords: attribute based access; break-glass; asymmetric Type-3 pairings; efficiency; cloud-assisted 
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1. Introduction  

In order to seek more intelligent and flexible industrial solutions, enterprises resort to cloud-
assisted industrial control system (ICS), which integrates cloud computing, fog computing, Internet of 
Things (IoT) and Supervisory Control and Data Acquisition (SCADA) systems to perceive the 
changing state in the real world and acquire enormous amounts of data and achieve optimization 
control [1–3]. 

However, this compelling paradigm is confronted with various security and privacy risk, such as 
unauthorized access and information disclosure [4–6]. Encryption plays a crucial role in protecting the 
data confidentiality. Using encryption methods, a secure communication channel in the cloud-assisted 
ICS framework can be established [7–10]. While in the cloud environment where multiple users share 
the data, the data owner would have to share the data according to some access control policy. 
Therefore, fine-grained access control has been increasingly recognized as a critical issue.  

Attribute-based encryption (ABE) [11] is a promising cryptographic technology that is capable 
of achieving confidentiality protection and fine-grained access control simultaneously. ABE schemes 
are classified into two categories, key-policy attribute-based encryption (KP-ABE) and ciphertext-
policy attribute-based encryption (CP-ABE) [12]. In the KP-ABE scheme, a ciphertext is associated 
with a set of attributes and a user’s decryption key is associated with a tree access structure. Only if 
the attributes associated with the ciphertext satisfy the tree access structure can be decrypted by the 
user. In the CP-ABE scheme, the ciphertext is encrypted according to an access policy selected by the 
data owner, while the decryption key is generated with respect to a set of attributes. As long as the set 
of attributes satisfies the access policy, the decryption key can be used to decrypt the ciphertext. Using 
the CP-ABE scheme, the data owner can easily determine who can access the data by setting policies 
in the ciphertext, which is conceptually closer to traditional access control models such as role-based 
access control. Therefore, the CP-ABE has been adopted in the cloud computing system to implement 
the fine-grained attribute-based access control (ABAC) model. 

The cloud-assisted ICS requires much faster response than other regular cloud computing systems 
do. Therefore, users can not simply use some ABE schemes for the ICS environment. One of the main 
drawbacks of ABE is that decryption involves expensive pairing operations and the size of the 
ciphertext and the duration of decryption grows with the complexity of the access policy. It would be 
a challenge for a production operator to complete the decryption on their resource-constrained devices, 
such as PDA, and it hinders the effort to migrate ABE to the ICS. 

How to enable the data owner to update the access policy quickly in the CP-ABE scheme without 
privacy leakage becomes another research hotspot. In the CP-ABE scheme, the access policy is 
embedded in the encrypted data. To update the access policy, the data should be re-encrypted under 
the new access policy. As a result, the data owner undertakes the re-encryption caused by the policy 
update but the re-encryption causes a large computational overhead. 

In addition, most of the ABE schemes are described in symmetric pairings. These constructions 
are considered rather inefficient, and have security vulnerabilities [13]. Therefore, the faster 
asymmetric pairings (Type-3) have been the recommended choice by experts [14]. 

Although several ABE schemes have been modified to support specific requirements, they are 
not applicable in emergency situations. When an accident occurs, for example, a chemical tank is on 
fire, the fire-fighters need to obtain the detailed information such as the type and quantity of materials, 
material condition of adjacent tanks, temperature of relevant storage tanks, concentration of 
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combustible and toxic gases in the environment, the status of inlet and outlet valves and so on. At this 
point, the ICS administrator or its data owner may be unavailable. Thus, it’s necessary to construct a 
break-glass access mechanism [15] that allows the emergency situation handlers (ESH) or rescuers 
who don’t have access privileges can override the access policy and access the plaintext data quickly. 
Besides, to keep the emergency access from being abused, each break-glass access should be 
documented for later audits. 

This paper proposes a new asymmetric pairing-based CP-ABE, namely CP-ABE with break-glass, 
and makes it more efficient and suitable for the cloud-assisted ICS. The scheme protects data 
confidentiality and effectively controls user access to resources with two modes. The paper has the 
following contributions. 

1) This paper proposes an outsourced CP-ABE scheme with policy updating. The scheme 
outsources most of the decryption and the policy updating to the semi-trusted fog and cloud, thus 
reducing the computation on the user side.  

2) Most of the ABE mechanisms are constructed by symmetric prime-order (Type-1) pairings, 
however, the pairings have been considered inefficient and insecure. Therefore, this paper describes 
CP-ABE scheme in terms of an asymmetric Type-3 pairings. Although researchers have rephrased 
some traditional CP-ABE schemes in asymmetric pairings [16], this is the first time (to authors’ 
knowledge) that an outsourced CP-ABE with policy updating under the asymmetric setting is proposed. 

3) We propose an improved CP-ABE with integrated break-glass access capability. In 
emergency, the ESH can utilize a password pre-shared by the data owner to break the glass and 
obtain the plaintext data. 

The rest of the paper is organized as follows: Section 2 presents an overview of related works. 
Section 3 introduces the preliminaries and Section 4 provides the system architecture and workflow. 
Section 5 provides detailed construction method. In Section 6, the paper analyses the security of the 
proposed scheme, evaluates the performance, and presents the quantitative evaluation of the scheme, 
followed by a conclusion in Section 7. 

2. Related works 

Attribute-based Encryption (ABE) was proposed by Sahai and Waters [17] to meet the 
requirement of confidentiality and access control demand of an open network environment such as 
cloud computing. In 2007, Bethencourt et al. [18] proposed the first CP-ABE construction. The scheme 
adopts threshold gate to build access policy and is proven to be secure in the generic group model. 
However the expression is not flexible enough. It is only suitable for applications with simple access 
policy requirements. Waters [19] proposed an expressive CP-ABE scheme that can support and/or and 
threshold operations. The access structure of this scheme is based on the LSSS matrix, and the scheme 
is proven secure in the standard model. Then Rouselakis et al. [20] constructed a large universe CP-
ABE on prime order bilinear pairings. 

Considering a revoked employee may attempt to access the files using his old key, Sahai et al. [21] 
discussed the access policy updating problem in CP-ABE, however, their scheme only allows a 
ciphertext to be re-encrypted to a more restrictive policy. Lai et al. [22] proposed an adapt CP-ABE 
which can update the access policy in a ciphertext to a new policy without retrieving and decrypting the 
encrypted data. Yang et al. [23] developed a dynamic policy updating method for LSSS structure. With 
an update key, the proxy can update the ciphertext from the previous access policy to the new policy. 
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Because the ABE schemes [17–23] require additional pairing operations in decryption and the 
ciphertext size and the cost of decryption grow with the size of the access policy, the CP-ABE brings 
in a large computation cost compared to standard public key cryptography. To overcome this problem, 
Green et al. [24] presented a method for outsourcing the decryption of CP-ABE ciphertext. Applying 
Green’s idea, Tu et al. [25] presented a multimedia data forwarding scheme based on the CP-ABE and 
outsourced most of the computation to the cloud. 

Pairing-based cryptography (PBC) is an important ingredient in the construction of ABE. Most 
of the current ABE schemes [17–25] are described in the context of the symmetric Type-1 pairings, 
which are implemented on super singular elliptic curves, with maximum embedding degrees of 2, 4 
and 6 respectively. Whereas the asymmetric Type-3 pairings support embedding degrees greater than 6 
(on elliptic curves). To achieve the same security level, the Type-3 pairings are more efficient than 
Type-1 pairings. Besides, the symmetric pairings have been faced with many security threats, such as 
attacks by Kim and Barbulescu [13]. The attack can reduce the complexity of solving the discrete 
logarithm problem (DLP). Therefore, Scott [16] described a CP-ABE scheme in the context of the 
asymmetric Type-3 pairings due to Waters [19]. Morales-Sandoval et al. [26] rephrased the large 
universe ABE [27] using the asymmetric Type-3 pairings, and the experiment showed that the 
asymmetric type F curve (BN-curve) can lead to a better performance. 

Considering the emergency access to data without the credentials, Scafuro [28] introduced the 
concept of break-glass encryption for cloud storage that people can break the encrypted data at most 
one time in a traceable way. Then, to make ABE suitable for emergency situations, Brucker et al. [29] 
first integrated ABE with the break-glass encryption. They use a hierarchy of emergency attributes as 
override attributes to access the resource. Schefer-Wenzl et al. [30] proposed a generic model to 
integrate the break-glass policy into RBAC. Aski et al. [31] put forward an idea of integrating ABE 
with break-glass capabilities. They used a pre-shared password as an attribute to extract the break-
glass key, but lacking of the concrete algorithm implementation. Oliveira et al. [32] proposed a break-
glass protocol based on CP-ABE. They constructed an emergency policy in the ciphertext, and the 
ESH can utilize emergency attributes to access the resource. Zhang et al. [33] also proposed a break-
glass access control scheme for emergency situation, but it could not realize fine-grained access control. 
Recently, Yang et al. [34] proposed a concrete access control system, which simultaneously supports 
break-glass access control and ABAC. However, they didn’t show how to identify the malicious users 
who abuse the key. In break-glass encryption, the encrypted data should be broken in a traceable way. 

3. Preliminaries 

3.1. Bilinear maps 

Definition 1 (bilinear maps) Let ܩଵ, ܩଶ and ்ܩ be groups of prime order ݌. A bilinear map 
is a function e: ଵܩ ൈ ଶܩ →  :with the following properties ்ܩ

1) Bilinear: For all ଵ݃ ∈ ଵ and ݃ଶܩ ∈ ,ܽ ,ଶܩ ܾ ∈ ܼ௣, there is ݁ሺ ଵ݃
௔, ݃ଶ௕ሻ ൌ ݁ሺ ଵ݃, ݃ଶሻ௔௕. 

2) Non-degeneracy: ݁ሺ ଵ݃, ݃ଶሻ generates ்ܩ. 
3) Efficiency: There exists an efficient algorithm to output the bilinear group 

ሺ݌, ,ଵܩ ,ଶܩ ,்ܩ ݁, ଵ݃, ݃ଶሻ and compute ݁ሺ ଵ݃, ݃ଶሻ for ∀݃ଵ ∈ ,ଵܩ ݃ଶ ∈  .ଶܩ
Galbraith et al. [14] distinguish three types of pairings: 
Type-1: ܩଵ ൌ  .ଶܩ
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Type-2: ܩଵ ് ଶܩ:߰ ଶ and there exists an efficient homomorphismܩ →  .ଵܩ
Type-3: ܩଵ ്  .ଶܩ ଵ andܩ ଶ there are no efficiently computable homomorphisms betweenܩ
Type 3 is the only choice which offers good performance and flexibility for high security 

parameters, and yet this choice does not permit a homomorphism from ܩଶ to ܩଵ. Hence, this paper 
designs the CP-ABE scheme using asymmetric Type-3 pairings. 

3.2. Access structure 

Definition 2 (access structure [19]) Let ሼ ଵܲ, ଶܲ, … , ௡ܲሽ be a set of parties. A collection ८ ⊆
2	 ሼ௉భ,௉మ,…,௉೙ሽ  is monotone if ∨ ,ܤ ܥ ∶ if	 ܤ ∈ ८	 and	 ܤ ⊆ 	ܥ then	 ܥ ∈  An access structure . ܣ
(respectively, monotone access structure) is a collection (respectively, monotone collection) ८  of 
non-empty subsets of ሼ ଵܲ, ଶܲ, … , ௡ܲሽ , ie ८ ⊆ 2	 ሼ௉భ,௉మ,…,௉೙ሽ\ሼ∅ሽ . The sets in ८  are called the 
authorized sets, and the sets not in ८ are called the unauthorized sets. 

3.3. Linear secret sharing schemes (LSSS) 

Definition 3 (linear secret-sharing schemes (LSSS) [19]) A secret-sharing scheme Π over a 
set of parties ࣪ is called linear (over ܼ௣) if  

1) The shares for each party form a vector over ܼ௣. 
2) There exists a matrix Α with ݈ rows and ݊ columns called the share-generating matrix for 

Π. For all ݅ ൌ 1,… , ݈	 , the ݅௧௛ row of Α is labeled by a party ߩሺ௜ሻ (ߩ is a function from ሼ1, … , ݈ሽ 
to ࣪). 

When considering the column vector ൌ ሺݏ, ,ଵݎ ,ଶݎ … , ݏ ௡ሻ, whereݎ ∈ ܼ௣ is the secret to be shared, 
and ݎଶ, … , ௡ݎ ∈ ܼ௣ are randomly chosen, then Αݒ is the vector of ݈ shares of the secret ݏ according 
to Π. The share ሺΑݒሻ௜ belongs to party ߩሺ௜ሻ. 

Suppose that Π is an LSSS for the access structure ८. Let ܵ ∈ ८ be any authorized set, and let 
ܫ ⊂ ሼ1,… , ݈ሽ be defined as ܫ ൌ ሼ݅: ሺ௜ሻߩ ∈ ܵሽ. Then, there exist constants ൛߱௜ ∈ ܼ௣ൟ௜∈ூ such that, if 

ሼߣ௜ሽ are valid shares of any secret s according to Π, then ∑ ߱௜ߣ௜ ൌ ୍∋୧	ݏ . 
Let ܣ௜ denotes the ݅௧௛ row of Α, then ∑ ߱௜ܣ௜ ൌ ሺ1,0, … ,0ሻ	୧∈୍ . Furthermore, these constants 

ሼ߱௜ሽ can be found in time polynomial in the size of the share-generating matrix Α. For unauthorized 
sets, no such constants ሼ߱௜ሽ exist. 

4. System architecture and workflow 

4.1. System architecture 

The system consists of five entities: central authority (CA), cloud server, fog nodes, data owner 
(DO), data consumer (DC) and  emergency situation handlers (ESH), as shown in Figure 1. The 
following subsections will summarize the major functions of each entity. 
1) Central authority 

The CA is a fully trusted agency that is designated to generate the master key and public key. It 
also generates the attribute key associated with the user’s attributes and distributes the public key to 
the DO for data encryption then transmits the attribute key to the DC for decryption. In order to prevent 
the break-glass key from being abused, the CA is responsible for tracing the break-glass key. 
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2) Cloud server 
The cloud server offers a data storage service for the DO. It is considered to be semi-trusted that 

it will manage the uploaded data honestly but curious about the data. It may read the content and 
compromise user privacy. In the proposed scheme, the cloud is also in charge of helping the DO to 
update the access policy and re-encrypt the ciphertext. 

CA

Fog

Cloud

1. System setup and 
distributes PK

2. Encrypt and upload

3. Key generation and distributes TK,SK

Request file

8. Download and 
decrypt with secret key

7. Download and 
transform

Data synchronization

ICS

DC

 Upload 
ciphertext

password

ESH

HMI

DO

4. Break-glass key extraction

9. Download and decrypt with 
break-glass key

6.Policy update

TK

SK

New access 
policy

New access 
policy

5. BK trace

 

Figure 1. Access control system architecture. 

3) Fog nodes 
The fog nodes are also semi-trusted, and are responsible for keeping the DC’s transform key. 

Using the transform key, the fog partially decrypt the ciphertext requested by the DC from the cloud, 
thus reducing the DC’s decryption cost. 
4) Data owner 

The DO refers to the ICS or its data owner, which is used for industrial process control and have 
a great amount of data to be shared. Normally, the DO encrypts its data using the CP-ABE to realize 
the confidentiality and flexible access control. In response to some emergency case, the DO pre-shares 
a password with the ESH, and the ESH can utilize the password to recover the break-glass key to 
bypass the access policy and decrypt the encrypted data. 
5) Data consumer 

The DC refers to the party who is attached to the fog and would like to gain access to the ciphertext 
stored in cloud. A data consumer needs to contact the CA to obtain the attribute key corresponding to 
the attributes he claims to have. Once the DC’s attributes satisfy the access policy, he can obtain a 
partially decrypted ciphertext from the fog and decrypt the encrypted data using his secret keys. 
6) Emergency situation handlers 

The ESH refers to the rescuers, fire fighters, polices or other disaster specialists. Once an 
emergency occurs, the ESH should start the disaster recovery plan and access the original data freely 
for safety and legal reasons. Using his identity and the password from the DO, the ESH interacts with 
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the cloud to obtain the break-glass key. Then the ESH can access the original data freely under a 
controlled environment, because the break-glass key is traceable. 

4.2. System workflow 

This subsection introduces the system workflow of attribute-based access control, break-glass 
access control and the access policy updating process. 

In the ABAC, the CA runs the system setup algorithm and outputs the public key, then the DO 
encrypts its data and uploads the ciphertext to the cloud. It first encrypts the data with a random key 
 ௔ by applyingܭ ௔ by applying a symmetric encryption algorithm (e.g., AES), then encrypts the keyܭ
the CP-ABE algorithm under an access policy. The DC obtains his secret key SK and transform key 
TK associated with his attributes from the CA and stores the TK on the fog. When the DC requests the 
ciphertext, the cloud sends it to the fog for ciphertext transformation. Using the TK, the fog partially 
decrypts the ciphertext to reduce the decryption cost on the DC. Last the DC receives the partially 
decrypted ciphertext from the fog and recovers the plaintext by his secret key SK. 

Encrypt the Ka 
under (A, ρ)

Ciphertext transform 
with TK

Key generation 
for user

Decryption with  SK Decryption with  Ka

DC

Cloud

Fog

DO
ICS

HMI

CA

Admin

System setup

Encrypt the data 
with Ka

<PK>

<F=SE(Ka , D)>

<CTm , F>

<TK>

<SK>

<CTT , F>

<CTm , F>

<Ka , F>
Plaintext D

<F>

 

Figure 2. Attribute-based access control workflow. 

In the Break-Glass Access Control, the DO pre-shares a password ݓ݌ with the ESH. Then the 
DO calculates the ciphertext of the password and uploads it to the cloud. When an emergency occurs, 
the ESH and the cloud engage in a two party computation to extract the break-glass key ܭܤ. The ESH 
first calculates his identity elements and sends them to the cloud. Using the identity elements, the cloud 
computes a ciphertext ܭܤᇱ for the ESH. Then the ESH can compute the break-glass key ܭܤ by the 
 .the ESH recovers the plaintext ,ܭܤ ᇱ. Using the break-glass keyܭܤ

The ciphertext of the proposed scheme consists of two parts, one is the ciphertext of the symmetric 
key ܭ௔, and the other is the ciphertext of the password ݓ݌, which are denoted as ܥ ௠ܶ and ܥ ௣ܶ௪ 
respectively. To update the access policy, the DO should update the ܥ ௠ܶ and ܥ ௣ܶ௪. Firstly, the DO 
selects the new vector ܣ௜

ᇱ corresponding to the i-th row of the ݈ᇱ ൈ ݊ᇱ matrix ܣᇱ and sends it to the 
cloud to update the ciphertext of the key ܭ௔. Then, he generates and transmits the elements of the 
password ݓ݌ to the cloud to update the ciphertext of the password. Finally, the cloud runs the policy 
updating algorithm to generate the new ciphertext ܥ ௠ܶ

ᇱ  and ܥ ௣ܶ௪
ᇱ . 
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Figure 3. Break-glass access control workflow. 
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Figure 4. Updating the access policy embedded in the ciphertext. 

5. Algorithm descriptions 

To achieve the efficient fine-grained access control with break-glass capability, this paper 
modifies the algorithm in [22] to outsource the computation overhead and utilize asymmetric Type-3 
pairings. This paper also applies the idea of the password-controlled encryption shown in [33] to the 
proposed scheme to realize the break-glass access control. Next, this paper presents the construction 
of the CP-ABE with break-glass for the cloud-assisted ICS. 

1) System Setup: ܵ݁݌ݑݐ൫1ఒ൯ → ሺܲܭܯ,ܭ) 

The CA runs the setup algorithm to conduct an initial operation and setup important parameters. 
Take as input the security parameter λ, the CA selects an asymmetric bilinear map: ݁: ଵܩ ൈ ଶܩ →  ,்ܩ
where ܩଵ, ܩଶ and ்ܩ are groups of prime order ݌. Let ܷ be the size of system’s universe attribute 
set. Then, the CA chooses generators ଵ݃ ∈ ଵ, ݃ଶܩ ∈ ,ଶ and random group elements ݄ଵܩ … , ݄௎ ∈  ,ଵܩ
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݃ଷ ∈ ,ଶ. In addition, it randomly chooses αܩ ߚ ∈ ܼ௣. 
Finally, the CA generates the public key ܲܭ and master key ܭܯ as 

ܭܲ ൌ൏ ݃ଵ, ݃ଶ, ݃ଷ, ݁ሺ ଵ݃, ݃ଶሻఈ, ݁ሺ ଵ݃, ݃ଷሻఈ, ଵ݃
ఈ, ଵ݃

ఉ, ݄ଵ, … , ݄௎ ൐ (1)

ܭܯ ൌ൏ α, ߚ ൐ (2)

2) Data Encryption: ݐ݌ݕݎܿ݊ܧሺܲܭ,ܭ௔, ሺܣ, ,ሻߩ ሻݓ݌ → ሺܥ ௠ܶ, ܥ ௣ܶ௪) 
First, a symmetric key ܭ௔ is used to encrypt the data ܦ to be shared, then the DO encrypts the 

key ܭ௔ with the encrypt algorithm. The encrypt algorithm takes as input the public parameter ܲܭ, 
an LSSS access structure ሺܣ, ݒ ௔ , then the DO selects a random vectorܭ ሻ , and the keyߩ ൌ
ሺݏ, ,ଶݒ … , ௡ሻݒ ∈ ܼ௣௡, and for ݅ ൌ 1,… , ݈, it computes ߣ௜ ൌ  ௜ is the vector correspondingܣ where ,ݒ௜ܣ
to the i-th row of the ݈ ൈ ݊ matrix ܣ, and the function ߩ	 associates rows of ܣ to the attributes. Then 
it creates the ciphertext of the key ܭ௔ 

ܥ ௠ܶ ൌ൏ ,ܥ ,ᇱܥ ,ᇱᇱܥ ,௜ܥ ௜ܦ ൐ ൌ ൏ ௔݁ሺܭ ଵ݃, ݃ଶሻఈ௦, ݃ଶ
௦, ଵ݃

௦, ଵ݃
ఉఒ೔݄ఘሺ௜ሻ

ି௥೔ , ݃ଶ
௥೔ ൐ (3)

Moreover, the DO generates the auxiliary ciphertext of the password pw. He randomly chooses a 
password ݓ݌ ∈ ܼ௣ and calculates the ciphertext of the password pw: 

ܥ ௣ܶ௪ ൌ൏ ,௞ଵܥ ௞ଶܥ ൐ ൌ ൏ ሺ݃ఊሺ ଵ݃
ఈሻ௣௪ሻ௦, ݁ሺ ଵ݃, ݃ଷሻିఈ௦ ൐ (4)

Here, the ߛ ∈ ܼ௣ is the private key of the cloud and the ݃ఊ ൌ ሺ ଵ݃
ఈሻିఊ is its public key. 

Last, the DO sends the ciphertext ܶܥ ൌ൏ ܥ ௠ܶ, ܥ ௣ܶ௪ ൐ and the encrypted data ܨ ൌ ,௔ܭሺܧܵ  ሻܦ
to the cloud. 
3) Key Generation for user: ݊݁ܩݕ݁ܭሺܭܯ, ܵሻ → ሺܶܭ,  (ܭܵ

The method takes as input the master key MK and a set of attributes S, the CA randomly selects 
,ݐ ݖ ∈ ܼ௣ and generates the attribute keys ܭܣ ൌ൏ ,ܭܶ ܭܵ ൐ for the attribute set ܵ as 

ܭܶ ൌ൏ ,ܭ ,ܮ ݔ∀ ∈ ܵ	 ௫ܭ ൐ ൌ ൏ ଵ݃
ఈ/௭

ଵ݃
ఉ௧/௭, ݃ଶ

௧/௭, ݔ∀ ∈ ܵ ݄௫
௧/௭ ൐ (5)

ܭܵ ൌ ൏ ݖ ൐ (6)

Here, the ܶܭ is the transform key and the SK is the user’s secret key. The ܶܭ can be stored on 
the fog and the SK must be secretly maintained by the user. Since the ܶܭ is associated with the user’s 
attributes, the fog can partially decrypt the ciphertext for the user. 
4) Break-Glass Key Extraction: ݐݔܧܭܤሺݓ݌ሻ → ሺܭܤ) 

Considering the emergency situations, the DO pre-shares a password ݓ݌ with the ESH with an 
ܦܫ ∈ ܼ௣. When the ESH wants to decrypt the ciphertext in emergency, he interacts with the cloud to 
obtain the break-glass key ܭܤ using the password ݓ݌. 

The ESH randomly selects ߬, ߤ ∈ ܼ௣  and calculates ܴ ൌ ݃ଶ
ఛ , ߬௣௪ᇱ ൌ ߬ ∙  Then the identity . ܦܫ

elements ൏ ܴ, ߬௣௪ᇱ , ,ߤ ݓ݌ ൐ are sent to the cloud. Then the cloud computes δ ൌ ߛሺߤ െ ሻ, ݃௣௪ᇱݓ݌ ൌ

ሺܴ ∙ ݃ଷ
ିఛ೛ೢᇲ ሻଵ/ஔ and sends the ܭܤᇱ ൌ൏ ߬௣௪ᇱ , ݃௣௪ᇱ ൐ to the ESH. 

Finally, the ESH calculates the break-glass key as 
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ܭܤ ൌ൏ ߬௣௪, ݃௣௪ ൐ൌ൏
߬௣௪ᇱ

߬
, ሺ݃௣௪ᇱ ሻఓ/ఛ ൐ (7)

and verifies whether or not ߬௣௪ ൌ  is valid. Otherwise, the ܭܤ If the equation holds, the key .ܦܫ
cloud behaves dishonestly.  
5) Trace: ܶ݁ܿܽݎ	 ሺܭܤሻ → ሺܦܫሻ 

Given the break-glass key ܭܤ ൌ൏ ߬௣௪, ݃௣௪ ൐, the CA runs the algorithm to check the ܦܫ of 
the ܭܤ by verifying whether or not 

݁൫݃ఊ ଵ݃
ି௣௪, ݃௣௪൯ ൌ ݁൫݃ଵ, ݃ଶ݃ଷ

ିఛ೛ೢ൯ (8)

If the equation holds, it means that the ܭܤ is valid. Then the algorithm outputs the ߬௣௪ ൌ  .ܦܫ
6) Policy Update: ܲ݌ܷݕ݈ܿ݅݋	 ሺܲܭ, ,ܶܥ ሺܣᇱ, ᇱሻሻߩ → ሺܶܥᇱ) 

Take as input the public key PK, the ciphertext CT and a new access policy ሺܣᇱ,  ᇱሻ, the cloud runsߩ
the policy update algorithm to update the access policy ሺܣ,  .ᇱܶܥ ሻ and generate the new ciphertextߩ

The DO randomly selects ܣ௜
ᇱ ൌ ሺܽ௜ଵ, ܽ௜ଶ, … , ܽ௜௡ᇲሻ, which is the vector corresponding to the i-th 

row of the ݈ᇱ ൈ ݊ᇱ  matrix ܣᇱ . Then the cloud randomly selects ݎ௜
ᇱ ∈ ܼ௣  and a vector ݒ෤ ൌ

ሺ̃ݏ, ,෤ଶݒ … , ෤௡ᇲሻݒ ∈ ܼ௣
௡ᇲ. Assume ݏᇱ ൌ ݏ̃ ൅ ᇱݒ the cloud can output a vector ,ݏ ൌ ሺݏᇱ, ,෤ଶݒ … ,  .෤௡ᇲሻݒ

According to the Eq (3), the cloud generates the new ciphertext ܥ ௠ܶ
ᇱ  as 

ܥ ௠ܶ
ᇱ ൌ൏ ,ሚܥ ,ሚᇱܥ ,ሚᇱᇱܥ ,ሚ௜ܥ ෩௜ܦ ൐௜∈ሾଵ,௟ᇲሿ (9)

It computes the new components as 

ሚܥ ൌ ܥ ∙ ݁ሺ ଵ݃, ݃ଶሻఈ௦̃ ൌ ௔݁ሺܭ ଵ݃, ݃ଶሻఈ௦ ∙ ݁ሺ ଵ݃, ݃ଶሻఈ௦̃ ൌ ௔݁ሺܭ ଵ݃, ݃ଶሻఈ௦
ᇲ
 (10)

ሚᇱܥ ൌ ᇱܥ ∙ ݃ଶ
௦̃ ൌ ݃ଶ

௦ ∙ ݃ଶ
௦̃ ൌ ݃ଶ

௦ᇲ (11)

ሚᇱᇱܥ ൌ ᇱᇱܥ ∙ ଵ݃
௦̃ ൌ ଵ݃

௦ ∙ ݃ଵ
௦̃ ൌ ଵ݃

௦ᇲ (12)

ሚ௜ܥ ൌ ଵ݃
ఉ஺೔

ᇲ௩ᇲ݄
ఘሺ೔ሻ
ᇲ
ି௥೔

ᇲ

ൌ ଵ݃
ఉሺ௔೔భ௦ᇲା௔೔మ௩෤మା⋯ା௔೔೙ᇲ௩෤೙ᇲሻ݄

ఘሺ೔ሻ
ᇲ
ି௥೔

ᇲ

   

ൌ ଵ݃
௦ᇲఉ௔೔భ

ଵ݃
ఉ൫௔೔మ௩෤మା⋯ା௔೔೙ᇲ௩෤೙ᇲ൯݄

ఘሺ೔ሻ
ᇲ
ି௥೔

ᇲ

   

ൌ ሚᇱᇱܥ ଵ݃
ఉሺ௔೔మ௩෤మା⋯ା௔೔೙ᇲ௩෤೙ᇲሻ݄

ఘሺ೔ሻ
ᇲ
ି௥೔

ᇲ

  (13)

෩௜ܦ ൌ ݃ଶ
௥೔
ᇲ

 (14)

According to the Eq (4), the cloud also generates the new ciphertext ܥ ௣ܶ௪
ᇱ  

ܥ ௣ܶ௪
ᇱ ൌ൏ ,ሚ௞ଵܥ ሚ௞ଶܥ ൐ (15)

It receives the component ሺ ଵ݃
ఈሻ௣௪ from the DO and computes the new components as 
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ሚ௞ଵܥ ൌ ௞ଵܥ ∙ ሺ݃ఊሺ ଵ݃
ఈሻ௣௪ሻ௦̃ ൌ ሺ݃ఊሺ ଵ݃

ఈሻ௣௪ሻ௦ሺ݃ఊሺ ଵ݃
ఈሻ௣௪ሻ௦̃ ൌ ሺ݃ఊሺ ଵ݃

ఈሻ௣௪ሻ௦
ᇲ
 (16)

ሚ௞ଶܥ ൌ ௞ଶܥ ∙ ݁ሺ ଵ݃, ݃ଷሻିఈ௦̃ ൌ ݁ሺ ଵ݃, ݃ଷሻିఈ௦ ݁ሺ ଵ݃, ݃ଷሻିఈ௦̃ ൌ ݁ሺ ଵ݃, ݃ଷሻିఈ௦
ᇲ
 (17)

Although the cloud doesn’t know the secret s, it can also compute the ciphertext ܥ ௠ܶ
ᇱ  and ܥ ௣ܶ௪

ᇱ . 
7) Ciphertext Transform: ܶ݉ݎ݋݂ݏ݊ܽݎሺܶܭ, ܥ ௠ܶሻ → ሺܥ ்ܶ)  

With the input DC’s transform key ܶܭ  and the requested ciphertext ܥ ௠ܶ , the fog runs the 
transform algorithm to generates the ܥ ்ܶ as 

ܥ ்ܶ ൌ
݁ሺܥᇱ, ሻܭ

∏ ൬݁ሺܥ௜, ሻ݁ܮ ቀܦ௜, ఘሺ೔ሻቁ൰ܭ
ఠ೔

௜∈ூ

ൌ ݁ሺ ଵ݃, ݃ଶሻ௦ఈ/௭ 
(18)

If the DC’s attributes match the access policy of the encrypted data, the above equation holds. 
Otherwise, the algorithm outputs ٣	 , the fog deliveries nothing to the DC. 
8) Decryption with Secret Key: ݐ݌ݕݎܿ݁ܦ஺஻ாሺܵܭ, ܥ ்ܶሻ → ሺܭ௔)  

If the DC has a valid set of attributes, he will receive the transformed ciphertext ܥ ்ܶ from the 
fog. Take as input the secret key SK and the ciphertext ܥ ்ܶ, the DC runs the ݐ݌ݕݎܿ݁ܦ஺஻ா algorithm 
and recover the key ܭ௔ as 

௔ܭ ൌ
ܥ

ሺܥ ்ܶሻௌ௄
ൌ
௔݁ሺܭ ଵ݃, ݃ଶሻఈ௦

ሺ݁ሺ ଵ݃, ݃ଶሻ
௦ఈ
௭ ሻ௭

 (19)

9) Decryption with Break-Glass Key: ݐ݌ݕݎܿ݁ܦ஻ீሺܭܤ, ሻܶܥ → ሺܭ௔)  
In emergency, the ESH executes the ݐ݌ݕݎܿ݁ܦ஻ீ algorithm to recover the key ܭ௔. Take as input 

the break-glass key ܭܤ and the ciphertext ܶܥ, the algorithm outputs 

௔ܭ ൌ ܥ ∙ ݁൫ܥ௞ଵ, ݃௣௪൯ ∙ ௞ଶܥ
ఛ೛ೢ (20)

ൌ ௔݁ሺܭ ଵ݃, ݃ଶሻఈ௦ ∙ ݁൫ሺ݃ఊሺ ଵ݃
ఈሻ௣௪ሻ௦, ሺ݃௣௪ᇱ ሻఓ/ఛ൯ ∙ ݁ሺ ଵ݃, ݃ଷሻିఈ௦ఛ೛ೢ (21)

ൌ ௔݁ሺܭ ଵ݃, ݃ଶሻఈ௦ ∙ ݁

ۉ

ۈ
ۇ
൫ሺ ଵ݃

ఈሻିఊ௦ ଵ݃
ఈ∗௦∗௣௪൯, ൭ቀܴ ∙ ݃ଷ

ିఛ೛ೢᇲ ቁ
ଵ
ஔ
	 ൱

ఓ
ఛ

	

ی

ۋ
ۊ
∙ ݁ሺ ଵ݃, ݃ଷሻିఈ௦ఛ೛ೢ (22)

ൌ ௔݁ሺܭ ଵ݃, ݃ଶሻఈ௦ ∙ ݁ ൮൫ ଵ݃
௣௪ିఊ൯

ఈ௦
, ൭ቀ݃ଶ

ఛ ∙ ݃ଷ
ିఛ೛ೢᇲ ቁ

ଵ
ఓሺఊି௣௪ሻ

	 ൱

ఓ
ఛ

	 ൲ ∙ ݁ሺ ଵ݃, ݃ଷሻିఈ௦ఛ೛ೢ (23)

ൌ ௔݁ሺܭ ଵ݃, ݃ଶሻఈ௦ ∙ ݁ሺ ଵ݃, ݃ଶሻିఈ௦ ∙ ݁ሺ ଵ݃, ݃ଷሻఈ௦ఛ೛ೢ ∙ ݁ሺ ଵ݃, ݃ଷሻିఈ௦ఛ೛ೢ (24)
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6. Analysis and performance 

6.1. Security analysis 

6.1.1. Confidentiality 

In the proposed scheme, the confidentiality of the plaintext data depends on the security of the 
symmetric key ܭ௔ . It would be difficult for the attacker to obtain the ܭ௔ , which is hidden in the 
,௔݁ሺ݃ଵܭ ݃ଶሻఈ௦.  

There are two ways to obtain the ܭ௔. One is using the key related to the user attributes to decrypt 
the ciphertext according to the CP-ABE. The other is to utilize the password ݓ݌ pre-shared by the 
data owner to break the glass. 

Scott [16] has outlined the definition of Waters CP-ABE [19] in the asymmetric Type-3 pairings, 
and this paper improves it by outsourcing the decryption and re-encryption caused by the policy 
updating. Since its structure has not been changed, the modified version is secure. Normally, in order 
to obtain the ܭ௔, the user has to recover the secret ݏ, which is hidden using the LSSS matrix for the 
access structure. Only if the user attributes satisfy the access policy embedded in the ciphertext, the 
fog can correctly transform the ciphertext by using the transform key ܶܭ which is associated with 
the user attributes. Otherwise, the transformation will be failed and the fog will deliver nothing to the 
user. In the transform process, the fog cannot obtain the plaintext. Therefore, this paper realizes the 
attribute-based access control and protects the confidentiality of the shared data. 

When emergency occurs, the ESH utilizes the password ݓ݌ pre-shared by the DO to break the 
glass and access the plaintext data. The underlying scheme adopts Zhang’s mechanism [33] and has 
been proved to be IND-ID-CPA secure. In the secure two party computation, the ESH and the semi-
trusted cloud jointly compute the break-glass key ܭܤ. In this progress, the cloud cannot compute the 
key ܭܤ by ܭܤᇱ because the ߬ is randomly selected by the ESH and hidden in the ݃ଶ

ఛ. Finding the 
߬ from ݃ଶ

ఛ is hard due to the discrete logarithm problem. 
Therefore, the proposed solution protects the data confidentiality. 

6.1.2. Collusion attack resistance 

In order to recover the key ܭ௔ from ܭ௔݁ሺ ଵ݃, ݃ଶሻఈ௦, the malicious users need to get the secret ݏ, 
which is stored on the DO privately. In the CP-ABE scheme, the DO utilizes the LSSS to share the 
secret ݏ. Only if the user’s attributes satisfy the access policy, his transform key ܶܭ can be combined 
with the ciphertext components ܥ௜,  ௜ to complete the bilinear pairing operation and recover the secretܦ
 so each user ,ݐ ௫ are all randomized by the parameterܭ and ܮ ,ܭ its components ,ܭܶ In the key .ݏ
has a different transform key ܶܭ. Therefore, users cannot collude with others to combine an available 
key ܶܭ with their key components ܮ ,ܭ and ܭ௫. 

6.2. Performance analysis 

This subsection analyses and compares the performance of the proposed solution with existing 
schemes. Since this paper rephrases the Lai’s scheme [22] in terms of the asymmetric Type-3 pairings 
and supports break-glass access function, the analysis in this subsection compares the proposed scheme 
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with Lai’s scheme [22] and the ABAC Schemes with break-glass access[32,34]. 

6.2.1. Capability analysis 

A detailed comparison of CP-ABE is given in Table 1. The proposed scheme is defined in the 
asymmetric Type-3 pairings setting and supports the access policy updating, therefore a more efficient 
and fine-grained user access control can be achieved. To maintain the efficiency of data processing on 
resource-constrained devices, the policy updating and most of the decryption are outsourced to the 
cloud and fog. This paper also integrates the password-based break-glass encryption with the CP-ABE 
to enable timely access when emergency occurs, and the break-glass key is traceable. 

Table 1. A comparative summary of related schemes. 

The Schemes 
Asymmetric 

Pairings 

Updating 

Access Policy 

Outsourcing 

Decryption 

Break-Glass 

Access Control 

Break-Glass Key 

Traceability 

Lai [22] No Yes No No No 

Oliveira [32] No No No Yes No 

Yang [34] No No Yes Yes No 

The proposed scheme Yes Yes Yes Yes Yes 

6.2.2. Storage overhead on the data consumer 

Table 2 lists schemes to be compared with the proposed algorithm in terms of storage overhead. 
In these schemes, the storage overhead of the data consumer mainly comes from the ܵܥ ,ܭܤ ,ܭ ௠ܶ 
and ܥ ௣ܶ௪. Then, the comparison from the theoretical aspect is given in Table 2. Let |ܩଵ|, |ܩଶ|, |்ܩ| 
and หܼ௣ห denote the length of each element in ܩଵ, ܩଶ, ்ܩ and ܼ௣ respectively. Let |ܵ| denote the 
number of attributes in user’s key, and |݈|  denote the number of attributes in an access structure. 
Because the scheme in [32] lacks specific implementation algorithm, this paper applies the algorithm 
in the scheme [22] to the scheme [32].  

In terms of the storage overhead of the DC, the proposed scheme has obvious advantages. 
Especially when the access structure is complex, the size of the ciphertext stored on the DC is kept 
small and constant in the proposed scheme. Moreover, other schemes are limited to the symmetric 
pairings, whereas the proposed method is described in the asymmetric Type-3 pairings. The proposed 
scheme will be more efficient in the actual implementation and  the results will be reflected in 
subsection 6.2.4. 

6.2.3. Computation cost 

Let |ܫ| for number of user's attributes utilized for satisfying the policy. Let ݁݌ݔଵ, ݁݌ݔଶ, ்݁݌ݔ 
denote exponentiation in ܩଵ , ܩଶ , ்ܩ  and ݁  denote bilinear pairing. This paper compares the 
computation cost of the proposed scheme with the schemes shown in Table 3. 

The proposed scheme only has a higher computation overhead in the file access with break-glass 
key on the ESH. It is because this paper decomposes the break-glass key into two parts and design the 
trace algorithm. Utilizing the break-glass key, the trace algorithm can find out the ESH’s ID in case 
that the ESH abuses the key. 
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Table 2. Comparison of storage overhead on the DC. 

The Schemes ܵܥ ܭܤ ܭ ܥ ்ܶ ௣ܶ௪  

Lai [22] ሺ|ܵ| ൅ 2ሻ|ܩଵ|	 None ሺ2|݈| ൅ 1ሻ|ܩଵ| ൅ 	|்ܩ| None

Oliveira [32] ሺ|ܵ| ൅ 2ሻ|ܩଵ| ሺ|ܵ| ൅ 2ሻ|ܩଵ| ሺ2|݈| ൅ 1ሻ|ܩଵ| ൅ |்ܩ| ൅ 2หܼ௣ห	 None

Yang [34] ሺ|ܵ| ൅ 1ሻ|ܩଵ| ൅ 3หܼ௣ห	 |ଵܩ| |்ܩ| |ଵܩ|4 ൅ 2หܼ௣ห

The proposed scheme หܼ௣ห	 |ଶܩ| ൅ หܼ௣ห |்ܩ| |ଵܩ| ൅ |்ܩ|

Table 3. Comparison of computation cost. 

The Schemes 

Decryption with 

Secret Key on the 

DC 

Generate the 

Ciphertext of pw on 

the DO 

BK Extraction on 

the ESH 

Decryption with 

Break-Glass Key 

on the ESH 

Break-Glass Key 

Tracing 

Lai [22] 
்݌ݔ݁|ܫ|2

൅ ሺ2|ܫ| ൅ 1ሻ݁ 
None None None None 

Oliveira [32] 
்݌ݔ݁|ܫ|2

൅ ሺ2|ܫ| ൅ 1ሻ݁ 
None None 

்݌ݔ݁|ܫ|2

൅ ሺ2|ܫ| ൅ 1ሻ݁ 
None 

Yang [34] ݁݌ݔ5݁ ்݌ݔଵ ൅ ଵ݌ݔ4݁ ܪ ൅  None ܪ ܪ

The proposed 

scheme 
ଵ݌ݔ2݁ ்݌ݔ݁ ൅ ்݌ݔ݁ ଶ݌ݔଶ 2݁݌ݔ݁ ൅ ்݌ݔ݁ ݁ ൅ ݁ 

6.2.4. Quantitative evaluation 

This subsection focuses on the quantitative performance of the proposed scheme based on the 
Java Pairing-Based Cryptography Library (JPBC) [34] libraries. It is a Port of the Pairing-Based 
Cryptography Library (PBC), and the library is developed to perform the mathematical operations 
underlying pairing-based cryptosystems directly in Java. All the implementations are executed on an 
Intel® Core ® CPU i5-3470 2.6 GHz with 8.00 GB of RAM running the Linux system and Eclipse. This 
paper evaluates the storage overhead and the encryption/decryption time of the related schemes [32,34] 
under different security levels (80 bit, 112 bit, 128 bit, 192 bit, 256 bit). The PBC library contains a 
series of elliptic curves to generate the bilinear pairs. The embedding degree of the Type-A curve is 2, 
which is often used to realize the symmetric bilinear pairings, but the security level is low. The 
embedding degree of the Type-F curve is 12, which is often used to realize the asymmetric bilinear 
pairings. Since the schemes in [32,34] are constructed based on the symmetric bilinear pairings, this 
paper will adopt the Type-A curve; while the proposed scheme is constructed based on the asymmetric 
bilinear pairings, so this paper will adopt the Type-F curve. In this subsection, these two kinds of curves 
are used to construct the two bilinear pairs ݁: ଵܩ ൈ ଵܩ →  and  ்ܩ ݁: ଵܩ ൈ ଶܩ →  .respectively , ்ܩ
According to the recommended parameters in the literature [26], which is also recommended by the 
National Institute for Standards and Technology (NIST) and the European Union (ENISIA agency), 
we evaluate the relevant schemes. The parameters of each curve are set and shown in Table 4. 

Due to the lack of specific implementation algorithm in the scheme [32], this paper applies the 
algorithm in the scheme [22] to the scheme [32]. Let |ܵ| ൌ |݈| ൌ 10. This paper first evaluate the 
storage overhead in the proposed scheme and the schemes [32,34] at different security levels. 

Figure 5 (a) describes the ciphertext stored on the DC at different security levels. In the scheme [32], 
the ciphertext size on the DC is 2856, 5688, 8512, 21260 and 42368 bytes in different security levels. 
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In the scheme [34], the ciphertext size is 128, 256, 384, 962 and 1920 bytes in different security 
levels. In the proposed scheme, the ciphertext size is 240, 336, 384, 960 and 1920 bytes in different 
security levels. 

Table 4. The size of the key and groups under the different security level. 

Security 

Level 

AES Key Type-A 

ଵܩ ൌ  ଶܩ

Type-A 

 ்ܩ

Type-A 

ܼ௣ 

Type-F 

 ଵܩ

Type-F 

 ଶܩ

Type-F 

 ்ܩ

Type-F 

ܼ௣ 

80 bit 128 1024 1024 160 320 640 1024 160 

112 bit 128 2048 2048 224 448 896 2048 224 

128 bit 128 3072 3072 256 512 1024 3072 256 

192 bit 192 7696 7696 384 1280 2560 7696 640 

256 bit 256 15360 15360 512 2560 5120 15360 1280 

It is obvious that the storage space required by the data consumers in the scheme [32] is the largest. 
It is because the proposed scheme and the scheme [34] both outsource the decryption to the fog/cloud, 
the DC only needs to receive the transformed ciphertext, which is small. Although in the table 3, the 
storage consumptions on the DC of the proposed scheme and the scheme [34] are both |்ܩ| , the 
proposed scheme requires a higher security level in the real implementation. Because the proposed 
scheme is the only one implemented in the Type-F curve. 

Figure 5(b) describes the secret key stored on the data consumer at different security levels. In 
the scheme [32], the secret key size on the DC is 1536, 3072, 4608, 11544 and 23040 bytes in different 
security levels. In the scheme [34], the secret key size is 1468, 2900, 4320 10726 and 21312 bytes in 
different security levels. In the proposed scheme, the secret key size is 20, 28, 32, 80 and 160 bytes in 
different security levels. It is obvious that the proposed scheme achieves the best performance. The 
storage consumption is small and constant, which even can be ignored. 

This paper also evaluates the computation cost in the proposed scheme and the scheme [32] at 
different security levels. 

Figure 5(c) describes the encryption time at different security levels. In the scheme [32], the 
encryption time on the DO is 0.225s, 0.75s, 2.3s, 10.5s, and 45s in different security levels. In the 
proposed scheme, the encryption time on the DO is 0.09s, 0.15s, 0.22s, 1.5s, and 8.2s in different 
security levels. Since the proposed scheme adopts the Type-F curve, it reduces the encryption cost. 
When the security level reaches 128-bit, the encryption cost of the scheme [32] begins to increase 
significantly. And the higher the security level, the more computation cost. When the security level 
reaches 256-bit, the encryption time of the scheme [32] is 5 times as much as that of the proposed scheme. 

Figure 5(d) describes the decryption time at different security levels. In the scheme [32], the 
decryption time on the DC is 0.08s, 0.28s, 0.5s, 4s, and 16s in different security levels. Since the 
proposed scheme outsources the most of the decryption to the fog, the decryption cost of the DC is 
small and constant, even less than 0.005s. Moreover, this paper compares the decryption time in the 
scheme [32] with the ciphertext outsourced decryption (ciphertext transform on the fog) in the 
proposed scheme. The decryption time on the DC of the proposed scheme is 0.18s, 0.28s, 0.32s, 2s, 
and 10s. It can be seen that the decryption time on the DC of the scheme [32] is lower than that of the 
proposed scheme at the security level 80-bit and 112-bit only. However, at the security level 128-bit, 
192-bit and 256-bit, the advantage of the Type-F curve selected in the proposed scheme has been 
obviously reflected. The proposed scheme achieves the lower decryption time than the scheme [32]. 



3574 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 3559–3577. 

(a) The ciphertext stored on the DC at different 
security levels. 

(b) The secret key stored on the DC at different 
security levels. 

  

(c) The encryption time at different security 
levels. 

(d) The decryption time at different security 
levels. 

Figure 5. The performance of the proposed scheme. 

7. Conclusions 

This paper proposes an efficient access control scheme for the cloud-assisted ICS, which allows 
the attribute-based access control in normal state and the break-glass access control in emergency. The 
proposed scheme securely outsources the decryption and access policy updating to the fog and cloud, 
thus achieves small and constant local storage on the user, and especially suits the resource-constrained 
environment. Furthermore, this paper implements the CP-ABE scheme using the asymmetric Type-3 
pairings, which are more efficient for an implementation than the symmetric Type-1 pairings. Finally, 
this paper analyses the security properties, compares it with other schemes and presents the qualitative 
and quantitative analysis. 
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