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Abstract: We consider a Lotka-Volterra competition-diffusion-advection system with the total
resources for two competitors fixed at the same level. We reveal the combined effect of competition
abilities and spatial variations on the coexistence of two competing species. It is obtained that when
the ratio of advection rate α to diffusion rate d1 is appropriately large, the two competing species will
always coexist if the inter-specific competition coefficients (b, c) in (0, 1] × (0, 1] and when the ratio
is appropriately small, the two species will coexist if the inter-specific competition coefficients c is
appropriately small and b is in (0, 1].
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1. Introduction

Biological dispersal means that organisms move from one location to another within a habitat. This
phenomenon has an important impact on population dynamics, disease and distribution of species
[1–4]. It is well known that the interactions between dispersal and spatial heterogeneity could create
very interesting phenomena. Moreover, a number of ecologists and evolutionary biologists have been
interested in this issue for many years.

Over the last few decades, researchers from both biology and mathematics have used some specific
mathematical models to describe population dynamics in spatial ecology and evolution. On one hand,
taking into account the effects of random perturbations, some researchers investigated some models
which described more realistically ecosystems through stochastic approaches, see [5–9]. On the other
hand, some researchers considered the impacts of the random diffusion on the population dynamics
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and used the reaction-diffusion equations to model population dynamics. Among these models, the
two species Lotka-Volterra competition-diffusion system perhaps is the most salient example. The
following classical Lotka-Volterra competition-diffusion system

ut = d1∆u + u[m(x) − u − bv], in Ω × R+,

vt = d2∆v + v[m(x) − cu − v], in Ω × R+,

∂νu = ∂νv = 0, on ∂Ω × R+,

u(x, 0) = u0, v(x, 0) = v0, in Ω,

(1.1)

models two competing species. Here u(x, t) and v(x, t) represent the densities of two species at location
x and time t. d1 and d2 are random diffusion rates of species u and v, respectively, which are therefore
assumed to be non-negative. The habitat Ω is a bounded domain in RN with smooth boundary ∂Ω.
∂ν = ν · ∇, where ν denotes the unit outer normal vector on ∂Ω and the no-flux boundary condition
means that no individual can move in or out through the boundary of the habitat. m represents their
common intrinsic growth rate which also reflects the environmental richness of the resources at location
x. b and c represent inter-specific competition coefficients with (b, c) ∈ (0, 1) × (0, 1) and both intra-
specific competition coefficients are normalized to 1.

Let g belong to Cγ(Ω) for some γ satisfying 0 < γ < 1 with
∫

Ω
gdx ≥ 0 and g . 0. It is well known

that there is a unique positive solution to the following problem{
d∆$ +$(g(x) −$) = 0, in Ω,

∂ν$ = 0, on ∂Ω,
(1.2)

which is denoted by $d,g (see, e.g., [1]). This implies that system (1.1) admits two semi-trivial steady
states, denoted by (ωd1 , 0) and (0, ωd2), for every d1 > 0 and d2 > 0.

For system (1.1), when b = c = 1, one well-known and widely accepted result is due to
Hastings [10]. It was shown by Hastings [10] that the species with slower diffusion rate has advantage
against its competitor with larger diffusion rate, regardless of the initial values, which is contrary to
the case of m ≡ constant. When m ≡ constant, there is a compact global attractor consisting of a
continuum of steady states {((1 − s)m, sm)|s ∈ [0, 1]} connecting the two semi-trivial steady states to
system (1.1) for every d1, d2 > 0.

In an attempt to understand this phenomenon, Lou [11] adopted the weak competition approach to
study the system (1.1). Lou [11] verified that there exists a critical value for competition coefficient
c∗ in (0, 1) such that (i) for every c less than this critical value, if d1, d2 > 0, the steady state ($d1 , 0)
is unstable; (ii) for every c satisfying c∗ < c < 1, there exists d̄1 > 0 and d̄2 > 0 such that ($d1 , 0) is
unstable. Meanwhile, when c is in (c∗, 1), there exists a constant b∗ in (0, 1] such that for some (d1, d2)
in (0,+∞) × (0,+∞), ($d1 , 0) is globally asymptotically stable provided that b satisfies 0 < b ≤ b∗.
He and Ni [12] made a great breakthrough on the estimate of linear stability of any coexistence stead
state, and based on this, they provided a complete classification on all possible long time dynamical
behaviors of system (1.1). We refer to [13–16] for more investigations.

In addition to random dispersal, it is quite reasonable to suppose that species could take directed
movements due to certain external environment force or self-propelling in some environments. On
one hand, species will move downstream due to the unidirectional water flow in a river [17–19]. On
the other hand, the individuals are very smart so that they can sense and follow gradients in resource
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distribution [20–23] which can be modeled by the following competition-diffusion-advection system


ut = ∇ · (d1∇u − αu∇m1) + u[m1(x) − u − bv], in Ω × R+,

vt = ∇ · (d2∇v − βv∇m2) + v[m2(x) − cu − v], in Ω × R+,

(d1∇u − αu∇m1) · ν = (d2∇v − βv∇m2) · ν = 0, on ∂Ω × R+,

u(x, 0) = u0, v(x, 0) = v0, in Ω,

(1.3)

where d1 and d2 are random diffusion rates of species u and v, respectively. α and β measure the speed
of movement upward along the gradient of resources. m1 and m2 are intrinsic growth rates of u and
v, respectively. The boundary condition means that the environment is isolated. This system has been
frequently used as a standard model to study the evolution of conditional dispersal and a number of
related works have been done, see, e.g., [24–26] for α, β > 0, [27–29] for α > 0 = β when m1 = m2

and b = c = 1. For more investigations, we refer to [30–34].
Recently, Wang [21] studied system (1.3), and he established Σu and Σv (which can be seen in the

following definition) for m1 and m2 are non-constant under d1, d2, α and β satisfying certain conditions
and (b, c) in (0, 1]×(0, 1]. Xu and Jiang [22] investigated the dynamics of system (1.3) on the condition
that m1 is not a constant, m2 = m is a constant (∇m ≡ 0) and b = c = 1. In this case, advection rate β
has no effect on system (1.3). They showed that there exists a critical value for the diffusion rate d∗2 in
(0,+∞), and their results can be interpreted biologically in the following statements:

(i) The species u can always invade when the species v is rare for every d1, d2 > 0, and α ≥ 0.
(ii) For α/d1 ≤ 1/maxΩ m1, the species v can invade when the species u is rare, and the two species

will coexist if d2 is larger than d∗2.
(iii) If m1 is positive in Ω and α/d1 ≥ 1/minΩ m1, then the two species always coexist for every d2 > 0.

In this case, the species u has relatively strong advection, and then it leaves sufficient habitat for
v to evolve.

How does the inter-specific competition coefficients b and c affect the dynamics of system (1.3)
when m1 is not a constant and m2 is constant? What values of the inter-specific competition coefficient
b and c are favorable for the coexistence of the two species? In this paper, we shall discuss these topics
in detail. Throughout this paper, the basic assumption on b and c includes part of the range bc ≤ 1,
which contains the weak competition case (0 < b, c < 1) as well as b = c = 1. At first, we make the
following assumption.

(M) m1 belongs to C2+γ(Ω) for some γ satisfying 0 < γ < 1, and m2 = m is a non-negative constant,
m1 . m2. Moreover,

m =
1
|Ω|

∫
Ω

m1dx > 0.

Assumption (M), biologically, implies that the total resources for two competitors are fixed at
exactly the same level. Due to the assumption that m2 is a non-negative constant, it holds ∇m2 = 0,
then the advective rate of species v (i.e., β) has no effect on the dynamics of system (1.3). Moreover,
throughout this paper, we assume that d1, d2 > 0, d1 , d2 and α > 0.

Besides the assumption (M), we define ω := α/d1.
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Then system (1.3) becomes
ut = d1∇ · (∇u − ωu∇m1) + u[m1(x) − u − bv], in Ω × R+,

vt = d2∆v + v[m − cu − v], in Ω × R+,

(∇u − ωu∇m1) · ν = ∂νv = 0, on ∂Ω × R+,

u(x, 0) = u0, v(x, 0) = v0, in Ω.

(1.4)

We assume that the initial data u0, v0 of system (1.4) are non-negative and not identically zero, then
by maximum principle [35], we can obtain u > 0, v > 0. Under the assumption (M), for all d1, d2 > 0
and α > 0, there exist two semi-trivial steady states to system (1.4) (see [1,36]), denoted by (ūd1,ω,m1 , 0)
and (0,m) respectively, where ūd1,ω,m1 is the unique positive solution ( [37]) of{

d1∇ · (∇ū − ωū∇m1) + ū(m1 − ū) = 0, in Ω,

(∇ū − ωū∇m1) · ν = 0, on ∂Ω,
(1.5)

and m is the unique positive solution of{
d2∆v̄ + v̄(m − v̄) = 0, in Ω,

∂νv̄ = 0, on ∂Ω.
(1.6)

To study the dynamics of system (1.4), we should study the stability of semi-trivial steady states
(ū, 0) and (0,m). The stability of (ūd1,ω,m1 , 0) is determined by the principal eigenvalue of the following
linear problem {

d2∆ψ + (m − cūd1,ω,m1)ψ + λ1ψ = 0, in Ω,

∂νψ = 0, on ∂Ω,
(1.7)

which is denoted by λ1(d2,m − cūd1,ω,m1). The stability of (0,m) is determined by the principal
eigenvalue of the following linear problem{

d1∇ · (∇ψ − ωψ∇m1) + ψ(m1 − bm) + λ1ψ = 0, in Ω,

(∇ψ − ωψ∇m) · ν = 0, on ∂Ω,
(1.8)

which is denoted by λ1(d1, ω,m1 − bm).
Moreover, (ū, 0) is linearly stable if λ1(d2,m − cū) > 0 and it is unstable if λ1(d2,m − cū) < 0.

Similarly, (0,m) is linearly stable if λ1(d1, ω,m1 − bm) > 0 and it is unstable if λ1(d1, ω,m1 − bm) < 0.
To describe the first result, according to [12], for every d1 > 0, d2 > 0 and ω ≤ 1/maxΩ m1, we first

introduce several notations:

Σu := {(d1, d2) ∈ Γ : (ūd1,ω,m1 , 0) is linearly stable},

Σv := {(d1, d2) ∈ Γ : (0,m) is linearly stable},

Σ− := {(d1, d2) ∈ Γ : both (ūd1,ω,m1 , 0) and (0,m) are linearly unstable},

where Γ := R+ × R+ and R+ = (0,∞).

Define 
Lu := inf

d1>0,0<ω≤ 1
max

Ω
m1

m
ūd1 ,ω,m1

∈ [0,+∞),

S u := sup
d1>0,0<ω≤ 1

max
Ω

m1

sup
Ω

m
ūd1 ,ω,m1

∈ (0,+∞], (1.9)
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and

Ξ := {(b, c)|b, c > 0 and bc ≤ 1} ∪ {(b, c)|0 < c ≤
1

S u
} ∩ {(b, c)|0 < b ≤ 1}.

In particular, if (M) holds, then

0 < Lu <
m
m1

= 1 ≤ S u < ∞.

To characterize the set Σu in terms of c > 0, for each c > 0 and ω ≤ 1/maxΩ m1, we define

Ic := {d1 :
∫

Ω

(m − cūd1,ω,m1)dx < 0} := I0
c

⋃
I1
c , (1.10)

where

{
I0
c := {d1 : m − cūd1,ω,m1 ≤ (.) on Ω},

I1
c := {d1 ∈ Ic : supΩ(m − cūd1,ω,m1) > 0}.

(1.11)

In fact, we have the following equivalent descriptions:


Σu := {(d1, d2) ∈ Γ : λ1(d2,m − cūd1,ω,m1) > 0},
Σv := {(d1, d2) ∈ Γ : λ1(d1, ω,m1 − bm) > 0},
Σ− := {(d1, d2) ∈ Γ : λ1(d2,m − cūd1,ω,m1) < 0 and λ1(d1, ω,m1 − bm) < 0}.

(1.12)

The first result is as follows.

Theorem 1.1. Suppose that (M) holds and suppose ω ≤ 1/maxΩ m1. Let Lu and S u be defined as in
Eq (1.9), and let (b, c) be in Ξ. Then we have Σv = ∅, and the following results hold:

(i)

Σu =


∅, 0 < c ≤ Lu,

{(d1, d2) : d1 ∈ Ic, d2 > d∗2(d1) > 0}, Lu < c < S u,

Γ, c ≥ S u,

(1.13)

where d∗2(d1, ω) is defined as follows:

d∗2(d1) =

 0, d1 ∈ I0
c ,

1
µ1(d2,m−cūd1 ,ω,m1 ) , d1 ∈ I1

c ,

Ic, I0
c and I1

c are defined in Eqs (1.10) and (1.11);
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(ii) there exists at least one stable positive coexistence steady state for system (1.4) if (d1, d2) ∈ Σ−,
where

Σ− =


Γ, c ≤ Lu,

∅, c ≥ S u,

{(d1, d2) : I1
c , d2 <

1
µ1(d2,m−cūd1 ,ω,m1 ) }, Lu < c < S u.

(1.14)

Remark 1.1. In Theorem 1.1, we consider the case of ω ≤ 1/maxΩ m1. We divides the region of
bc-plane discussed in Theorem 1.1 into three parts. Species v can invade the space occupied by the
species u so that would coexist with species u when c ≤ Lu and 0 < b ≤ 1. When c takes on the
intermediate value, that is Lu < c < S u, whether the two species will coexist or not is dependent on the
values of random diffusion rates d1, d2 and the ratio ω. This result generalizes (Theorem 1.2 [22]) in
which the authors discussed the case where the inter-specific competition coefficients b and c were 1.
If c ≥ S u, then (ūd1,ω,m1 , 0) is linearly stable. These results are similar to the non-advection case
(Theorem 3.3 [12]). It means that in an advective environment, as long as the ratio of advection rate to
random diffusion rate is appropriately small, advection contributes to dispersal much less than random
diffusion, and a sufficient amount of diffusive movement can counterbalance the advection.

When ω ≥ 1/minΩ m1, the following result holds.

Theorem 1.2. Suppose that (M) holds, and m1 is positive for all x in Ω. If ω ≥ 1/minΩ m1, then
there exists at least one stable positive coexistence steady state for system (1.4) provided that (b, c) ∈
(0, 1] × (0, 1].

Remark 1.2. Theorem 1.2 implies that, when α/d1 ≤ 1/maxΩ m1, for every (b, c) ∈ (0, 1] × (0, 1] and
d2 > 0, species v can invade the space occupied by the species u, thereby the two species could coexist.
This result generalizes (Theorem 1.5 [22]) for b = c = 1 case. From a biological point of view, if
the ratio of advection rate α to random diffusion rate d1 of species u is appropriately large, advection
plays a dominant role in dispersal for species u. Species v adopts random diffusion strategy. Due to the
advection, the species u concentrates at somewhere richer in resources, therefore, there leaves sufficient
resources for species v to survival. Thereby, the two species coexist.

Figure 1 illustrates the region which is part of bc-plane considered in Theorems 1.1 and 1.2.

0

c

b1

1 1

1

maxd m

a

W

£

u
S

u
L

1bc =

u
= Gå

= Gå

,
u

V

f

f

¹

=

å å
å

0

c

b

1

1

å

1 1

1

mind m

a

W

³

Figure 1. Shapes of Σu, Σv and Σ−.
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The rest of this paper is organized as follows. In Section 2, we present some preliminary results
which will be used in verifying our results. Section 3 is devoted to establishing our main results. We
give a short discussion in Section 4.

2. Preliminaries

Since system (1.4) generates a monotone dynamical system, the potential population dynamics, to
a large extent, can be determined by the qualitative properties of its steady states. For a monotone
dynamical system, we have the following conclusions (see, e.g., (Proposition 9.1 and Theorem 9.2
[38]):

(I). If both semi-trivial steady states of a monotone dynamical system are unstable, then there is at
least one locally stable coexistence steady state;

(II). If a monotone dynamical system has no coexistence steady state, then one of the semi-trivial
steady state is unstable and the other is globally asymptotically stable.

Let µ1(h) denote the unique nonzero principal eigenvalue of{
∆ϕ + µh(x)ϕ = 0, in Ω,

∂νϕ = 0, on ∂Ω,
(2.1)

where h . constant and could change sign.
The following lemma collects some important properties of µ1(h). The proof can be found in [39–

41].

Lemma 2.1. The problem (2.1) admits a nonzero principal eigenvalue µ1 = µ1(h) if and only if∫
Ω

hdx , 0 and h changes sign. More precisely, if h changes sign, then

(i)
∫

Ω
hdx = 0⇔ 0 is the only principal eigenvalue;

(ii)
∫

Ω
hdx > 0⇔ µ1(h) < 0;

(iii)
∫

Ω
hdx < 0⇔ µ1(h) > 0;

(iv) µ1(h1) > µ1(h2) if h1 ≤ h2 a.e., and h1 and h2 both change sign;
(v) µ1(h) is continuous in h; more precisely, µ1(hl)→ h in L∞(Ω).

In order to analyze the principal eigenvalue of problem (1.7), for convenience, we consider the
following more general form of eigenvalue problem:{

d∆ψ + h(x)ψ + λ1ψ = 0, in Ω,

∂νψ = 0, on ∂Ω.
(2.2)

Denote the principal eigenvalue of problem (2.2) by λ1(d, h). By the variational approach, λ1(d, h)
can be characterized by

λ1(d, h) = inf
ψ∈H1(Ω)\0

∫
Ω

d|∇ψ|2dx − hψ2dx∫
Ω
ψ2dx

.

The following lemma collects some important properties of λ1(d, h) as well as the connection
between λ1(d, h) and µ1(h) (see [40]).
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Lemma 2.2. The first eigenvalue λ1(d, h) of problem (2.2) depends smoothly on d > 0 and continuously
on h ∈ L∞(Ω). Moreover, it has the following properties:

(i)
∫

Ω
hdx ≥ 0⇒ λ1(d, h) < 0 for all d > 0;

(ii)

∫
Ω

hdx > 0⇒


λ1(d, h) < 0, for all d < 1

µ1(h) ,

λ1(d, h) = 0, for all d = 1
µ1(h) ,

λ1(d, h) > 0, for all d > 1
µ1(h) ;

(2.3)

(iii) λ1(d, h) < λ1(d, k) if h ≥ k and h . k. In particular λ1(d, h) > 0 if h ≥ (.)0.

To study the stability of the semi-trivial steady state (0,m), it is needed to introduce the following
linear eigenvalue problem{

d∇ · (∇ψ − ωψ∇m) + h(x)ψ + λ1ψ = 0, in Ω,

(∇ψ − ωψ∇m) · ν = 0, on ∂Ω.
(2.4)

Denote the principal eigenvalue of problem (2.4) by λ1(d, ω, h). Then λ1(d, ω, h) can be expressed
by the following variational formula (see, e.g., [1])

λ1(d, ω, h) = inf
ψ∈H1(Ω)\0

∫
Ω

deωm|∇ψ|2dx −
∫

Ω
eωmhψ2dx∫

Ω
eωmψ2dx

,

where h ∈ C(Ω) is not a constant. Then we obtain the following result [1].

Lemma 2.3. Let λ1(d, ω, h) be the principal eigenvalue of problem (2.4). Suppose that h is a continuous
function on Ω and h is not a constant. Then we have the following result

h1 ≥ h2 ⇒ λ1(d, ω, h1) ≤ λ1(d, ω, h2),

and the equality holds only if h1 ≡ h2.

The proofs of our results depend heavily on the following result.

Lemma 2.4. Assume that m ∈ C2(Ω), m . constant and
∫

Ω
mdx ≥ 0 (m may change sign). Then there

exists a unique positive solution to the steady state problem{
∇ · (d∇ū − αū∇m) + ū(m − ū) = 0, in Ω,

(d∇ū − αū∇m) · ν = 0, on ∂Ω,
(2.5)

which is denoted by ū. Moreover,

(i) if α/d ≤ 1/maxΩ m, then
∫

Ω
ūdx >

∫
Ω

mdx;
(ii) if m > 0 in Ω, and α/d ≥ 1/minΩ m, then

∫
Ω

ūdx <
∫

Ω
mdx.
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Proof. The existence and uniqueness of positive solution ū is well-known [36]. For the proof of (i) see
Lemma 3.1 in [22]. For the proof of (ii), see Lemma 4.1 in [24]. For completeness, we provide a proof
of (i).

If α/d ≤ 1/maxΩ m, set
η = e−

α
d mū.

Then η satisfies {
d∇ · [e

α
d m∇η] + ū(m − ū) = 0, in Ω,

∂νη = 0, on ∂Ω.
(2.6)

Let η(x∗) = maxΩ η. Then we can always choose x∗ ∈ Ω. If x∗ ∈ ∂Ω, then η(x) < η(x∗) for all x ∈ Ω.
By the Hopf boundary lemma ( [42]), ∂η

∂ν
(x∗) > 0. This contradicts the boundary condition ∂νη = 0 on

∂Ω, which implies that x∗ can be chosen in Ω. For such x∗ ∈ Ω, it holds that ∆η(x∗) ≤ 0,∇η(x∗) = 0.
Thus, by the equation of η, we have ū(x∗) ≤ m(x∗). Therefore,

max
Ω

η = e−
α
d m(x∗)ū(x∗) ≤ e−

α
d m(x∗)m(x∗) ≤

d
αe
, (2.7)

where the last inequality follows from ye−
α
d y ≤ d/αe. It follows that η(x) ≤ d/αe for every x ∈ Ω. Then

due to α/d ≤ 1/maxΩ m, we have

ū = e
α
d m(x)η(x) ≤ e

α
d max

Ω
m max

Ω

η ≤
d
α
, for all x ∈ Ω. (2.8)

Define a function f (y) = ye−
α
d y, y ∈ [0, d/α]. Since f ′(y) > 0 for y ∈ [0, d/α], f has an inverse

function, denoted by s. It is obvious that s is defined in [0, d/αe], and its range is [0, d/α]. Hence, for
each x ∈ Ω, f (ū(x)) and s(η(x)) is well-defined by Eqs (2.7) and (2.8).

Dividing system (2.6) by s(η) and integrating in Ω, we obtain

d
∫

Ω

e
α
d ms′(η)|∇η|2

s2(η)
dx +

∫
Ω

ū
s(η)

(m − ū)dx = 0,

which can be written as∫
Ω

(m − ū)dx = d
∫

Ω

e
α
d ms′(η)|∇η|2

s2(η)
dx +

∫
Ω

ū − s(η)
s(η)

(m − ū)dx.

Next we prove the following inequality

[ū − s(η)](m − ū) ≥ 0, in Ω. (2.9)

If ū(x) < m(x), we have f (ū(x)) = ū(x)e−
α
d ū(x) > ū(x)e−

α
d m(x) = η(x), then by the strictly monotone

increasing property of s, it holds that ū(x) > s(η(x)), and then Eq (2.9) follows.

If ū(x) ≥ m(x), we have f (ū(x)) = ū(x)e−
α
d ū(x) ≤ ū(x)e−

α
d m(x) = η(x). It follows that ū(x) ≤ s(η(x)),

and Eq (2.9) holds either in this case.
Hence, we obtain

∫
Ω

ūdx >
∫

Ω
mdx if α/d ≤ 1/maxΩ m.
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3. Proof of the main results

Firstly, we prove the unstability of (0,m) for every d1, d2 > 0, and ω > 0 by employing a method
similar to that used in [22].

Lemma 3.1. Suppose that (M) holds. Then for every d1, d2 > 0 and ω > 0, (0,m) is unstable provided
b in (0, 1] and c > 0.

Proof. Let λ1(d1, ω,m1 − bm) be the principal eigenvalue of problem (1.8) and let ψ > 0 be the
corresponding eigenfunction. Then{

d1∇ · (∇ψ − ωψ∇m1) + ψ(m1 − bm) + λ1ψ = 0, in Ω,

(∇ψ − ωψ∇m1) · ν = 0, on ∂Ω.
(3.1)

Consider {
d1∇ · (∇ψ − ωψ∇m1) + ψ(m1 − m) + λ1ψ = 0, in Ω,

(∇ψ − ωψ∇m1) · ν = 0, on ∂Ω.
(3.2)

Set φ = e−ωm1ψ. Then φ satisfies{
d1∇ · (eωm1∇ψ) + eωm1(m1 − m)ψ + λ1eωm1ψ = 0, in Ω,

∂νψ = 0, on ∂Ω.
(3.3)

Dividing Eq (3.3) by ψ and integrating in Ω, we have

d1

∫
Ω

eωm1 |∇ψ|2

ψ2 dx +

∫
Ω

(m1 − m)eωm1dx + λ1

∫
Ω

eωm1dx = 0. (3.4)

Define
Ω+ = {x ∈ Ω|m1(x) ≥ m}, Ω− = {x ∈ Ω|m1(x) < m},

then Ω = Ω+
⋃

Ω−, and∫
Ω

(m1 − m)eωm1dx =

∫
Ω+

(m1 − m)eωm1dx +

∫
Ω−

(m1 − m)eωm1dx

>

∫
Ω+

(m1 − m)eωmdx +

∫
Ω−

(m1 − m)eωmdx

= eωm[
∫

Ω+

(m1 − m)dx +

∫
Ω−

(m1 − m)dx]

= eωm
∫

Ω

(m1 − m)dx

= 0. (3.5)

It follows from Eqs (3.4) and (3.5) that λ1(d1, ω,m1 − m) < 0. In view of Lemma 2.3, we derive

λ1(d1, ω,m1 − bm) ≤ λ1(d1, ω,m1 − m) < 0,

which implies that (0,m) is linearly unstable.
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Proof of Theorem 1.1. According to Lemma 3.1, it holds that Σv = ∅. Next we give the proof of
Eq (1.13) in two steps.

Step 1. (d1, d2) ∈ Σu indicates that d1 ∈ Ic.

From Eq (1.12), we know

Σu := {(d1, d2) ∈ Γ : λ1(d2,m − cūd1,ω,m1) > 0}.

Suppose that d1 < Ic, where Ic is defined in Eq (1.10). Then
∫

Ω
(m − cūd1,ω,m1)dx ≥ 0. By Lemma 2.2

(i), λ1(d2,m − cūd1,ω,m1) ≤ 0 for all d2 > 0, i.e., (d1, d2) < Σu. Hence (d1, d2) ∈ Σu implies that d1 ∈ Ic.

Step 2. Characterize the set Ic for all c > 0 in detail.

If c ≤ Lu, by the definition of Lu in Eq (1.9),
∫

Ω
(m − cūd1,ω,m1)dx ≥ 0 for all d1 > 0. Hence Ic = ∅

and Σu = ∅. Moreover,

I1
c , ∅ if and only if Lu < c < S u. (3.6)

Indeed, if d
′

1 ∈ I1
c , ∅, then Lu < c and for some x0 ∈ Ω, it follows that

c <
m

ūd′1,ω
′,m1

(x0)
≤ S u,

where ω′ = α/d
′

1. Hence I1
c , ∅ gives rise to Lu < c < S u.

On the other hand, if Lu < c < S u, then there exists some d
′′

1 > 0 (ω
′′

= α/d
′′

1 ) and y0 ∈ Ω such that

m − cūd′′1 ,ω
′′
,m1

(y0) > 0 and
∫

Ω

(m − cūd′′1 ,ω
′′
,m1

)dx < 0,

i.e., d
′′

1 ∈ I1
c , ∅. This finishes the proof of Eq (3.6).

We now claim that Ic admits the following decomposition:
Ic = ∅, if c ≤ Lu,

Ic = (I0
c ∪ I1

c ) ⊂ R+, if Lu < c < S u,

Ic = I0
c = R+, if c ≥ S u.

(3.7)

To finish the proof of Eq (3.7), it suffices to show that if S u < +∞ and c ≥ S u, then Ic = I0
c = R+. By

the definition of S u in Eq (1.9), we deduce that

m − cūd1,ω,m1 ≤ 0, in Ω.

Hence to show that Ic = I0
c = R+, it suffices to show that m − cūd1,ω,m1 . 0 for c ≥ S u. Since m is a

constant, this is obviously true if c > S u. This finishes the proof of Eq (3.7).
Therefore

c ≥ S u ⇒ Ic = I0
c ⇒ m − cūd1,ω,m1 ≤. 0⇒ λ1(d2,m − cūd1,ω,m1) > 0, (3.8)

i.e., Σu = Γ.
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Now assume that Lu < c < S u and d1 ∈ Ic. If d1 ∈ I0
c , by Lemma 2.2 (iii), λ1(d2,m − cūd1,ω,m1) > 0,

then for any d1 ∈ I0
c , (ūd1,ω,m1 , 0) is linearly stable. If d1 ∈ I1

c , then λ1(d2,m − cūd1,ω,m1) > 0 for all
d2 > 1/µ1(d2,m − cūd1,ω,m1) by Lemma 2.2 (ii). Thus after defining

d∗2(d1) =

 0, d1 ∈ I0
c ,

1
µ1(d2,m−cūd1 ,ω,m1 ) , d1 ∈ I1

c ,

we obtain that, when Lu < c < S u, (d1, d2) ∈ Σu if and only if d1 ∈ I1
c , d2 > 1/µ1(d2,m − cūd1,ω,m1) or

d1 ∈ I0
c , d2 > 0.

Finally, we prove Eq (1.14).

If c ≤ Lu, then
∫

Ω
(m−cūd1,ω,m1)dx ≥ 0 for all d1 > 0. Hence by Lemma 2.2 (i), λ1(d2,m−cūd1,ω,m1) ≤

0 for all (d1, d2) ∈ Γ and λ1(d2,m − cūd1,ω,m1) = 0 if and only if c = Lu and m ≡ Luūd1,ω,m1 . Due to
the fact that m is a constant, it is easy to see that the equality m ≡ Luūd1,ω,m1 is not true, which implies
that for all (d1, d2) ∈ Γ, λ1(d2,m − cūd1,ω,m1) < 0, i.e., (ūd1,ω,m1 , 0) is unstable. If c ≥ S u, by Eq (3.8),
λ1(d2,m − cūd1,ω,m1) > 0, then for all (d1, d2) ∈ Γ, (ūd1,ω,m1 , 0) is linearly stable. If Lu < c < S u,
for d1 ∈ I0

c , λ1(d2,m − cūd1,ω,m1) > 0 for all d2 > 0. For d1 ∈ I1
c , λ1(d2,m − cūd1,ω,m1) < 0 for all

d2 < 1/µ1(d2,m − cūd1,ω,m1). Then

Σ− =


Γ, c ≤ Lu,

∅, c ≥ S u,

{(d1, d2) : d1 ∈ I1
c , d2 <

1
µ1(d2,m−cūd1 ,ω,m1 ) }, Lu < c < S u.

By the theory of monotone dynamical system, we derive that system (1.4) has at least one coexistence
steady state for Σ−. This finishes the proof of Theorem 1.1.

Proof of Theorem 1.2. If (M) holds, m1 > 0 in Ω, and ω ≥ 1/minΩ m1, then by Lemma 2.4, the
unique positive solution ūd1,ω,m1 of Eq (1.9) satisfies

∫
Ω

ūd1,ω,m1dx <
∫

Ω
m1dx.

Indeed, by the theory of monotone dynamical system, we only need to prove that (ūd1,ω,m1 , 0) is
unstable. It is sufficient to show that the principal eigenvalue λ1 of the problem{

d2∆ψ + (m − cūd1,ω,m1)ψ + λ1ψ = 0, in Ω,

∂νψ = 0, on ∂Ω,
(3.9)

is negative.
Consider the following principal eigenvalue problem{

d2∆ψ + (m − ūd1,ω,m1)ψ + λ1ψ = 0, in Ω,

∂νψ = 0, on ∂Ω.
(3.10)

Dividing system (3.10) by ψ, integrating in Ω, we obtain∫
Ω

(ūd1,ω,m1 − m)dx − d2

∫
Ω

|∇ψ|2

ψ2 dx =

∫
Ω

λ1dx.

Since ω ≥ 1/minΩ m1(x), it holds that
∫

Ω
(ūd1,ω,m1−m)dx =

∫
Ω

(ūd1,ω,m1−m1)dx < 0. Then λ1(d2,m−ū) <
0. From Lemma 2.2 (iii)

λ1(d2,m − cūd1,ω,m1) ≤ λ1(d2,m − ū) < 0,
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for c ∈ (0, 1].
Then (ūd1,ω,m1 , 0) is unstable. From the proof of Lemma 3.1, we know that (0,m) is unstable for

(b, c) ∈ (0, 1] × (0, 1] and by the theory of monotone system, system (1.4) has at least one stable
positive coexistence steady state.

4. Discussion

We study the dynamics of a Lotka-Volterra competition-diffusion-advection model. The two
competing species u and v adopt the dispersal strategies of a combination of random dispersal and
biased movement upward along the resource gradient ∇mi (i=1,2) (the species are very smart and they
will move toward regions richer in resources). In this paper, it is assumed that the two species have
the same level of total resources but the species v adopts the homogeneous distribution and its
competitor, the species u, adopts heterogenous distribution. This means that ∇m2 ≡ 0 which implies
that the species v only experiences random dispersal but has no biased movement.

Based on the above assumptions, we mainly study the effect of the inter-specific competition
coefficients on the dynamics of system (1.4). From Lemma 3.1, (0,m) is unstable for each one of the
following conditions: d1, d2 > 0, α ≥ 0, and 0 < b ≤ 1, 0 < c. This phenomenon indicates that the
homogeneous distribution is disadvantageous for v, therefore the species u can always invade the
species v. To study the coexistence regime for system (1.4), we discuss two cases. For the case of
α/d1 ≥ 1/minΩ m1, the species u and v will coexist for every d2 > 0 and (b, c) ∈ (0, 1] × (0, 1], see
Theorem 1.1. From a biologic perspective, this case can be explained noting that the species u is
characterized by a relatively strong advection, and then it leaves sufficient habitat for v to evolve. This
result generalizes that in [22] for b = c = 1. For the case of α/d1 ≤ 1/maxΩ m1, whether u and v will
coexist depends on the values of d1, d2 and c. In order to discuss this case, we define S u, Lu and Ic. We
find that if c ≤ Lu, for all d1 > 0 and d2 > 0 the two species coexist. When c takes on the intermediate
values, that is, Lu < c < S u, whether the two species will coexist or not is dependent on the values of
d1, d2 and ω. If c ≥ S u, species v can not displace species v. These results are obtained in Theorem 1.2
which is more complex than Theorem 1.3 in [22].

For α/d1 in the interval (1/maxΩ m1, 1/minΩ m1), the dynamics of system (1.4) becomes more
complicated. Moreover, for a general form of system (1.3), the dynamical behavior is known to be
very limited and this case is far away from a complete understanding.
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