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Abstract: To fully extract the local and long-range information of amino acid sequences and enhance
the effective information, this research proposes a secondary structure prediction model of protein
based on a multi-scale convolutional attentional neural network. The model uses a multi-channel multi-
scale parallel architecture to extract amino acid structure features of different granularity according to
the window size. The reconstructed feature maps are obtained via multiple convolutional attention
blocks. Then, the reconstructed feature map is fused with the input feature map to obtain the enhanced
feature map. Finally, the enhanced feature map is fed to the Softmax classifier for prediction. While
the traditional cross-entropy loss cannot effectively solve the problem of non-equilibrium training
samples, a modified correlated cross-entropy loss function may alleviate this problem. After numerous
comparison and ablation experiments, it is verified that the improved model can indeed effectively
extract amino acid sequence feature information, alleviate overfitting, and thus improve the overall
prediction accuracy.

Keywords: convolutional neural network; classification; attention mechanism; cross entropy loss;
multi channel ; protein

1. Introduction

Proteins not only provide the material for basic life activity, but they also provide the theoretical
basis for “attack of disease” theories [1]. In proteins, 85% of amino acid residues are in three basic
secondary structure states: alpha-helix, beta-fold, and random coiling. Additionally a small
percentage of beta-turns are also basic secondary structure states. The composition of secondary
protein structures are highly regular; these structures are also non-uniformly distributed throughout
the protein [2]. The accurate prediction of secondary structures can provide useful information for
protein disorder prediction [3] and protein tertiary structure prediction [4]. The secondary structure of

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2021170


3405

Protein also helps to identify protein functional domains and can guide the rational design of
site-specific mutagenesis experiments.

Prediction of secondary structures of protein originated in the last century, mainly via amino acid
sequences. For example, Rost et al. [5] proposed a PHD-based protein prediction algorithm that used
evolutionary information contained in multiple sequence alignments as input to a neural network, the
accuracy of predicting the secondary structures of the protein was over 70%. Later, more information
on protein features was added by capturing local and long-range protein information. Prediction
studies were also carried out by combining support vector machines [6, 7], Markov models [8],
Bayesian, and other statistical methods. Kurniawan et al. [9] combined PSSM features and
physicochemical features of protein structures with SVM for prediction with an accuracy of about
80%. In [10], the authors combined PSSM features, hydrophobic sequence features (HSF) and
structural sequence features (SSF) to obtain an overall accuracy of 78%. Zhang et al. [11] proposed
combining motif encoding with PSSM features and using an autoencoder for protein prediction, and
finally demonstrated that the method was 1.39% higher than using the autoencoder alone. In [7], the
authors combined 21 PSSM features and 4 amino acid physicochemical property features to transform
the input features into a 25 × L (L is the length of the protein) feature matrix, which was input into a
hybrid SVM structure for prediction. The method obtained an accuracy of 85.58% in CB513 data.
However, these methods require manual construction of task-related features, which are not universal
and require high labor costs.

In recent years, deep learning techniques have received increasing attention from researchers due
to their properties such as powerful data fitting ability and automatic feature generation [12, 13].
Secondary structure prediction based on deep learning has become a current hot research topic. For
example, PSIPRED [14] is a popular framework for predicting secondary structures based on neural
networks. It uses a PSSM matrix as the input along with two model frameworks. The fully connected
neural network of each stage contains a hidden layer. PSIPRED combines the PSSM matrix and the
neural network; the performance of the method exceeds the expectations, but because it only uses a
simple fully connected neural network, the model framework is too simple and has been improved by
many researchers. For example, Wang et al. [15] proposed combining PSSM with Conditional Neural
Fields (CNF). The constructed DEEPCNF prediction algorithm has made a big break-through in the
prediction of secondary structures of protein. In 2018, Ma and Liu et al. [16] proposed a method
based on data partitioning and the semi-random subspace method (PSRSM). PSRSM is based on the
traditional random subspace method, which was able to improve the accuracy of 85.89%, which
effectively ensured the accuracy of the basic classifier. Yaseen et al. [17] studied a template-based
method that began by constructing a structural template from a known protein structure with a certain
sequence similarity and then incorporated the structural template as a feature with sequence and
evolutionary information into two feedforward nerves. Prediction within the network, using 7-fold
cross-validation, reached an accuracy of 80%. Heffernan et al. [18] used long short-term memory
(LSTM) bidirectional recurrent neural networks (BRNNs) to capture the predicted protein residue
types from the non-local interactions between amino acid sequence position distances. The team
developed a tool, called SPIDER3 that achieved 84% accuracy of Q3. In 2018, Fang et al. [19]
considered local and global interactions between amino acids; they proposed a Deep3I deep neural
network and developed the MUFOLD-SS tool, resulting in an accuracy of 85% for protein prediction.
In [20], a prediction method, called DeepACLSTM, used a deep Asymmetric Convolutional Neural
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Networks (ACNNs) and LSTM model to extract the ACNN, which is used to extract amino acids
from local complex environments. LSTM is used to capture remote interdependencies. In [21], the
authors also combined Convolutional Neural Networks and LSTM for prediction and achieved an
accuracy of 70.7% for Q8 on CB513. Recently, [22, 23] proposed an end-to-end learning framework
for protein contact prediction that can effectively use information obtained from deep or shallow
MSAs, and the model is not only able to make accurate predictions of protein secondary structures,
but also to improve the accuracy of predictions of 3D structures. Zhao et al. [24] used adversarial
networks and convolutional neural network models to simulate strong correlations and long-range
interactions between amino acid residues and achieved better prediction results.

The secondary structure of amino acid resides in a protein chain depends not only on the local
structural information of the protein chain, it is also influenced by distant amino acid fragments.
There is still no good method to effectively use these two aspects of information when predicting the
secondary structure of a protein. Additionally, the difficulty of secondary structure prediction lies in
the fact that the structures of different regions are too similar to extract effective information or
suppress invalid information of protein sequences, making it difficult to discriminate between the
structures of proteins. Thus, we propose a multi-scale multi-channel network model and correlation
cross-entropy loss function (COCRS Loss) to solve the secondary structure prediction of protein. The
main contributions of this research are as follows.

• This work designs a multi-scale, multi-channel convolutional network model, where each
channel uses convolutional kernels of different scales to extract local feature information of
different granularity. As the number of convolutional layers increases, the interaction
information of the data at a distance is gradually extracted. This provides the model with the
ability to simultaneously extract local features of protein sequences and capture remotely
dependent information.
• This work uses a multi-channel model for multi-task feature extraction and fusion to achieve

interoperability of feature information between multiple tasks, so that the model can more fully
exploit the interaction information between protein sequences.
• This model introduces a convolutional attention mechanism between space and channels, and

adaptively combines sequential relationships between information to reflect the importance of
different positions. It enables the model to pay more attention to the important features in the
sequence structure and to better obtain prediction accuracy.
• This work proposes correlation cross-entropy (COCRS Loss) as a loss function to automatically

solve the unbalanced nature of the training samples. It improves the ability of the model to resist
gradient dispersion, speeds up convergence of the model, and enhances the generalization ability
of the model.

2. Related works

2.1. Dataset and coding

The publicly datasets used in this study include ASTRAL [25], CullPDB [26], Casp10 [27], Casp11
[28], Casp12 [29], and Casp9 [27]. We selected data based on a 25% percent identity cut, a 3 Å
resolution cut, and an R-factor cut of 0.25. The specific experimental data are shown in Table 1.
Protein secondary structure types were defined using the DSSP [30]. The DSSP has eight classes of
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secondary structures: H (α-helix), G (3-helix), I (5-helix), E (fold), B (β-turn), T (turn), S (bend and
roll), and helix (‘ ’), which are usually divided into three classes. In the experiment, we substituted
H, G, I for H; E, B for E; and other states for C, which usually results in lower prediction accuracy than
other definitions. To encode the protein data, we used the PSI-BLAST [31] tool to call 3 iterations,
with the detection evolution matrix set to a BLOSUM62 matrix and the E-value is set to 0.00l. Each
protein sample in the dataset was searched to generate the corresponding PSSM matrix (20×L), where
L is the length of the amino acid sequence, 20 represents the amino acid number of types, and each
type represents the likelihood of a residue mutating into the corresponding amino acid type.

Table 1. Statistical data in datasets.

Datasets Number of protein Number of amino acids
Casp9 122 15193
Casp10 99 12742
Casp11 81 9040
Casp12 19 1717
ASTRALCULL 15696 3863251

To better obtain residue sequence information and predict the secondary structure of the central
residue, we used a sliding window [24] to partition the PSSM matrix and set the sliding window value
to 13 to transform the data. We are able to generate a feature code of 20 × 13, which was mainly used
as input for the first channel in the model. Figure 1 shows the slicing of the amino acid sequence in one
pass with a slicing window of size 13. To enrich the experiment, the sliding window values were again
set to 19 and 27, at which point a protein feature was transformed into 20 × 19 and 20 × 27 feature
codes, which were used as inputs for the second and third channels in the model.

Figure 1. Part of the data after slicing and processing.
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2.2. Convolutional neural network

This study uses convolutional neural networks (CNN) [32] to autono-mously extract amino acid
residue features for adaptive learning. The neural network structure diagram is shown in Figure 2. It
mainly learns to extract local features of the input data through convolutional and pooling layers to
extract and retain important information of the representations.

Figure 2. Convolutional neural network structure diagram.

Convolutional layers are typically used to process various forms of input data. Each convolutional
layer consists of a Feature Map (FM) and a convolutional kernel, which moves in fixed steps over the
Feature Map and performs a convolutional operation with the corresponding positions of the local field
of perception, and finally passes through the activation function to obtain the output value. Which is
defined as follows:

yh
i = ReLU

 n∑
i=1

wh−1
i ⊗ xh

i + bi, 0

 (2.1)

where Wh−1 is the region map generated from the input amino acid PSSM encoding matrix and the
convolution kernel of the previous layer. yi is the feature map obtained after convolution of the h − th
layer. bi is the corresponding weight bias, and ReLU is a nonlinear activation function [33]. Usually in
CNN, each layer of feature data is subjected to a non-linear activation function to activate the data. In
this study, we use the sigmoid and ReLU activation functions in Figure 3 to activate the weighted data.
In this study, we use the sigmoid and ReLU activation functions in Figure 3 to activate the weighted
data. It can be seen that the softsign function has a smoother curve and slower rate of derivative decline
than the ReLU function, which to some extent alleviates the problem of slow convergence and gradient
disappearance.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3404–3422.
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Figure 3. Schematic representation of the ReLU and softsign activation functions.

The pooling layer acts as a secondary extraction of features, extracting the most important feature
information in the sequence on the basis of reducing the number of feature values. The fully connected
layer is the process of linearly transforming the extracted features from one feature space to another,
and its core operation is the matrix vector product. In this paper, the Dropout mechanism is used for
the fully-connected layer. By randomly “pausing” and “restarting” the neurons in the convolutional
neural network with a certain probability, the network’s ability to fit the data is effectively improved.
The Dropout expression of the fully connected layer is shown in Eq (2.2).

yi = wi (xi ⊗ bi) (2.2)

where xi represents the input vector of the i − th layer, yi represents the corresponding output vector,
wi represents the weight matrix of the i − th layer, and bi is a mask that obeys the binomial bernoulli
distribution. In the training phase, the dropout method randomly sets the mask to be 0 with a certain
probability. Finally, the network outputs the probability that each sample belongs to the corresponding
class through the softmax classifier.

2.3. Attention module

In order to improve the ability of the model to extract key features. We add Convolutional Block
Attention Module (CBAM) [34] to the CNN to extract the key features. The CBAM structure is shown
in Figure 4. The input feature map is sequentially obtained through the channel and spatial attention
module to obtain the refined feature map (Refined Feature), which can be seen as a significant feature
extracted in both the channel and spatial dimensions.

Figure 4. Convolutional Block Attention Module (CBAM) flowchart.
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(a) Diagram of the Channel attention module process. (b) Diagram of the spatial attention module process.

Figure 5. Diagram attention module process.

2.3.1. Channel attention block

In order to obtain the channel features, the convolutional feature matrix xk(i, j) ∈ RH×W×K is used
as input (H, W are the length and width of the feature map, K represents the number of filters). We
provide a diagram in Figure 5(a) to depict the detailed process of the channel attention module. The
input xk is subjected to a basic convolution operation and the resulting features then enter the global
average pooling and global maximum pooling branches for the purpose of feature enrichment. The
global average pooling calculation is shown in Eq (2.3):

xa
k = ReLU

 1
H ×W

H∑
i=1

W∑
j=1

xk(i, j), 0

 (2.3)

where xa
k is the average pooling weight of the k − th filter of the output. xk(i, j) is the input feature

layer. H ×W represents information about the spatial dimension of the feature matrix. ReLU() is the
activation function. The global maximum pooling calculation is shown in Eq (2.4):

xm
k = max

[
ReLU (xk(i, j)) , 0

]
i = 1 . . .H j = 1 . . .W (2.4)

where xm
k is the maximum pooling weight of the k − th filter of the output. xk(i, j) is the input feature

layer. ReLU() is the activation function.
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The output two feature maps are then summed element by element and fed into a fully connected
layer with compression operation (r is the compression ratio), and activated using the Sigmoid function
to obtain weight coefficients of size 1 × 1 × k. Here k represents the number of filters. Finally, the
original features are multiplied by the obtained weighting factor to obtain the inter-channel attention
features.

2.3.2. Spatial attention block

In order to generate corresponding spatial attention weights to reflect the characteristics of different
spatial locations, we take the channel attention feature map xchan

k ∈ RH×W×Kas the input (H, W is
the length and width of the feature map, and K is the number of channels). We provide a diagram
in Figure 5(b) to depict the detailed process of the spatial attention module. Similar to our channel
attention module, we perform the maximum pooling and average pooling operations along the channel
dimension. After pooling, two feature descriptions of size W × H × 1 and Fa

k ∈ R1×1×K and Fm
k ∈

R1×1×K are obtained, and the two feature descriptions are stitched together in a cascading manner to
maintain the diversity of network information.Then it flows into the convolutional layer with shrinkage
operation. After the shrinkage operation, a nonlinear transformation is performed using the ReLU
function. The weight coefficients of size H × W × 1 are obtained. Finally, we multiply the original
feature and the weight coefficient to get the enhanced feature map. The procedure for calculating
maximum and average pooling in the spatial attention module is shown in Eqs (2.5) and (2.6).

Fa
s = ReLU

1
k

k∑
i=1

zs(i), 0

 (2.5)

where Fa
s represents the spatial information weight generated at the s − th position, and zs represents

the form of converting xchan
k into a vector, where s = H × W. ReLU() is the activation function.

Fm
s = max [ReLU (zs(i)) , 0] i = 1 · · · k (2.6)

where Fm
s is the spatial maximum pooling weight generated at the s − th position of the output.

3. Proposed approach

Single-channel neural networks, with a single convolutional kernel size, leads to the inability to
capture long-term dependencies between the same protein sequences. And multiple channels will lead
to an increase in parameters, making the model severely over-fitted, which in turn reduces the
classification accuracy of the data. To address the above problems, this study proposes to propose a
multi-scale convolutional and correlated cross-entropy loss function model (COCRS Loss)
incorporating a convolutional attention mechanism to solve the problems in protein secondary
structure prediction. The network model is divided into four main parts, amino acid matrix encoding,
multi-scale parallel convolutional block extraction, feature fusion, and prediction classification. The
model flow chart is shown in Figure 6.
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Figure 6. The main flow chart of the multi scale convolutional attention neural network
model.

3.1. Amino acid matrix coding

We use the window parameters [24] to preprocess protein sequence information to obtain residue
sequence information and predict the secondary structure of central residues. Taking the middle amino
acid as the reference, the middle position of the window was overlapped with the first valid amino
acid character by using 13, 19, 27 as the window size and moving one position towards the end of
the amino acid sequence in turn until the number of moves equal to the total length of the amino acid
sequence of the current slicing window. The current amino acid sequence window slicing processing
was completed. The processing resulted in Pa(i)20×13 i = 1....N,Pb(i)20×19 i = 1....N,Pc(i)20×27 i = 1....N,
three sets of input data, where N is the total number of samples. Figure 1 shows the pre-processing
results when the window slice is 13.

3.2. Multi-scale parallel convolutional block extraction

For the feature extraction module, we used a multi scale parallel architecture to extract feature
information from the amino acid samples. Table 2 shows the model’s each channel parameter changes.
Where the convolution motion step size is 1, and the output size respectively represents the length,
width and number of channels of the data. Taking the first channel as an example, we first set the
convolution kernel C1 × C1 of the same size, and perform preliminary feature extraction on the input
data via the convolution layer to obtain the feature map conv1C. In order to make the model better
perceive the key information in the feature map, we perform two attention perceptions on the feature
map. We make the feature map conv1C perform the global maximum pooling and global average
pooling operations respectively to obtain two feature vectors conv1avg

C and conv1max
C , input them into

the same multi-layer perceptron and add the results element by element to get a 1 × 1 × 430 feature
weight vector. Next, we multiply the feature weight vector and conv1C, element by element, to get the
attention feature matrix Mchan

C between channels. The equation is as follows:

Mchan
c =σ

(
MLP

(
conv 1avg

c

)
⊕ MLP

(
conv 1max

c
))
⊗ conv 1c (3.1)

where ⊕ represents element by element addition, ⊗ represents element by element multiplication, and
σ() represents the Sigmoid activation function. The calculation process of conv1avg

C and conv1max
C
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eigenvectors is shown in Eqs (2.3) and (2.4). On the basis of the feature vector Mchan
C , the global

maximum pooling and global average pooling operations are performed again along the channel space
dimension, and the feature vectors Navg

S and Nmax
S are obtained. Connect the output results in parallel,

and after convolution operation, a feature weight vector of 20 × 13 × 1 is obtained, and the feature
weight vector is multiplied by Mchan

C element by element to obtain the reconstructed feature matrix
N spat

C .The calculation equation is as follows:

Nspat
c = σ

(
cov

(
Navg

S ~ Nmax
S

))
⊗Mchan

C (3.2)

where ~ represents the feature element parallel operation, cov() represents the convolution operation
on the merged pooling matrix, and σ() represents the Sigmoid activation function. The reconstructed
feature matrix N spat

c is then subjected to another convolution, a dropout operation, which excites the
information of local regions in the lower levels of the reconstructed features to higher levels via the
convolution kernel. This highlights the important features in the data. For the other channels,
convolutional kernels C2 × C2, and C3 × C3 of different sizes from the first channel are set to
perform convolutional operations on the other two amino acid codes in order to extract local features
different from those of the first channel. We find that the network structure proposed in this paper
extracts features of different granularity (e.g., input data of different encodings) during the training of
multiple channel tasks, thus achieving improved performance for each channel task. Compared with
the single-channel task model that directly uses one encoding, the multi-channel task model with
multiple encodings has the advantages of greater generalization of features extracted from the data,
allowing each channel task to have independent feature mechanisms and more fully extracting local
feature information from the three encodings.

Table 2. The parameter settings of each channel in the proposed model.

Layer name Kernel size Output size (c × h × w)
Channel 1 input – 20 × 13 × 1

conv1 12 × 12 20 × 13 × 430
attention – 20 × 13 × 430
conv2 3 × 3 18 × 11 × 530
dropout – 18 × 11 × 530

Channel 2 input – 20 × 19 × 1
conv1 18 × 18 20 × 19 × 430
attention – 20 × 19 × 430
conv2 6 × 6 15 × 14 × 530
dropout – 15 × 14 × 530

Channel 3 input – 20 × 27 × 1
conv1 26 × 26 20 × 27 × 430
attention – 20 × 27 × 430
conv2 9 × 9 12 × 19 × 530
dropout – 12 × 19 × 530
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3.3. Feature fusion

We fused the extracted feature data of each channel after re-convolution, and the feature fusion
process is shown in Figure 7. Since the 9 × 9 convolutional kernels of channel 3 are stacked, the
sensory field is greater than the 3 × 3 convolutional kernels of channel 1 and the 6 × 6 convolutional
kernels of channel 2. Thus, the network structure is deeper and has a larger field of view. Therefore, the
feature fusion part can make better use of the coding features extracted from each channel and provide
more useful training data for the prediction phase.

Figure 7. The detail diagram of the feature fusion part of the proposed model.

3.4. Prediction classification

In the classification prediction part, the model operates with a 3-layer fully connected layer, where
the input layer receives the fused feature vectors, and the output layer uses a Softmax classifier to
predict the accuracy of the secondary structure. While the traditional cross-entropy loss function only
considers the separability of features during the model training process, it does not consider the
training objective of intra- and inter-class similarity of vectors. In this study, a correlation measure is
added based on the cross-entropy loss function, and the covariance and standard deviation are used to
calculate the positive and negative correlations between the predicted vectors and the real vectors
within and between classes. Taking any training sample as an example, it is assumed that the
probability of an amino acid type output by the Softmax function is ŷ =

[
ŷ1, ŷ2 . . . ŷC

]
, and the true

label is y =
[
y1, y2 . . . yC

]
(in one-hot encoding form), C is the total class of the sample. The COCRS

loss function is expressed as:

ρloss = −

 C∑
i=1

yi ∗ log (ŷi)

 ∗
1 −

 C∑
i=1

(yi − ȳ) (ŷi − ŷi) /σ(y)σ(ŷ)

2 (3.3)

where ȳ,ŷi are the means of the vectors y and ŷ, and σ(y)and σ(y) are the standard deviations of y and .
Let y′i = yi − ȳ, ŷ′i = ŷi − ŷi, Eq (10) can be reduced to:

ρloss = −

 C∑
i=1

yi ∗ log
(̂
yi
) ∗

1 −


∑C

i=1 y′i ŷ
′
i√∑C

i=1 y′2i

√∑C
i=1 ŷ′2i


2 (3.4)
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As can be seen from the formula, the correlation measure is obtained by dividing the covariance by
the standard deviation of the two variables, and the magnitude of the value can be a good measure of the
degree of association between the two random variables. In Eq (3.4), the cross-entropy loss function
maximizes the output probability of the true classes to which they belong, thus making the features
of different classes differentiable. The correlation measure term, on the other hand, better presents the
negative correlation between the predicted samples and the samples of different classes by means of
linear regression, while better presenting the positive correlation with the samples of the same class.
This allows for greater inter-class distances and smaller intra-class distances for amino acid features,
enhancing the learning ability of the model.

4. Experiment and analysis

This study sets up a series of comprehensive experiments to evaluate the effectiveness of the
proposed depth model. First, the effect of encoding the data at different scales on the accuracy was
recorded. This is followed by an ablation study within the model to explain the contribution of each
component of the model to the final results. Finally, the overall performance of the network model on
Casp9 [27], Casp10 [27], Casp11 [28] and Casp12 [29] is presented and compared fairly with other
methods.

4.1. Evaluation index

In this paper, accuracy Q3 and the segment overlap measure (Sov) [35] are used to measure the
performance of protein secondary structure prediction. Q3 mainly measures the accuracy of individual
residue allocation, the expression is:

Q3 =
NC + NE + NH

N
× 100 (4.1)

where N represents the total number of amino acid residues, and NC, NE, and NH are the predicted
correct numbers in the spiral, fold, and random coil, respectively. The accuracy of any class of these
secondary structures can be equation as follows:

Qc =
T Pc

nc
× 100 (4.2)

where T Pc is the correct predicted number of amino acid residues in Class C, and nc represents the
total number of amino acid residues in Class C in the data. Segment Overlap (Sov) a measure based
on secondary structure fragmentation, the Sov is calculated as shown in Eq (4.3).

S ov3(%) =
1
m

 ∑
i∈H,E,L···

∑
S (i)

[
min OV (s1, s2) + δ (s1, s2)

max OV (s1, s2)
× len (s1)

] × 100 (4.3)

s1, and s2, in Eq (4.3) refer to the actual and predicted secondary structures that are fragments of a
certain class, respectively, S (i) is the number of all fragment pairs (s1, s2), min OV (s1, s2) is the actual
overlap length of s1, and s2, and max OV (s1, s2) is the greater of the length of either s1, or s2, that
contains the entire fragment corresponding to the structural residues of a certain class m denotes the
total number of amino acid residues. For δ (s1, s2) the formula is shown in Eq (4.4).
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3416

δ (s1, s2) = min


max OV (s1, s2) −min OV (s1, s2)

min OV (s1, s2)
int (0.5 × len (s1))
int (0.5 × len (s2))

 (4.4)

where len (s1) and len (s2) refer to the total number of amino acid residues contained in s1 and s2.

4.2. Impact of data coding on accuracy

In this study, we apply datasets ASTRAL+CullDB as the training set and Casp9, Casp10, Casp11,
and Casp12 as the test sets for experiments. Because all experiments use the PSSM matrix as the
input of the model, the length of the sliding window determines the prediction effect when the PSSM
encoding of the amino acid data is sliding. In order to verify the effect of different windows on the
data, the protein data under 13 and 19 and 27 windows were validated on Casp10 in this paper, and the
experimental results are shown in Table 3.

Table 3. The effect of different window sizes on the data (%).

Window sizes Q3 QH QE QC

13 84.61 87.69 78.87 84.79
19 86.91 90.49 82.17 86.84
27 88.23 90.52 85.96 87.76

It can be seen that the maximum accuracy of PSSM coding is 88.23% when the sliding window is
27. Secondly, when the sliding window is 19 and 13, the accuracy results are better, 86.91 and 84.61%
respectively. Experiments show that the larger the passage window, the larger the amount of protein
data selected will have a greater impact on the prediction results.

4.3. Model overall analysis

To better understand the proposed depth model, two empirical studies were conducted. In the
first stage, a 10-fold cross-validation test method is used to test the model. In the second stage, we
did an exploratory comparison of each of these components. First, set the hyperparameters of the
whole model. The size of the convolutional kernel selected for each channel is shown in Table 2. In
the training process, the batch size is 128, the convolutional step size is 1, and the keep prob index
of dropout is 0.5. For the 3 fully connected layers, the number of hidden units is 128, 64, and 3,
respectively. In addition, the model uses the inverse gradient training descent algorithm Adam to train
the weight parameters of the network, where the momentum is set to 0.9, the weight decay is set to 10−4.
Then we uses the 10-fold cross-validation test method to test the accuracy of the model. Set K=10, i.e.,
divide the ASTRAL+CullDB dataset into 10 equal parts, and take turns using 9 parts of them as training
data and 1 part as test data for testing. After one round of verification, the test accuracy is 89.99%,
89.32%, 88.93%, 88.45%, 89.14%, 89.57%, 89.71%, 88.64%, 89.68% and 88.25% respectively, and
the average classification accuracy is 89.168%.

Second, we performed ablation studies on the dataset Casp10 by deleting or replacing individual
modules in the present study model. We performed multi-scale single-layer convolution
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(MSSL COV), multi-scale single-layer convolution with CBAM (MSSL COVATT), multi-scale
multi-layer convolution with CBAM (MSML SOVATT), and replacement of conventional
cross-entropy with correlated cross-entropy loss experiments (This work model), respectively.

Table 4. Comparison of prediction performance of each model in ablation experiment.

Methods QH QE QC Q3 Sov
MSSL COV 0.8971 0.8556 0.8678 0.8746 0.7887
MSSL COVATT 0.8942 0.8205 0.8648 0.8637 0.7770
MSML SOVATT 0.9212 0.8861 0.8915 0.9000 0.8500
This work model 0.9167 0.8978 0.8898 0.9007 0.8547

From the results of the various ablation experiments in Table 4, we can see that multi-scale and
multi-convolution have an important impact on the network model. The prediction accuracy Q3 of
the MSML SOVATT model reaches 90.00%, which is about 2.5% higher than that of the MSSL COV
model. The Sov accuracy is 85%, which is about 7% higher than the Sov rate of the MSSL COV model.
After replacing the traditional cross entropy with our proposed COCRS loss function, the prediction
result reaches 90.01%, which is 0.07% higher than the prediction accuracy using the traditional cross
entropy loss, while the Sov accuracy reaches 85.47%. Thus, the network model proposed in this study
with the extraction of feature information and fusion of local feature information by picking multi-
scale convolution and convolutional attention blocks, and training with the COCRS loss function is
effective.

The experiments also documented the comparison of model training on the Casp10 test set using
both loss functions. Figure 8(a) shows the convergence of the training loss in the two loss models and
Figure 8(b) shows the convergence of the test loss in the two loss models.

(a) The convergence of the training loss in the model. (b) The convergence of the test loss in the model.

Figure 8. The comparison between traditional cross entropy loss and CROCS loss in the
model test loss.
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Figure 9. Evaluation accuracy of
different data sets.

Figure 10. The Q3 accuracy of the
comparison method on the four data sets.

Figure 8 show that the initial loss value of the COCRS loss model is 0.2055 at the beginning of the
iteration, and the model Loss value decreases continuously with the increase of the number of
iterations. In the 20th iteration of the training phase, the loss value of this model decreases to 0.0096
and 0.1415 on the training and test sets, respectively, while the loss value of the cross-entropy loss
model is 0.0821 and 0.4089 on the training and test sets, respectively. The convergence speed of the
traditional cross-entropy loss function is faster. In the middle of the iteration, the COCRS function
fluctuates more slowly due to the correlation coefficient term, while the traditional cross-entropy loss
function fluctuates more. In the late iteration, both the COCRS loss function and the traditional
cross-entropy loss function converge relatively well, but the misclassification costs of the COCRS loss
function is maintained at a relatively low level in the late iteration, and the misclassification cost at the
final convergence is substantially lower compared with the traditional cross-entropy loss function. In
general, the convergence speed of the COCRS loss function is better than that of the traditional
cross-entropy loss function, and the final misclassification cost is substantially lower than that of the
traditional cross-entropy loss function. In addition, we conducted overall experiments on the Casp9,
Casp10, Casp11, Casp12 dataset separately to demonstrate the effectiveness of the proposed model.
The evaluation results are shown in Figure 9.

4.4. Compare with other models

Table 5. Comparison of prediction accuracy Q3 (%) of each model on the four datasets.

Methods Casp10 Casp11 Casp12 Casp9
DeepCNF 81.81 82.33 79.80 –
PSIPRED 84.83 83.06 80.04 –
JPRED 78.30 78.02 75.92 –
PSRSM 89.61 90.53 82.62 –
This work model 90.12 90.01 88.82 89.11
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To further validate the prediction performance of the model in this study, we compare the present
model with other models, in Table 5 and Figure 10, the comparison models are DeepCNF [15],
PSRSM [16], PSIPRED [14], and JPRED [36]. It can be seen from Table 5, in the CASP10 test set,
the test results of this model were higher than those of DeepCNF, PSRSM, PSIPRED, JPRED
methods, with an accuracy of 90.12%. It proved that the model could improve the accuracy of amino
acid prediction. The prediction results of CASP11 remained almost the same as those of PSRSM
model, but both were higher than those of DeepCNF, PSIPRED, and JPRED. The accuracy of
CASP12 dataset was improved by 5.6% compared with PSRSM method. It improved by 8.8% over
the PSIPRED method. The prediction accuracy of this research model is significantly higher than
other comparison models. It can be seen that this model fully extracts the type information coding of
amino acids and biological evolution structure information, and effectively interacts the extracted
local features to improve the accuracy of the protein secondary structure.

5. Conclusions and future work

In this study, a multi-scale convolutional attention neural network model is proposed for the
problems that the prominent position information of protein sequences cannot be extracted well and
the structure of the protein is difficult to distinguish under the interference of invalid information. The
model uses amino acid codes of different scales (13, 19, and 27) to be input to multiple channel tasks
for training. Compared with the previous research, the model has stronger generalization ability of
features extracted from the data, which makes each channel task have an independent feature
mechanism, and fully extracts the local feature information in the three kinds of codes. Considering
that the traditional cross-entropy loss does not effectively solve the problem of sample
non-equilibrium in the training sequence, we propose an improved correlation cross-entropy function
(COCRS Loss) as the loss function to self-adapt to solve the non-equilibrium of training samples
based on the present model.

A large number of experiments conducted on the public data sets Casp9, Casp10, Casp11 and
Casp12 of this model show that our model can better extract amino acid feature information. The
improvement of the loss function speeds up the model convergence speed, improves the learning and
generalization ability of the model, and prevents over-fitting at the same time, thereby achieving better
prediction results. In the follow-up research work, we consider replacing the ordinary convolutional
layer by deep separable convolution to further reduce the overhead of the network module.
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Supplements

We have published the code on github. The link is: https://github.com/xuying-6/Multi-scale-multi-
task-network-model/
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