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Abstract: On the basis of the SIQR epidemic model, we consider the impact of treatment time on
the epidemic situation, and we present a differential equation model with time-delay according to the
characteristics of COVID-19. Firstly, we analyze the existence and stability of the equilibria in the
modified COVID-19 epidemic model. Secondly, we analyze the existence of Hopf bifurcation, and de-
rive the normal form of Hopf bifurcation by using the multiple time scales method. Then, we determine
the direction of Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, we carry
out numerical simulations to verify the correctness of theoretical analysis with actual parameters, and
show conclusions associated with the critical treatment time and the effect on epidemic for treatment
time.
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1. Introduction

Coronavirus disease 2019 (COVID-19) remains an on-going global pandemic at present. The World
Health Organization declared COVID-19 as a Public Health Emergency of International Concern
(PHEIC) on January 30, 2020. According to data released by Johns Hopkins University, there are
37,213,592 confirmed cases and 1,072,959 deaths in 188 countries and regions around the world by
October 11, 2020 [1]. The disease is caused by a novel coronavirus named severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [2]. Although most SARS-CoV-2-infected cases have asymp-
tomatic or mild-to-moderate diseases, around 10% of those infected may develop severe pneumonia
and other associated organ malfunctions [3].

In recent investigations, many scholars studied different epidemic models of COVID-19. In Zhang’s
study [4], a new mathematical model (SEIRD) was proposed, which is constructed with five classes in-
cluding susceptible, exposed, infected, recovered and deaths to describe the possibility of transmission

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2021159


3198

in a given general population. Bhadauria et al. [5] studied the SIQ model by using the stability theory
of nonlinear ordinary differential equations. Li et al. [6] developed a numerical method preserving
positivity for a stochastic SIQS epidemic model. In Ref. [7], Higazy proved the existence of a stable
solution for the fractional order COVID-19 SIDARTHE model. A θ−SEIHQRD model which is more
relevant to COVID-19 was developed by Ramos et al. [8]. Nisar et al. [9] constructed the SIRD model
and verified the correctness. Batistela et al. [10] proposed an SIRSi model of COVID-19. Especially,
Paré et al. [11] proposed traditional group models, continuous-time and discrete-time versions of the
models with non-trivial networks on simple SIR-based models, and supported the need for networked
models through presenting a set of simulations.

In the propagation process of COVID-19, we consider that there is a time-delay from infection to
recovery. At present, there are some researches on epidemic models with time-delay. Zhu et al. [12]
constructed a time delay reaction-diffusion model that is closer to the actual spread of the COVID-19
epidemic with considering the time delay effect of infected persons during the spread of the epidemic.
In Ref. [13], the mathematical modeling of COVID-19 fatality trends was constructed by Scheiner et
al., which was based on infection-to-death delay rule. Wei et al. [14] considered the time delay from
susceptible individuals to infected individuals, thus, proposed a new SVEIR epidemic disease model
with time delay, and analyzed the dynamic behavior of the model under pulse vaccination. In Ref. [15],
Mukherjee considered an S-I epidemic model with time delay, the time delay is the immune period and
the incubation period, and gave an estimate on the length of delays for system which is stable in the
absence of delays remains stable.

At the same time, many researchers analyzed the stability of the COVID-19 model. In Ref. [16],
Araz dealt with a mathematical model about COVID-19 spread, and analyzed global and local stability
for the considered model. Annas et al. [17] carried out the stability analysis and numerical simulation
of the SEIR model on the spread of COVID-19 in the research. Besides, some scholars conducted
mathematical analysis on the principle of COVID-19 infection. Almocera et al. [18] studied an in-host
model, and the stability of a unique positive equilibrium point, with viral load V∗, suggested that the
virus may replicate fast enough to overcome T cell response and cause infection. In Ref. [19], Samanta
analyzed the stability of the proposed model to control the epidemic.

And some scholars predicted the epidemic situation. León et al. [20] proposed an SEIARD mathe-
matical model and attempted to forecast the evolution of the outbreak. Youssef et al. [21] carried out
numerical verification and predictions of the proposed SEIR model, and compared the results with the
real data due to the spreading of the COVID-19 in Saudi Arabia.

In addition, some scholars used the models with several compartments to put forward analysis
and opinions on epidemic prevention and control. In Ref. [22], Carli et al. proposed a multi-region
SIRQTHE model and an optimal control approach, which supported governments in defining the most
effective strategies to be adopted during post-lockdown mitigation phases in a multi-region scenario.
Giordano et al. [23] established a SIDARTHE model that predicted the course of the epidemic to help
plan an effective control strategy. On the basis of the expected utility theory, Odagaki [24] carried out a
theoretical framework to find out an optimum strategy for minimizing the maximum number of infeced
and for controlling the outbreak of pandemic. In Ref. [25], Saldaña et al. developed a compartmental
epidemic model of the COVID-19 epidemic outbreak to evaluate the theoretical impact of plausible
control interventions.

In this paper, we establish the COVID-19 epidemic model based on the SIQR model. However,
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these large deviations between model predictions and the actually recorded numbers stem from the
uncertainty of the underlying SIQR model parameters: they may not be sufficiently well known for the
novel COVID-19 pandemic yet. Generally, considering the latent period gives rise to models with the
incorporation of delays to solve problems. Therefore, time-delay has important biologic meaning in
epidemic models. Differently, by describing the time-delay from the infection period to the recovery
period, we propose a new delay SIQR epidemic model with horizontal transmission in our paper,
and obtain the critical treatment time through calculation and stability analysis, which can contribute
greatly to medicine.

The rest of the paper is organized as follows: In Section 2, considering the treatment time of epi-
demic, we present a delayed differential equation for COVID-19. In Section 3, we analyze the existence
and stability of equilibria and the existence Hopf bifurcation of the system. In Section 4, we derive the
normal form of Hopf bifurcation for above model, then determine the direction of Hopf bifurcation and
the stability of bifurcating periodic solutions. In Section 5, we present the simulated results to verify
the correctness of the theoretical analysis, and show the effect of treatment time on epidemic. Finally,
some conclusions are shown in Section 6.

2. Modeling

COVID-19 is similar to other infectious diseases. The susceptible population can be infected by
COVID-19 carriers. Some of the infected people are quarantined, and some are killed by COVID-19.
Both infected and quarantined people may be cured after treatment. A feature of COVID-19 can be
obtained by combining a large number of cases, that is, cured infected people are difficult to be infected
again. In Ref. [26], Liu et al. proposed an infectious disease model as follows:

dS
dt = Λ − µS − βS I

N ,
dI
dt =

βS I
N − (µ + γ + δ + α)I,

dQ
dt = δI − (µ + ε + α)Q,
dR
dt = γI + εQ − µR,

(2.1)

where S , I, Q, R denote the numbers of susceptible, infective, quarantined and removed, N = S +

I + Q + R is the number of total population individuals. The parameter Λ is the recruitment rate of S
corresponding to births and immigration; β denotes the average number of adequate contacts; µ is the
natural death rate; γ and ε denote the recover rates from group I, Q to R, respectively; δ denotes the
removal rate from I; α is the disease-caused death rate of I and Q. The parameters involved in system
(2.1) are all positive constants.

On the basis of reference [26], we define β as the contact rate, which eliminates the calculation of
the total population number N and simplifies the form of the equation. It is a good way to reduce the
error of the model results by reducing the parameters. Combined with practical reports, it is known
that some quarantined patients will receive treatment, and the mortality of treated patients will be
greatly reduced. Therefore, unlike the model in Ref. [26], we believe that the COVID-19 mortality
of infected and quarantined person is different. Meanwhile, the uncertainty of the model parameters
is also the main reason for the difference between the predicted results and the actual. Here, we con-
sider the time-delay (τ) from infection to recovery process on the basis of the model in Ref. [26], and
the critical treatment time obtained by the calculation with time-delay is helpful to the treatment of

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3197–3214.



3200

COVID-19, which is rarely studied before and should be paid attention to in severe epidemic areas. In
particular, the model can change the parameters according to the situation of different regions to get
the corresponding critical treatment time, and take reasonable measures to control the epidemic effec-
tively. Finally, we present a new COVID-19 epidemic model, and the relationships between the four
populations (susceptible population(S ), infected population(I), quarantined population(Q), recovered
population(R)) are obtained, as shown in Figure 1.

S I Q R
L b d

m a1 m m ma2

g

S(t)

S(t)I(t)

I(t) I(t)

I(t)

Q(t)Q(t) R(t)
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Figure 1. SIQR Model diagram.

Thus, we construct the following COVID-19 epidemic model:


Ṡ = Λ − µS − βS I,
İ = βS I − δI − µI − α1I − γI(t − τ),
Q̇ = δI − εQ − α2Q − µQ,
Ṙ = γI(t − τ) + εQ − µR,

(2.2)

where Λ, µ, β, δ, γ, ε, α1, α2 are parameters; S , I, Q, R are control variables and τ is the time-delay.
The specific definitions are given in the Table 1.

Table 1. Definition of parameters and variables in the model.
Symbol Definition

S Number of susceptible people
I Number of infected people
Q Number of quarantined people
R Number of recovered people
Λ Natural increase of population
β Transition rate from S to I
δ Transition rate from I to Q
γ Transition rate from I to R,the cure rate of infected persons
ε Transition rate from Q to R,the cure rate of quarantined persons
α1 COVID-19 mortality rate of infected persons
α2 COVID-19 mortality rate of quarantined persons
µ Natural death of population
τ The time-delay from infection to recovery process
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3. Stability analysis of equilibrium and existence of Hopf bifurcation

In this section, system (2.2) is considered. Obviously, system (2.2) has two equilibria:

E1 = (S ∗1, I
∗
1,Q

∗
1,R

∗
1), E2 = (S ∗2, I

∗
2,Q

∗
2,R

∗
2),

where
S ∗1 = Λ

µ
, I∗1 = 0, Q∗1 = 0, R∗1 = 0, S ∗2 =

γ+α1+δ+µ

β
, I∗2 =

Λβ−µ(γ+α1+δ+µ)
β(γ+α1+δ+µ) ,

Q∗2 =
δ[Λβ−µ(γ+α1+δ+µ)]
β(γ+α1+δ+µ)(α2+ε+µ) , R∗2 =

[Λβ−µ(γ+α1+δ+µ)][γ(ε+α2+µ)+εδ]
βµ(γ+α1+δ+µ)(α2+ε+µ) .

Firstly, we consider the first equilibrium E1 = (S ∗1, I
∗
1,Q

∗
1,R

∗
1) = (Λ

µ
, 0, 0, 0). Transferring the equi-

librium to the origin and linearizing the system around it, we obtain the characteristic equation of the
linearized system as follows:

(λ + µ)2(λ + ε + α2 + µ)(λ − βS ∗1 + δ + α1 + µ + γe−λτ) = 0, (3.1)

where S ∗1 = Λ
µ

.
When τ = 0, Eq. (3.1) becomes

(λ + µ)2(λ + ε + α2 + µ)(λ − βS ∗1 + δ + α1 + µ + γ) = 0. (3.2)

Eq. (3.2) has four roots: λ1=λ2= −µ, λ3= −ε − α2 − µ, λ4 = βS ∗1 − δ − α1 − µ − γ, due to µ > 0, ε >
0, α2 > 0, so in the actual situation, λ1 < 0, λ2 < 0, λ3 < 0.

We consider the following assumption:
(H1) βΛ

µ
< µ + δ + α1 + γ.

When (H1) holds, all the roots of Eq. (3.2) have negative real parts, and the equilibrium E1 is locally
asymptotically stable when τ = 0.

When τ > 0, let λ = iω (ω > 0) be a root of Eq. (3.1). Due to λ1 < 0, λ2 < 0, λ3 < 0, actually, we
only need to discuss the following equation:

λ − βS ∗1 + δ + α1 + µ + γe−λτ = 0. (3.3)

Substituting λ = iω (ω > 0) into Eq. (3.3) and separating the real and imaginary parts, we obtain{
βS ∗1 − (δ + α1 + µ) = γ cos(ωτ),
ω = γ sin(ωτ).

(3.4)

Eq. (3.4) leads to  cos(ωτ) =
βS ∗1−(δ+α1+µ)

γ
,

sin(ωτ) = ω
γ
.

(3.5)

Adding the square of two equations of Eq. (3.5), we have

h(ω) = ω2 + (βS ∗1 − δ − α1 − µ)2 − γ2 = 0. (3.6)

Therefore, we give the following assumption:
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(H2) (βS ∗1 − δ − α1 − µ)2 − γ2 < 0.

If (H2) holds, then Eq. (3.6) has one positive root ω0 =

√
γ2 − (βS ∗1 − δ − α1 − µ)2. Substituting ω0

into Eq. (3.5), we get

τ
( j)
1 =

 1
ω0

[arccos(P0) + 2 jπ], Q0 ≥ 0,
1
ω0

[2π − arccos(P0) + 2 jπ], Q0 < 0, j = 0, 1, 2, · · · ,
(3.7)

where

Q0 = sin(ω0τ
( j)
1 ) =

ω0

γ
,

P0 = cos(ω0τ
( j)
1 ) =

βS ∗1 − (δ + α1 + µ)
γ

.

Lemma 3.1. If (H2) holds, when τ = τ
( j)
1 ( j = 0, 1, 2, · · · ), then Eq. (3.1) has a pair of pure

imaginary roots ±iω0, and all the other roots of Eq. (3.1) have nonzero real parts.

Furthermore, let λ(τ) = α(τ)+ iω(τ) be the root of Eq. (3.1) satisfying α(τ( j)
1 ) = 0, ω(τ( j)

1 ) = ω0 ( j =

0, 1, 2, · · · ).

Lemma 3.2. If (H2) holds, we have the following transversality conclusions:
Re( dτ

dλ )
∣∣∣∣τ=τ( j)

1
= Re( dλ

dτ )−1
∣∣∣∣τ=τ( j)

1
= 1

γ2 > 0, where j = 0, 1, 2, · · · .

Secondly, for the other equilibrium E2=(S ∗2, I
∗
2,Q

∗
2,R

∗
2) of the system (2.2), similarly, transferring

the equilibrium to the origin and linearizing the system around it, we obtain the characteristic equation
of the linearized system as follows:

(λ + µ)(λ + ε + α2 + µ)[(λ + µ + βI∗2)(λ − γ + γe−λτ) + β2I∗2S ∗2] = 0, (3.8)

where S ∗2 =
γ+α1+δ+µ

β
, I∗2 =

Λβ−µ(γ+α1+δ+µ)
β(γ+α1+δ+µ) .

When τ = 0, Eq. (3.8) becomes

(λ + µ)(λ + ε + α2 + µ)[λ2 + (µ + βI∗2)λ + β2I∗2S ∗2] = 0. (3.9)

Eq. (3.9) has four roots: λ1= −µ, λ2= −ε − α2 − µ, λ3 =
−µ−βS ∗2+

√
(µ+βS ∗2)2−4β2S ∗2I∗2

2 4, λ4 =

−µ−βS ∗2−
√

(µ+βS ∗2)2−4β2S ∗2I∗2
2 . Due to µ > 0, ε > 0, α2 > 0, in the actual situation, λ1 < 0, λ2 < 0.

Note that β2S ∗2I∗2 > 0, we consider the following assumption:
(H3) βΛ

µ
> µ + δ + α1 + γ.

Therefore, under the assumption (H3), all the roots of Eq. (3.9) have negative real parts, and the
equilibrium E2 = (S ∗2, I

∗
2,Q

∗
2,R

∗
2) is locally asymptotically stable when τ = 0.

When τ > 0, let λ = iω (ω > 0) be a root of Eq. (3.8). Due to µ > 0, ε > 0, α2 > 0, actually, we
only need to consider the equation:

(λ + µ + βI∗2)(λ − γ + γe−λτ) + β2I∗2S ∗2 = 0. (3.10)
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Substituting λ = iω (ω > 0) into Eq. (3.10) and separating the real and imaginary parts, we have{
ω2 + γµ + γβI∗2 − β

2S ∗2I∗2 = (γµ + γβI∗2) cosωτ + γω sinωτ,
ω(µ − γ + βI∗2) = −γω cosωτ + (γµ + γβI∗2) sinωτ.

(3.11)

Eq. (3.11) leads to  cosωτ =
(ω2+γµ+γβI∗2−β

2S ∗2I∗2)(γµ+γβI∗2)−γω2(µ−γ+βI∗2)

(γµ+γβI∗2)2+γ2ω2 ,

sinωτ =
γω(µ+βI∗2)(µ−γ+βI∗2)+γω(ω2+γµ+γβI∗2−β

2S ∗2I∗2)

(γµ+γβI∗2)2+γ2ω2 .
(3.12)

Adding the square of two equations of Eq. (3.12), let z = ω2, then

h(z) = z2 + c1z + c0 = 0, (3.13)

where c1 = (µ + βI∗2)2 − 2β2S ∗2I∗2, c0 = (γµ + γβI∗2 − β
2S ∗2I∗2)2 − (γµ + γβI∗2)2. Therefore, we give the

following assumptions:
(H4) c0 < 0.
(H5) c2

1 − 4c0 > 0, c1 < 0, c0 > 0.
If (H4) holds, then Eq. (3.13) has only one positive real root z1. If (H5) holds, then Eq. (3.13) has two
positive real roots z2 and z3. Substituting ωk =

√
zk ( k = 1, 2, 3) into Eq. (3.12), we get

τ
( j)
2,k =

 1
ωk

[arccos(Pk) + 2 jπ], Qk ≥ 0,
1
ωk

[2π − arccos(Pk) + 2 jπ], Qk < 0, k = 1, 2, 3, j = 0, 1, 2, · · · ,
(3.14)

where

Qk = sin(ωkτ
( j)
2,k) =

γωk(µ + βI∗2)(µ − γ + βI∗2) + γωk(ω2
k + γµ + γβI∗2 − β

2S ∗2I∗2)

(γµ + γβI∗2)2 + γ2ω2
k

,

Pk = cos(ωkτ
( j)
2,k) =

(ω2
k + γµ + γβI∗2 − β

2S ∗2I∗2)(γµ + γβI∗2) − γω2
k(µ − γ + βI∗2)

(γµ + γβI∗2)2 + γ2ω2
k

.

Lemma 3.3. If (H4) or (H5) holds, when τ = τ
( j)
2,k ( k = 1, 2, 3; j = 0, 1, 2, · · · ), then Eq. (3.8) has a

pair of pure imaginary roots ±iωk, and all the other roots of Eq. (3.8) have nonzero real parts.

Furthermore, let λ(τ) = α(τ)+iω(τ) be the root of Eq. (3.8) satisfying α(τ( j)
2,k) = 0, ω(τ( j)

2,k) = ωk ( k =

1, 2, 3; j = 0, 1, 2, · · · ).

Lemma 3.4. If (H4) or (H5) holds, and zk = ω2
k , h′(zk) , 0, then we have the following transversal-

ity conclusions:
Re( dτ

dλ )
∣∣∣∣τ=τ( j)

2,k
= Re( dλ

dτ )−1
∣∣∣∣τ=τ( j)

2,k
=

h′(zk)
γ2[(µ+βI∗2)2+ω2

k ]
, 0, k = 1, 2, 3, j = 0, 1, 2, · · · .

Theorem 3.1. We show the conclusion associated with two equilibria of the system (2.2).
(1) If the assumptions (H1) and (H2) hold, the equilibrium E1 of the system (2.2) undergoes Hopf

bifurcation at τ = τ
( j)
1 ( j = 0, 1, 2, · · · ), where τ( j)

1 is given by Eq. (3.7), and we have: when τ ∈ [0, τ(0)
1 ),

the equilibrium E1 is locally asymptotically stable, and the equilibrium E1 is unstable when τ > τ(0)
1 .

(2) If the assumptions (H4) or (H5) holds, the equilibrium E2 of the system (2.2) undergoes Hopf
bifurcation at τ = τ

( j)
2,k ( k = 1, 2, 3; j = 0, 1, 2, · · · ), where τ( j)

2,k is given by Eq. (3.14), and
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(a) If the assumptions (H3) and (H4) hold, h(z) has one positive root z1, then when τ ∈ [0, τ(0)
2,1), the

equilibrium E2 is locally asymptotically stable, and the equilibrium E2 is unstable when τ > τ(0)
2,1.

(b) If the assumptions (H3) and (H5) hold, h(z) has two positive roots z2 and z3, we suppose z2 < z3,
then h′(z2) < 0, h′(z3) > 0, note that τ(0)

2,2 > τ(0)
2,3. Then ∃ m ∈ N makes 0 < τ(0)

2,3 < τ(0)
2,2 < τ(1)

2,3 < τ(1)
2,2 <

· · · < τ(m−1)
2,2 < τ(m)

2,3 < τ
(m+1)
2,3 . When τ ∈ [0, τ(0)

2,3)∪
m⋃

l=1
(τ(l−1)

2,2 , τ(l)
2,3), the equilibrium E2 of the system (2.2) is

locally asymptotically stable, and when τ ∈
m−1⋃
l=0

(τ(l)
2,3, τ

(l)
2,2)∪ (τ(m)

2,3 ,+∞), the equilibrium E2 of the system

(2.2) is unstable.

4. Direction of Hopf bifurcation and stability of periodic solution

In this section, we discuss the normal form of Hopf bifurcation for the system (2.2) by using the
multiple time scales method. Combining with actual situation, we concern about the impact of treat-
ment time on epidemic control. Therefore, we consider the time-delay τ as a bifurcation parameter,
let τ=τc + ετε, where τc is the critical value of Hopf bifurcation given in Eq. (3.7) or Eq. (3.14) re-
spectively, τε is the disturbance parameter, and ε is the dimensionless scale parameter. We suppose the
characteristic Eq. (3.1) and Eq. (3.8) have eigenvalue λ = iω(k) ( k = 1, 2), where ω(1) = ω0, ω(2) = ω1,
ω2 or ω3, at which system (2.2) undergoes a Hopf bifurcation at equilibrium Ek = (S ∗k, I

∗
k ,Q

∗
k,R

∗
k),

k = 1, 2, respectively.
Then system (2.2) can be written as

Ẋ(t) = AX(t) + BX(t − τ) + F[X(t), X(t − τ)], (4.1)

where X(t) = (S k, Ik,Qk,Rk)T, X(t − τ) = (S k(t − τ), Ik(t − τ),Qk(t − τ),Rk(t − τ))T,

A =


−µ − βI∗k −βS ∗k 0 0
βI∗k βS ∗k − (δ + µ + α1) 0 0
0 δ −(ε + α2 + µ) 0
0 0 −ε −µ

 , B =


0 0 0 0
0 −γ 0 0
0 0 0 0
0 −γ 0 0

 ,

F(X(t), X(t − τ)) =


FS

FI

FQ

FR

 =


Λ − µS ∗k − βS ∗kI∗k − βS kIk

βS kIk + βS ∗kI∗k − (δ + µ + α1 + γ)I∗k
δI∗k − (ε + α2 + µ)Q∗k
γI∗k − εQ∗k − µR∗k

 .
We suppose hk, h∗k(k = 1, 2) are the eigenvector of the corresponding eigenvalue λ = iω(k), λ = −iω(k)

respectively of Eq. (4.1) for equilibrium Ek, and satisfies
〈
h∗k, hk

〉
= h∗k

T
hk = 1. By simple calculation,

we can get:

hk = (hk1, hk2, hk3, hk4)T = (1,−λ+µ+βI∗k
βS ∗k

,−
δ(λ+µ+βI∗k )

(λ+ε+α2+µ)βS ∗k
,
δε(λ+µ+βI∗k )−γ(λ+µ+βI∗k )(λ+ε+α2+µ)e−λτ

(λ+µ)(λ+ε+α2+µ)βS ∗k
)T,

h∗k = (h∗k1, h
∗
k2, h

∗
k3, h

∗
k4)T = dk(1,

−λ+µ+βI∗k
βI∗k

, 0, 0)T,
(4.2)

where dk =
β2S ∗k I∗k

β2S ∗k I∗k−(−λ+µ+βI∗k )2 , k = 1, 2.
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We suppose the solution of Eq. (4.1) as follows:

X(t) = X(T0,T1,T2, · · · ) =

∞∑
k=1

εkXk(T0,T1,T2, · · · ), (4.3)

where X(T0,T1,T2, · · · ) = [S (T0,T1,T2, · · · ), I(T0,T1,T2, · · · ),Q(T0,T1,T2, · · · ),R(T0,T1,T2, · · · )]T,

Xk(T0,T1,T2, · · · ) = [S k(T0,T1,T2, · · · ), Ik(T0,T1,T2, · · · ),Qk(T0,T1,T2, · · · ),Rk(T0,T1,T2, · · · )]T.

The derivative with respect to t is transformed into:

d
dt

=
∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ · · · = D0 + εD1 + ε2D2 + · · · ,

where Di = ∂
∂Ti

, i = 0, 1, 2, · · · .
We make X j = (S j, I j,Q j,R j)T = X j(T0,T1,T2, · · · ), X j,τc = (S j,τc , I j,τc ,Q j,τc ,R j,τc)

T = X j(T0 −

τc,T1,T2, · · · ), j = 1, 2, 3, · · · .
From Eq. (4.3) we can get:

Ẋ(t) = εD0X1 + ε2D1X1 + ε3D2X1 + ε2D0X2 + ε3D0X3 + · · · . (4.4)

The Taylor expansion of X(t − τ) is carried out:

X(t − τ) =εX1,τc + ε2X2,τc + ε3X3,τc − ε
2τεD0X1,τc − ε

3τεD0X2,τc − ε
2τcD1X1,τc

− ε3τεD1X1,τc − ε
3τcD2X1,τc − ε

3τcD1X2,τc + · · · ,
(4.5)

where X j,τc = X j(T0 − τc,T1,T2, · · · ), j = 1, 2, 3, · · · .
Substituting Eqs. (4.3) ∼ (4.5) into Eq. (4.1), and balancing the coefficients before ε on both sides

of the equation, the following expression is obtained:

D0S k1 + µS k1 + βI∗k S k1 + βS ∗kIk1 = 0,
D0Ik1 − βI∗k S k1 − βS ∗kIk1 + (δ + µ + α1)Ik1 + γIk1,τc = 0,
D0Qk1 − δIk1 + (ε + α2 + µ)Qk1 = 0,
D0Rk1 − γIk1,τc + εQk1 + µRk1 = 0, k = 1, 2.

(4.6)

Thus Eq. (4.6) has the following solution form:

X1(T1,T2,T3, · · · ) = G(T1,T2,T3, · · · )eiω(k)T0hk + Ḡ(T1,T2,T3, · · · )e−iω(k)T0 h̄k, k = 1, 2. (4.7)

The expression of the coefficient before ε2 is as follows:

D0S k2 + µS k2 + βI∗k S k2 + βS ∗kIk2 = −D1S k1 − βS k1Ik1,

D0Ik2 − βI∗k S k2 − βS ∗kIk2 + (δ + µ + α1)Ik2 + γIk2,τc = −D1Ik1 + βS k1Ik1+

γ(τεD0Ik1,τc + τcD1Ik1,τc),
D0Qk2 − δIk2 + (ε + α2 + µ)Qk2 = −D1Qk1,

D0Rk2 − γIk2,τc + εQk2 + µRk2 = −D1Rk1 − γ(τεD0Ik1,τc + τcD1Ik1,τc), k = 1, 2.

(4.8)

Substituting Eq. (4.7) into the right hand side of Eq. (4.8), and the coefficient vector of eiω(k)T0 is
denoted by m1. According to the solvable condition

〈
h∗k,m1

〉
= 0, the expression of ∂G

∂T1
can be obtained

as follows:
∂G
∂T1

= NkτεG, (4.9)
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where Nk =
(iω(k)+µ+βI∗k )2

γ·iω(k)e−iω(k)τc

(iω(k)+µ+βI∗k )2
−β2S ∗k I∗k−(iω(k)+µ+βI∗k )2

γτce−iω(k)τc
, k = 1, 2.

Since τε is a disturbance parameter, we only consider its effect on the linear part. It has little effect
on the high order, so it can be ignored. Therefore, we ignore the part containing τε in the higher order.
We suppose:

S k2 = gk1e2iω(k)T0G2 + ḡk1e−2iω(k)T0Ḡ2 + lk1GḠ,
Ik2 = gk2e2iω(k)T0G2 + ḡk2e−2iω(k)T0Ḡ2 + lk2GḠ,
Qk2 = gk3e2iω(k)T0G2 + ḡk3e−2iω(k)T0Ḡ2 + lk3GḠ,
Rk2 = gk4e2iω(k)T0G2 + ḡk4e−2iω(k)T0Ḡ2 + lk4GḠ,

(4.10)

where

gk1 =
−βhk2(2iω(k)+δ+µ+α1+γe−2iω(k)τc )

J , gk2 =
(2iω(k)+µ)βhk2

J ,

gk3 =
(2iω(k)+µ)δβhk2

(2iω(k)+µ+α2+ε)J , gk4 =
(2iω(k)+µ)βhk2[ε(2iω(k)+µ+α2+ε)−δε]

(2iω(k)+µ+α2+ε)(2iω(k)+µ)J ,

lk1 =
−β(hk2+h̄k2)(δ+µ+α1+γ)

V , lk2 =
βµ(hk2+h̄k2)

V , lk3 =
δβµ(hk2+h̄k2)
(µ+α2+ε)V ,

lk4 =
γβµ(hk2+h̄k2)(µ+α2+ε)−εδβµ(hk2+h̄k2)

µ(µ+α2+ε)V ,

J = (2iω(k) + µ + βI∗k )(2iω(k) + δ + µ + α1 + γe−2iω(k)τc) − βS ∗k(2iω(k) + µ),
V = (µ + βI∗k )(δ + µ + α1 + γ) + βµS ∗k,

hk2 = −
iω(k)+µ+βI∗k

βS ∗k
, k = 1, 2.

(4.11)

The expression of the coefficient before ε3 is:

D0S k3 + µS k3 + βI∗k S k3 + βS ∗kIk3 = −D2S k1 − D1S k2 − βS k2Ik1 − βS k1Ik2,

D0Ik3 − βI∗k S k3 − βS ∗kIk3 + (δ + µ + α1)Ik3 + γIk3,τc = −D2Ik1 − D1Ik2 + βS k2Ik1 + βS k1Ik2

+γ(τcD1Ik2,τc + τcD2Ik1,τc),
D0Qk3 − δIk3 + (ε + α2 + µ)Qk3 = −D2Qk1 − D1Qk2,

D0Rk3 − γIk3,τc + εQk3 + µRk3 = −D2Rk1 − D1Rk2 − γ(τcD1Ik2,τc + τcD2Ik1,τc), k = 1, 2.

(4.12)

Substituting Eq. (4.7), Eq. (4.10) and Eq. (4.11) into the right hand side of Eq. (4.12), and the
coefficient vector of eiω(k)T0 is denoted by m2. According to the solvable condition

〈
h∗k,m2

〉
= 0, the

expression of ∂G
∂T2

can be obtained as follows:

∂G
∂T2

= ξkG2Ḡ, (4.13)

where

ξk =
β(lk2 + gk2 + lk1hk2 + gk1h̄k2)(iω(k) + µ)
βI∗k − (iω(k) + µ + βI∗k )(γτce−iω(k)τc − 1)hk2

, k = 1, 2.

Let G → G/ε, then the deduce to third-order normal form of Hopf bifurcation of system (2.2) is:

Ġ = NkτεG + ξkG2Ḡ, (4.14)

where Nk is given in Eq. (4.9), and ξk is given in Eq. (4.13), k = 1, 2.
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By substituting G = reiθ into Eq. (4.14), the following normal form of Hopf bifurcation in polar
coordinates can be obtained: {

ṙ = Re(Nk)τεr + Re(ξk)r3,

θ̇ = Im(Nk)τε + Im(ξk)r2,
(4.15)

where Nk is given in Eq. (4.9), and ξk is given in Eq. (4.13), k = 1, 2.
According to the normal form of Hopf bifurcation in polar coordinates, we just need to consider the

first equation in system (4.15). Thus, there is the following theorem:

Theorem 4.1. For the system (4.15), when Re(Nk)τε
Re(ξk) < 0 ( k = 1, 2), there is a nontrivial fixed point

r =

√
−

Re(Nk)τε
Re(ξk) , and system (2.2) has periodic solution:

(1) If Re(Nk)τε < 0, then the periodic solution reduced on the center manifold is unstable.
(2) If Re(Nk)τε > 0, then the periodic solution reduced on the center manifold is stable.

5. Numerical simulations

In this section, according to the data presented in Refs. [27] and [28], we let Λ = 10.48, β = 0.0004,
δ = 0.7, α1 = 0.0484, α2 = 0.022778, γ = 0.42386, ε = 0.475, µ = 0.00714. Then, system (2.2) only
has one nonnegative equilibrium E1 = (S ∗1, I

∗
1,Q

∗
1,R

∗
1) ≈ (1467.8, 0, 0, 0). Obviously, the assumption (

H1) holds, thus the equilibrium E1 is locally asymptotically stable when τ = 0.
Substituding these parameter values into the Eqs. (3.5)∼(3.7), using MATLAB, we can obtain

ω0 ≈ 0.3900, Q0 ≈ 0.9201, P0 ≈ −0.4284, τ(0)
1 ≈ 5.1629. According to the Theorem 3.1, the

equilibrium E1 is locally asymptotically stable at τ ∈ [0, τ(0)
1 ), and when τ = τ(0)

1 , Hopf bifurcation
occurs near the equilibrium E1. Then, we obtain Re(N1) > 0, Re(ξ1) > 0 from Eqs. (4.9)∼(4.13),
thus according to the Theorem 4.1, the system (2.2) has backward periodic solution and the periodic
solution is unstable when τε < 0.

When τ = 0, we choose the initial value (1473, 1, 2, 1) and the corresponding locally asymptotically
stable equilibrium is shown in Figure 2.
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Figure 2. When τ = 0, the equilibrium E1 of system (2.2) is locally asymptotically stable.

When τ = 4.2 ∈ [0, τ(0)
1 ), we choose the initial value (1473, 1, 2, 1), the equilibrium E1 is also locally

asymptotically stable (see Figure 3). Thus, the epidemic will be controlled eventually.
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Figure 3. When τ = 4.2, the system (2.2) has locally asymptotically stable equilibrium.

When τ = 5.5 ∈ (τ(0)
1 ,+∞), we choose the initial value (1473, 1, 2, 1), and the equilibrium E1 is

unstable shown in Figure 4.
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Figure 4. When τ = 5.5, the system (2.2) has unstable equilibrium.

It can be seen from Figure 2∼ Figure 4, when τ ∈ [0, τ(0)
1 ), the equilibrium E1 of system (2.2) is

locally asymptotically stable (see Fig. 2 and Fig. 3). When τ ∈ (τ(0)
1 ,+∞), the equilibrium E1 of system

(2.2) is unstable, and accompanied by the fluctuation with increased amplitude (see Fig. 4). There is
no periodic solution, so we believe the theoretical analysis is correct.

Remark 1: Through numerical simulations, it can be found that when the treatment time τ < τ(0)
1 ,

the shorter treatment time is, the faster the epidemic tends to be stable. If τ > τ(0)
1 , the epidemic

cannot be controlled effectively, and accompanied by the fluctuation with increased amplitude with
time. Thus, we obtain the critical treatment time τ(0)

1 for the epidemic.
According to the data presented in Refs. [27] and [28], we choose another set of parameters,

Λ = 2.48, β = 0.86834, δ = 0.3, α1 = 0.0484, α2 = 0.022778, γ = 0.42386, ε = 0.475,
µ = 0.00714. We obtain E1 = (S ∗1, I

∗
1,Q

∗
1,R

∗
1) ≈ (347.3, 0, 0, 0), E2 = (S ∗2, I

∗
2,Q

∗
2,R

∗
2) ≈

(0.8976, 3.1737, 1.8857, 313.8526). Apparently, the assumption (H1) does not hold, but the assumption
(H3) holds, therefore, the equilibrium E1 is unstable and the equilibrium E2 is locally asymptotically
stable when τ = 0.

Substituding these parameter values into the Eq. (3.13), we get c1 ≈ 3.3383, c0 ≈ −0.4174. It
satisfies the assumption (H4), therefore, Eq. (3.13) has only one positive root z1 ≈ 0.1204. Substituting
these parameter values into the Eqs. (3.12)∼(3.14), using MATLAB, we can obtain ω1 ≈ 0.3474,
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Q1 ≈ 0.5926, P1 ≈ −0.8055, τ(0)
2,1 ≈ 7.2175. According to the Theorem 3.1, the equilibrium E2 is

locally asymptotically stable at τ ∈ [0, τ(0)
2,1), and when τ = τ(0)

2,1, Hopf bifurcation occurs near the
equilibrium E2. Then we obtain Re(N2) > 0, Re(ξ2) < 0 by Eqs. (4.9)∼(4.13), according to the
Theorem 4.1, the system (2.2) has stable periodic solution near E2, and the periodic solution reduced
on the center manifold is stable.

When τ= 0, we choose the initial value (0.85, 3, 1.9, 300) and the corresponding locally asymptoti-
cally stable equilibrium is shown in Figure 5.
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Figure 5. When τ = 0, the equilibrium E2 of system (2.2) is locally asymptotically stable.

When τ = 4 ∈ [0, τ(0)
2,1), we choose the initial value (0.85, 3, 1.9, 300), and the periodic solution of

this model is locally asymptotically stable shown in Figure 6.
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Figure 6. When τ = 4, the equilibrium E2 of system (2.2) is locally asymptotically stable.

When τ = 5 ∈ [0, τ(0)
2,1), we choose the initial value (0.85, 3, 1.9, 300), the equilibrium E2 has a stable

equilibrium is shown in Figure 7.
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Figure 7. When τ = 5, the equilibrium E2 of system (2.2) is locally asymptotically stable.

It can be seen from Figure 5∼Figure 7, when τ ∈ [0, τ(0)
2,1), the equilibrium E2 of system (2.2) is

locally asymptotically stable. Especially, if τ is larger, the time required for the system (2.2) to be
controlled stable is longer.

When τ = 7.23 > τ(0)
2,1 = 7.2175, we choose the initial value (0.85, 3, 1.9, 300), the model has stable

periodic solution shown in Figure 8.
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Figure 8. When τ = 7.23, system (2.2) has stable periodic solution near E2.

When τ = 7.5 > 7.23, we choose the initial value (0.85, 3, 1.9, 300), and the equilibrium E2 is
unstable shown in Figure 9.
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Figure 9. When τ = 7.5, system (2.2) is unstable near E2.
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When τ = 7.9 > 7.5, we choose the initial value (0.85, 3, 1.9, 300), and the equilibrium E2 is
unstable shown in Figure 10.

0 100 200 300 400 500 600 700

t

0

5

10

S

10
10

0 100 200 300 400 500 600 700

t

-10

-5

0

I

10
10

0 100 200 300 400 500 600 700

t

-10

-5

0

Q

0 100 200 300 400 500 600 700

t

100

200

300

R

Figure 10. When τ = 7.9, the equilibrium E2 of system (2.2) is unstable.

It can be seen from the Figure 8∼Figure 10, when τ ∈ (τ(0)
2,1,+∞), the equilibrium E2 of system

(2.2) is unstable. When τ approaches the critical value τ(0)
2,1, the equilibrium E2 of system (2.2) exhibits

periodic fluctuation and bifurcates stable periodic solutions (see Fig. 8). As τ increasing, the fluctu-
ation phenomenon lasts for a period of time, and shows increasing volatility trends (see Fig. 9) and
disappears eventually (see Fig. 10). According to the Theorem 3.1 and Theorem 4.1, we know that the
theoretical analysis is correct.

Remark 2: Through numerical simulations, it can be found that when the treatment time τ < τ(0)
2,1,

the epidemic can be controlled effectively, and the smaller the time-delay τ is the faster the epidemic is
controlled. When the treatment time τ ∈ (τ(0)

2,1,+∞) is close to τ(0)
2,1, the epidemic will repeatedly occur

periodically, otherwise, the epidemic cannot be controlled. Since the small variation in treatment time
will lead to the epidemic polarization, therefore, whether to grasp the treatment time is essential to
control the epidemic.

Remark 3: In Ref. [26], Liu et al. used the Milstein’s Higher Order Method mentioned to illustrate
their main results. And they obtained that the disease is persistent. Similarly, in our simulation, the
epidemic is persistent and tends to stable with time.

In Ref. [29], the study carried out numerical simulation. First of all, they changed the value of
parameters to get the “without control” and “with control” graphs, from which we can see that different
populations tend to be stable in the end. At the same time, through comparison, it is concluded that the
control technique is useful in controlling the disease. Our simulation results show that the system is
locally asymptotically stable in the critical treatment time, and the disease will be effectively controlled.
Then they fit real data with the infected class of their model and found that the number of cases grows
exponentially with time, the disease would be serious without applying the proper optimal control
strategies. And we conclude that if not treat within the critical time, that is to say, without timely and
effective treatment, the epidemic will be uncontrollable.

In a word, although the model studied is different from Ref. [29], and we focus on the impact of
time delay on the epidemic situation, but the overall idea and conclusion are consistent, so we can still
verify the correctness of our simulation results. Moreover, we emphasize the time-delay of treatment,
so we also obtain the critical treatment time, which can take more targeted measures to control the
epidemic. To effectively control the epidemic situation, we need to take measures not only in the
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external environment, but also in the internal medical care, and now there is little research on the
treatment direction. Therefore, the critical treatment time we get is helpful for the alleviation of the
disease.

6. Conclusion

In this paper, according to the propagation characteristics of COVID-19, we have constructed the
SIRQ epidemic model with time delay for the COVID-19. We have also analyzed the stability of the
equilibria and the existence of Hopf bifurcation associated with both equilibria. Then, we have used
the multiple time scales method to derive the normal form of Hopf bifurcation for above COVID-
19 epidemic model. Finally, We have chosen two groups of parameter values according to the data
presented in Refs. [27] and [28] for numerical simulations to verify the correctness of the theoretical
analysis. Compared with the numerical simulation results of Refs. [26] and [29], we have got the
conclusion that our numerical simulation results were accuracy.

The numerical simulations showed that the small change of time-delay τ leads to the epidemic from
stable to uncontrollable: the smaller τ is the better the epidemic controlled, but with τ increasing,
the epidemic will occur repeatedly and outbreak eventually. Therefore, it is significant that find the
critical treatment time to control the epidemic. In addition, we would predict the critical treatment
time of epidemic in different regions according to the relevant parameters, so as to effectively control
the epidemic in treatment, and realize the major breakthrough of medicine in the epidemic situation.

As for the part of numerical simulation, according to the opinions of reviewers, we will use more
accurate data to get more valuable conclusions in further research.

Acknowledgments

The authors are extremely grateful to the anonymous referees and editor for their careful reading,
valuable comments and helpful suggestions, which have helped us to improve the presentation of this
work significantly. This study was funded by Fundamental Research Funds for the Central Universities
of China (Grant No. 2572019BC14), the Heilongjiang Provincial Natural Science Foundation of China
(Grant No. LH2019A001) and College Students Innovations Special Project funded by Northeast
Forestry University of China (No.202010225035).

Conflict of interest

The Authors declare that this work has no conflict of interest.

References

1. Z. Liao, P. Lan, Z. Liao, Y. Zhang, S. Liu, TW-SIR: Time-window based SIR for COVID-19
forecasts, Sci. Rep., 10 (2020), 22454.

2. C. Yang, J. Wang, Modeling the transmission of COVID-19 in the US–A case study, Infect. Dis.
Model., 6 (2021), 195–211.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3197–3214.



3213

3. G. Xu, F. Qi, H. Li, Q. Yang, H. Wang, X. Wang, et al., The differential immune responses to
COVID-19 in peripheral and lung revealed by single-cell RNA sequencing, Cell Discov., 6 (2020),
1–14.

4. Z. Zhang, A novel covid-19 mathematical model with fractional derivatives: Singular and nonsin-
gular kernels, Chaos Soliton. Fract., 139 (2020), 110060.

5. A. S. Bhadauria, R. Pathak, M. Chaudhary, A SIQ mathematical model on COVID-19 investigat-
ing the lockdown effect, Infect. Dis. Model., 6 (2021), 244–257.

6. Y. Li, Q. Zhang, The balanced implicit method of preserving positivity for the stochastic SIQS
epidemic model, Physica A, 538 (2020), 122972.

7. M. Higazy, Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic,
Chaos Soliton. Fract., 138 (2020), 110007.
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