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Abstract: To investigate the roles of both coupling noises and distributed delays with strong kernels,
a novel delayed stochastic two-species facultative mutualism model is established, in where the strong
kernels indicate that the maximum influence on the growth rate response at some time is due to
population densities at the previous time, and the saturation effect is also incorporated because the
facultative capacity of each species is finite and their interspecific mutualism should be upper bounded
in real life. We first transfer the two-species stochastic model with strong kernels into an equivalent
six-dimensional model through a linear chain technique. Later, sufficient conditions for the extinction
exponentially, persistence in the mean, permanent in time average and stationary distribution are
respectively obtained. Finally, numerical simulations are supplied to support our theoretical results.
Our analytical results show that the coupling noise intensities play an important role in the long-time
behaviors while the strong kernels are independent of the above asymptotic properties.

Keywords: facultative mutualism model; noise coupling; distributed delays; persistence and
extinction; stationary distribution

1. Introduction

According to the definition of [1], mutualism is the interaction of two/many species that benefits
both/each other. As a common occurrence in nature, the mutualism interaction has an important impact
and is well documented in many types of communities. Mutualism can be obligate or facultative, more
specifically, an obligate mutualist is a species which requires the presence of another species for its
survival [2] while a facultative mutualist is one which benefits in the same way from the association
with another species but will be survive in its absence [3]. In recent years many mutualism models
have been studied intensively and some good results have been obtained, for details to see stability and
bifurcation [4–12], persistence and extinction [5,7,8,11,13–20], periodic solution and almost periodic
solution [20–24], optimal control [25, 26], and stationary distribution [27, 28].
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Recalling many of the above studies, we can see that the distributed delay does’t been taken into
account. In fact the evolution of a species may reply on an average over past population or the
cumulative effect of the past history, and distributed delays are often incorporated into populations
models, for details to see references [30–40]. Particularly, the following Gamma distribution initially
given by MacDonald [32]

K(t) =
tnσn+1e−σt

n!
, σ > 0, n = 0, 1, 2, · · · ,

is usually used for the delay kernels. It is well known that there exist two types of kernels: weak kernel
and strong kernel, which respectively, represented by

K(t) = σe−σt (n = 0,weak kernel), K(t) = tσ2e−σt (n = 1, strong kernel). (1.1)

Both weak kernel and strong kernel own different biological meanings: the former implies that the
maximum weighted response of the growth rate is due to current population density while past densities
have exponentially decreasing influence, and the latter indicate that the maximum influence on the
growth rate response at some time is due to population density at the previous time (see [41]).

On the other hand, the deterministic models may be necessary to incorporate the environmental
noises into these models. Nisbet and Gurney [42] and May [43] suggested that the growth rates in
population systems should own stochasticity and emerge random fluctuation to a certain degree. Thus,
some noise sources were incorporated and then corresponding stochastic models were established.
However, in many excellent investigations the authors assumed that one noise source only had an
effect on the intrinsic growth rate of one species. Obviously, a reasonable idea is to consider that one
noise source has influence not only on the intrinsic growth rate of one species but also on that of other
species.

Inspired by the above arguments, in the next section we introduce a stochastic facultative
mutualism model with distributed delays and strong kernels (see model (2.3)). Survival analysis and
stationary distribution will become two topics of our whole research because the survival analysis
reveals the persistence or extinction of one or more species in random environment and the stationary
distribution is concerned with the stochastic statistical characteristic of the long-term behaviours of
the sample trajectories. To the best of our knowledge, there are few published papers concerning
model (2.3). The rest of this work is organized as follows. In Section 3, we present the main results
including extinction exponentially, persistence in the mean, permanent in time average. In Section 4,
we devote to investigating the existence and uniqueness of stationary distribution. In Section 5,
numerical simulations are given to support our findings. A brief discussion on the biological
meanings is shown in Section 6.

2. Model and preliminaries

For the final export of the model we will discuss, let us first introduce the following facultative
mutualism model with saturation effect which corresponds to a deterministic competitive model
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proposed by Gopalsamy [29]
dx1(t) = x1(t)[a1 − b1x1(t) +

c1x2(t)
1 + x2(t)

]dt,

dx2(t) = x2(t)[a2 − b2x2(t) +
c2x1(t)

1 + x1(t)
]dt,

(2.1)

where xi (i = 1, 2) are the densities of two species, ai > 0 denote the intrinsic growth rates, bi > 0 are
the intraspecific competition rates, ci > 0 are the interspecific mutualism rates and the nonlinear term
c1x2/(1 + x2) (or c2x1/(1 + x1)) reflects a saturation effect for large enough x2 (or x1).

With the idea of distributed delays and strong kernels, model (2.1) becomes a delayed version
dx1(t) = x1(t)[a1 − b1x1(t) + c1

∫ t

−∞

(t − s)σ2
2e−σ2(t−s) x2(s)

1 + x2(s)
ds]dt,

dx2(t) = x2(t)[a2 − b2x2(t) + c2

∫ t

−∞

(t − s)σ2
1e−σ1(t−s) x1(s)

1 + x1(s)
ds]dt.

(2.2)

Similar to [44], we use two coupling noise sources to model the random perturbations and derive a new
stochastic model

dx1(t) = x1(t)[a1 − b1x1(t) + c1

∫ t

−∞

(t − s)σ2
2e−σ2(t−s) x2(s)

1 + x2(s)
ds]dt +

2∑
i=1

α1ix1(t)dBi(t),

dx2(t) = x2(t)[a2 − b2x2(t) + c2

∫ t

−∞

(t − s)σ2
1e−σ1(t−s) x1(s)

1 + x1(s)
ds]dt +

2∑
i=1

α2ix2(t)dBi(t),

(2.3)

with initial values xi(s) = φi(s) ≥ 0, s ∈ (−∞, 0] and φi(0) > 0, where φi are continuous bounded
functions on (−∞, 0]. Bi(t) are standard independent Brownian motions defined on a complete
probability space (Ω,F , {Ft}t≥0, P) with a filtration {Ft}t≥0 satisfying the usual conditions. And α2

1i, α
2
2i

denote the coupling noise intensities.
Assign

m1(t) =

∫ t

−∞

(t − s)σ2
1e−σ1(t−s) x1(s)

1 + x1(s)
ds, m2(t) =

∫ t

−∞

(t − s)σ2
2e−σ2(t−s) x2(s)

1 + x2(s)
ds,

n1(t) =

∫ t

−∞

σ1e−σ1(t−s) x1(s)
1 + x1(s)

ds, n2(t) =

∫ t

−∞

σ2e−σ2(t−s) x2(s)
1 + x2(s)

ds.
(2.4)

With the help of chain techniques, the delayed stochastic facultative mutualism model (2.3) is
transformed into an equivalent undelayed stochastic six-dimensional system

dx1(t) = x1(t)[a1 − b1x1(t) + c1m2(t)]dt + α11x1(t)dB1(t) + α12x1(t)dB2(t),
dx2(t) = x2(t)[a2 − b2x2(t) + c2m1(t)]dt + α21x2(t)dB1(t) + α22x2(t)dB2(t),
dm1(t) = σ1(n1(t) − m1(t))dt,
dm2(t) = σ2(n2(t) − m2(t))dt,
dn1(t) = σ1( x1(t)

1+x1(t) − n1(t))dt,
dn2(t) = σ2( x2(t)

1+x2(t) − n2(t))dt.

(2.5)
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with initial value (x1(0), x2(0),m1(0),m2(0), n1(0), n2(0)), where

xi(0) = φi(0), mi(0) = −

∫ 0

−∞

sσ2
i eσi s φi(s)

1 + φi(s)
ds, ni(0) =

∫ 0

−∞

σieσi s φi(s)
1 + φi(s)

ds, i = 1, 2.

To show the novelty of our work, we explicate the following two facts:
(I) Zuo et al. [36] recently investigated the following stochastic two-species cooperative model with

distributed delays and weak kernels
dx1(t) = x1(t)[a1 − b1x1(t) + c1

∫ t

−∞

σ2e−σ2(t−s)x2(s)ds]dt + α11x1(t)dB1(t),

dx2(t) = x2(t)[a2 − b2x2(t) + c2

∫ t

−∞

σ1e−σ1(t−s)x1(s)ds]dt + α22x2(t)dB2(t).
(2.6)

Obviously, there exists a limitation in model (2.6): with the increase of one cooperator’s density, its
cooperative capacity will increase and tend to infinity (see ci

∫ t

−∞
σ je−σ j(t−s)x j(s)ds). But in real life,

this interaction between different species should be upper-bounded (a similar argument can be seen
in [45]). In our model (2.3), the interspecific mutualism terms ci

∫ t

−∞
(t − s)σ2

i e−σi(t−s) x j(s)
1+x j(s)ds show

saturation effects. Also, by the chain techniques, model (2.6) can be transformed into an equivalent
four-dimensional system (see model (2.2) in [36]) whose dimension is lower than the above
six-dimensional system (2.5). Finally, we must point out that there are two noise sources in
model (2.6), but one noise source only has an effect on one species. It is easy to see that one noise
source affects two species at the same time in model (2.3).

(II) In a recent investigation, Ning et al. [40] discussed a stochastic competitive model with
distributed delays and weak kernels

dx1(t) = x1(t)[a1 − b1x1(t) − c1

∫ t

−∞

σ2e−σ2(t−s) x2(s)
1 + x2(s)

ds]dt +

2∑
i=1

α1ix1(t)dBi(t),

dx2(t) = x2(t)[a2 − b2x2(t) − c2

∫ t

−∞

σ1e−σ1(t−s) x1(s)
1 + x1(s)

ds]dt +

2∑
i=1

α2ix2(t)dBi(t).

(2.7)

Clearly, there exists a remarkably different mechanism of action between model (2.3) and model (2.7)
because the former is interspecific mutualism (see the positive feedback parameters ci) and the latter
is interspecific competition (see the negative feedback parameters −ci). The strong kernel functions
of our model (2.3) differs distinctly from the weak kernel functions of the above model (2.7) (also see
Eq (1.1)). By the chain techniques, an equivalent undelayed six-dimensional system to model (2.3)
is also different from that of the undelayed four-dimensional system to model (2.7) (see model (3)
in [40]).

As a continuation of previous work [40], our main purpose of this contribution is to investigate the
effects of both coupling noise sources on the long-time behaviors of facultative mutualism model (2.3)
with distributed delays and strong kernels by analyzing its equivalent system (2.5). For the convenience
of the subsequent analysis, we list the following two definitions.
Definition 2.1. Signals and abbreviations are defined in Table 1.
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Table 1. Signal abbreviation.

Signal 〈x(t)〉 x∗ x∗

Expression t−1
∫ t

0
x(s)ds lim inft→+∞ x(t) lim supt→+∞ x(t)

Definition 2.2. Survival results of species are defined in Table 2.

Table 2. Survival of species.

Cases Conditions
x-Extinct exponentially (EE) lim supt→+∞ t−1 ln x(t) < −$1 a.s. ($1 > 0)
x-Persistence in the mean (PM) limt→+∞〈x(t)〉 = $2 a.s. ($2 > 0)
x-Permanent in time average (PTA) $3 ≤ 〈x(t)〉∗ ≤ 〈x(t)〉∗ ≤ $4 a.s. ($3, $4 > 0)

3. Survival analysis

This section is determined to analyze the survival of system (2.5). For the convenience of the
subsequent discussion, we first estimate mi(t) and ni(t).

Lemma 3.1. mi(t), ni(t) ≤ 1 and limt→+∞mi(t)/t = limt→+∞ ni(t)/t = 0, i = 1, 2.

Proof. We first consider the upper bound of mi(t). It follows from Eq (2.4) that

mi(t) =

∫ t

−∞

(t − s)σ2
i e−σi(t−s) xi(s)

1 + xi(s)
ds ≤

∫ t

−∞

(t − s)σ2
i e−σi(t−s)ds = 1, i = 1, 2. (3.1)

Also, we obtain from Eq (2.4) that

ni(t) =

∫ t

−∞

σie−σi(t−s) xi(s)
1 + xi(s)

ds ≤
∫ t

−∞

σie−σi(t−s)ds = 1, i = 1, 2. (3.2)

Obviously, Eqs (3.1) and (3.2) imply that limt→+∞mi(t)/t = 0, limt→+∞ ni(t)/t = 0, i = 1, 2. �

We continue to give the following fundamental lemma on the global existence and uniqueness of
positive solution to system (2.5).

Lemma 3.2. For any initial value X(0) = (x1(0), x2(0),m1(0),m2(0), n1(0), n2(0)) > 0, system (2.5)
admits a unique global solution X(t) = (x1(t), x2(t),m1(t),m2(t), n1(t), n2(t)) > 0 for t ≥ 0 a.s.

Proof. Using Itô’s formula, we obtain from system (2.5) that{
d ln x1(t) = [a1 − b1x1(t) + c1m2(t) − (α2

11 + α2
12)/2]dt + α11dB1(t) + α12dB2(t),

d ln x2(t) = [a2 − b2x2(t) + c2m1(t) − (α2
21 + α2

22)/2]dt + α21dB1(t) + α22dB2(t).
(3.3)

Define a C2-function U(X(t)) by

U(X(t)) =

2∑
i=1

(xi − 1 − ln xi + mi − 1 − ln mi + ni − 1 − ln ni). (3.4)
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Applying Itô’s formula to Eq (3.4) leads to

dU(X(t)) = LU(X(t)) +

2∑
i=1

(
α1ix1(t)dBi(t) − α1idBi(t) + α2ix2(t)dBi(t) − α2idBi(t)

)
,

where

LU(X(t)) = −b1x2
1 − b2x2

2 + c1m2x1 + c2m1x2 + a1x1 + a2x2 + b1x1 + b2x2 + σ1
x1

1+x1

+ σ2
x2

1+x2
+ (α2

11 + α2
12)/2 + (α2

21 + α2
22)/2 − σ1

1
n1

x1
1+x1
− σ2

1
n2

x2
1+x2

+ 2σ1 + 2σ2 − a1 − a2 − c1m2 − c2m1 − σ1m1 − σ2m2 − σ1
n1
m1
− σ2

n2
m2

≤ K + 3σ1 + 3σ2 + (α2
11 + α2

12)/2 + (α2
21 + α2

22)/2,

and
K = −b1x2

1 − b2x2
2 + c1m2x1 + c2m1x2 + a1x1 + a2x2 + b1x1 + b2x2.

It follows from Lemma 3.1 that m1 ≤ 1 and m2 ≤ 1, and then K is bounded when x1, x2 ∈ (0,+∞).
As a consequence, LU(X(t)) is bounded. The rest proof is similar to that of Theorem 2.1 in [46], and
hence we omit it. �

Assign ξ1 = 0.5(α2
11 + α2

12), ξ2 = 0.5(α2
21 + α2

22). The following Theorems 3.1–3.4 focus on the
survival results of both species.

Theorem 3.1. Both species are extinct exponentially if a1 + c1 < ξ1 and a2 + c2 < ξ2.

Proof. An integration of Eq (3.3) over [0, t] leads to

ln
xi(t)
xi(0)

= (ai − ξi)t − bi

∫ t

0
xi(s)ds + ci

∫ t

0
m j(s)ds + αi1B1(t) + αi2B2(t). (3.5)

Dividing by t and using Lemma 3.1, one has

t−1 ln xi(t) − t−1 ln xi(0) ≤ ai + ci − ξi + t−1(αi1B1(t) + αi2B2(t)), i = 1, 2. (3.6)

The strong law of local martingales [47] states limt→+∞ t−1Bi(t) = 0, and moreover, we derive from
Eq (3.6) that

lim sup
t→+∞

t−1 ln xi(t) ≤ ai + ci − ξi, i = 1, 2.

Thus, both species are extinct exponentially by the assumptions of Theorem 3.1. �

Theorem 3.2. Assume that a1 + c1 < ξ1 and a2 > ξ2, then species x1 goes to exponential extinction
while species x2 is persistent in the mean and limt→+∞〈x2(t)〉 = (a2 − ξ2)/b2 a.s.

Proof. If a1 + c1 < ξ1, then we obtain from Theorem 3.1 that species x1 will be extinct exponentially
and lim supt→+∞ t−1 ln x1(t) < 0. Thus, we further derive that

lim
t→+∞

x1(t) = 0 a.s. (3.7)

An integration of the last four equations of system (2.5) on both sides results in

mi(t) − mi(0) = σi(
∫ t

0
ni(s)ds −

∫ t

0
mi(s)ds),

ni(t) − ni(0) = σi(
∫ t

0
xi(s)

1+xi(s)ds −
∫ t

0
ni(s)ds), i = 1, 2.
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Consequently, we have

lim
t→+∞

mi(t)−mi(0)
t = σi lim

t→+∞
(〈ni〉 − 〈mi〉), lim

t→+∞

ni(t)−ni(0)
t = σi lim

t→+∞
(〈 xi

1+xi
〉 − 〈ni〉),

furthermore, it follows from Lemma 3.1 that limt→+∞mi(t)/t = 0 and limt→+∞ ni(t)/t = 0. And
limt→+∞mi(0)/t = 0, limt→+∞ ni(0)/t = 0. So we have

lim
t→+∞
〈mi〉 = lim

t→+∞
〈ni〉 = lim

t→+∞
〈

xi

1 + xi
〉, i = 1, 2. (3.8)

Next, by Eq (3.7) one gets for arbitrarily small ε > 0, there is T > 0 such that for t ≥ T ,

0 < 〈
x1

1 + x1
〉 < ε/(2c2),

which together with Eq (3.8) leads to

0 < 〈m1(t)〉 < ε/(2c2). (3.9)

Let −ε < t−1 ln x2(0) < ε/2 for t ≥ T . We obtain from Eqs (3.5) and (3.9) that for t ≥ T ,

ln x2(t) ≤ (a2 − ξ2 + ε)t − b2

∫ t

0
x2(s)ds + α21B1(t) + α22B2(t),

ln x2(t) ≥ (a2 − ξ2 − ε)t − b2

∫ t

0
x2(s)ds + α21B1(t) + α22B2(t).

An application of Lemma 4 in [48] to the above two inequalities gives that

〈x2(t)〉∗ ≤ (a2 − ξ2 + ε)/b2, 〈x2(t)〉∗ ≥ (a2 − ξ2 − ε)/b2 a.s.

Thus
lim

t→+∞
〈x2(t)〉 = (a2 − ξ2)/b2

is acquired by the arbitrariness of ε. �

Theorem 3.3. Suppose that a1 > ξ1 and a2 + c2 < ξ2, then species x2 goes to exponent extinction while
species x1 is persistent in the mean and limt→+∞〈x1(t)〉 = (a1 − ξ1)/b1 a.s.

Proof. The proof is similar to that of Theorem 3.2, and hence we omit it. �

Theorem 3.4. Assume that a1 > ξ1 and a2 > ξ2, then both species will be permanent in time average
and (a1 − ξ1)/b1 ≤ 〈x1〉∗ ≤ 〈x1〉

∗ ≤ (a1 − ξ1 + c1)/b1, (a2 − ξ2)/b2 ≤ 〈x2〉∗ ≤ 〈x2〉
∗ ≤ (a2 − ξ2 + c2)/b2 a.s.

Proof. Recalling Eq (3.5) and Lemma 3.1, we have

ln xi(t) ≤ ln xi(0) + (ai − ξi + ci)t − bi

∫ t

0
xi(s)ds + αi1B1(t) + αi2B2(t),

ln xi(t) ≥ ln xi(0) + (ai − ξi)t − bi

∫ t

0
xi(s)ds + αi1B1(t) + αi2B2(t), i = 1, 2.

It follows from Lemma 4 in [48] that

〈xi(t)〉∗ ≤ (ai − ξi + ci)/bi, 〈xi(t)〉∗ ≥ (ai − ξi)/bi a.s.

So the desired conclusion is obtained. �
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4. Stationary distribution

In this section, to discuss the stationary distribution of system (2.5) we make some preliminaries.
Consider the following integral equation

X(t) = X(t0) +

∫ t

t0
g(s, X(s))ds +

k∑
l=1

∫ t

t0
ςl(s, X(s))dBl(s). (4.1)

Lemma 4.1. [49]. Assume that the coefficients of Eq (4.1) are independent of t and satisfy the
following conditions for a constant κ:

|g(s, x1) − g(s, x2)| +
k∑

l=1

|ςl(s, x1) − ςl(s, x2)| ≤ κ|x1 − x2|, |g(s, x)| +
k∑

l=1

|ςl(s, x)| ≤ κ(1 + |x|)

in OR ⊂ Rd
+ and there exists a nonnegative C2-function V(x) in Rd

+ satisfying LV(x) ≤ −1 outside some
compact set. Then Eq (4.1) exists a solution which has a stationary distribution.

Remark 4.1. [36]. The condition in Lemma 4.1 may be replaced by the global existence of the solution
to Eq (4.1) according to Remark 5 in Xu et al. [50].

We first give Lemma 4.2 which is important for the subsequent discussions.

Lemma 4.2. Assume that X(t) is a solution to system (2.5) with initial value X(0) > 0. Then there is a
positive constant Qq such that for q > 0,

E[xq
i ] ≤ Qq, E[mq

i ] ≤ Qq, E[nq
i ] ≤ Qq, i = 1, 2.

Proof. Let

V(X(t)) =

2∑
i=1

(
1
q

xq
i +

bi

2σi
mq+1

i +
bi

2σi
nq+1

i ). (4.2)

Applying Itô’s formula to Eq (4.2), one can derive that

dV(X(t)) = LV(X(t))dt +

2∑
i=1

(αi1dB1(t) + αi2dB2(t))xq
i ,

in which

LV(X(t)) = (a1 − b1x1 + c1m2)xq
1 + (a2 − b2x2 + c2m1)xq

2 +
∑2

i=1
1
2 (q − 1)(α2

i1 + α2
i2)xq

i

+
∑2

i=1[ bi
2 (q + 1)(nim

q
i − mq+1

i ) + bi
2 (q + 1)( xi

1+xi
nq

i − nq+1
i )].

(4.3)

Obviously, we get, by Young’s inequality, that

bi
2 (q + 1)(nim

q
i − mq+1

i ) ≤ bi
2 (q + 1)[ 1

q+1nq+1
i − 1

q+1mq+1
i ] = bi

2 (nq+1
i − mq+1

i ),
bi
2 (q + 1)( xi

1+xi
nq

i − nq+1
i ) ≤ bi

2 (q + 1)[ 1
q+1 ( xi

1+xi
)q+1
− 1

q+1ni
q+1] ≤ bi

2 (xq+1
i − ni

q+1).

It follows from Lemma 3.1 that m1 ≤ 1 and m2 ≤ 1. By Eq (4.3) we have

LV(X(t)) ≤
2∑

i=1

{−
bi

2
xq+1

i + [ai + ci +
1
2

(q − 1)(α2
i1 + α2

i2)]xq
i −

bi

2
mq+1

i }.
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For a constant η > 0, we have

L(eηtV(X(t))) = ηeηtV(X(t)) + eηtLV(X(t))
≤ eηt ∑2

i=1{−
bi
2 xq+1

i + [ai + ci + 1
2 (q − 1)(α2

i1 + α2
i2) +

η

q ]xq
i + ( biη

2σi
−

bi
2 )mq+1

i +
biη

2σi
nq+1

i }.

Choosing the above constant η small enough such that biη/(2σi) − bi/2 < 0, and noting that
biη/(2σi)n

q+1
i ≤ biη/(2σi) (see Lemma 3.1, ni ≤ 1), we further obtain

L(eηtV(X(t))) ≤ G1eηt, (4.4)

where

G1 = max
x1,x2∈(0,+∞)

2∑
i=1

{−
bi

2
xq+1

i + [ai + ci +
1
2

(q − 1)(α2
i1 + α2

i2) +
η

q
]xq

i +
biη

2σi
}.

Integrating Eq (4.4) from 0 to t and then taking the expectation, one has

E[V(X(t))] ≤ e−ηtV(X(0)) + G1/η, t ≥ 0,

which together with the continuity of V(X(t)) and the boundedness of e−ηtV(X(0)) and G1/η, implies
that there exists a constant G2 > 0 such that for all t ≥ 0

E[V(X(t))] ≤ G2.

We further obtain from Eq (4.2) that E[xq
i /q] ≤ E[V(X(t))] ≤ G2, and hence

E[xq
i ] ≤ qG2, i = 1, 2.

Also, it follows from Eq (4.2) that E[mq+1
i ] ≤ 2σiG2/bi. And by the Young’s inequality, there exist

A1i > 0 such that
E[mq

i ] ≤ A1iE[mq+1
i ]

q
q+1 ≤ A1i(2σiG2/bi)

q
q+1 , i = 1, 2.

Similarly, we can prove there exist A2i such that

E[nq
i ] ≤ A2i(2σiG2/bi)

q
q+1 , i = 1, 2.

Let
Qq = max{qG2, A1i(2σiG2/bi)

q
q+1 , A2i(2σiG2/bi)

q
q+1 , i = 1, 2},

then for q > 0,
E[xq

i ] ≤ Qq, E[mq
i ] ≤ Qq, E[nq

i ] ≤ Qq. (4.5)

The proof is complete. �

Lemma 4.3. Suppose that X(t) is a solution to system (2.5) with X(0) > 0, then almost every path of
X(t) to system (2.5) will be uniformly continuous.
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Proof. First let us consider x1(t). For any 0 ≤ t1 ≤ t2, an integration of the first equation of system (2.5)
yields

x1(t2) − x1(t1) =

∫ t2

t1
x1(s)(a1 − b1x1(s) + c1m2(s))ds +

2∑
i=1

α1i

∫ t2

t1
x1(s)dBi(s). (4.6)

Let p > 2, by the elementary inequality |a + b + c|p ≤ 3p−1(|ap + bp + cp|), one has

E[|x1(t2) − x1(t1)|p]

= E[|
∫ t2

t1
x1(s)(a1 − b1x1(s) + c1m2(s))ds +

2∑
i=1

α1i

∫ t2

t1
x1(s)dBi(s)|p]

≤ 3p−1{E[|
∫ t2

t1
x1(s)(a1 − b1x1(s) + c1m2(s))ds|p] +

2∑
i=1

E[|
∫ t2

t1
α1ix1(s)dBi(s)|p]}.

(4.7)

Recalling Lemma 4.2 (see Eq (4.5)) and using the Hölder inequality result in

E[|
∫ t2

t1
x1(s)(a1 − b1x1(s) + c1m2(s))ds|p]

≤ E[|(
∫ t2

t1
1

p
p−1 ds)

p−1
p (

∫ t2

t1
x1(s)p(a1 − b1x1(s) + c1m2(s))pds)

1
p |p]

≤ (t2 − t1)p−1E[
∫ t2

t1
|x1(s)(a1 − b1x1(s) + c1m2(s))|pds]

≤ (t2 − t1)p−1
∫ t2

t1

1
2

(E[|x1(s)|2p] + E[|a1 − b1x1(s) + c1m2(s)|2p])ds

≤ (t2 − t1)p−1
∫ t2

t1

1
2

(E[|x1(s)|2p] + 32p−1(a2p
1 + b2p

1 E[|x1(s)|2p] + c2p
1 E[|m2(s)|2p]))ds

≤ (t2 − t1)p−1
∫ t2

t1

1
2

[Q2p + 32p−1(a2p
1 + b2p

1 Q2p + c2p
1 Q2p)]ds

= 1
2 (t2 − t1)p[Q2p + 32p−1(a2p

1 + b2p
1 Q2p + c2p

1 Q2p)].

(4.8)

In addition, using the Moment inequality and Lemma 4.2 leads to

E[|
∫ t2

t1
α11x1(s)dB1(s)|p] + E[|

∫ t2

t1
α12x1(s)dB2(s)|p]

≤ (αp
11 + α

p
12)(

p(p − 1)
2

)
p
2 (t2 − t1)

p−2
2

∫ t2

t1
E[|x1(s)|p]ds

= (αp
11 + α

p
12)(

p(p − 1)
2

(t2 − t1))
p
2 Qp.

(4.9)

Substituting Eqs (4.8) and (4.9) into Eq (4.7), we have

E[|x1(t2) − x1(t1)|p] ≤ F1(t2 − t1)
p
2 , (4.10)

where

F1 = 3p−1[
1
2

(t2 − t1)
p
2 (Q2p + 32p−1(a2p

1 + b2p
1 Q2p + c2p

1 Q2p)) + (αp
11 + α

p
12)(

p(p − 1)
2

)
p
2 Qp].
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Next, we continue to consider m1(t). For any 0 ≤ t1 ≤ t2, integrating the third equation of system (2.5)
from t1 to t2 yields that

m1(t2) − m1(t1) =

∫ t2

t1
σ1(n1(s) − m1(s))ds.

Similar to Eq (4.7), we have from the Hölder inequality and Lemma 4.2 that

E[|m1(t2) − m1(t1)|p] = E[|
∫ t2

t1
σ1(n1(s) − m1(s))ds|p]

≤ E[|(
∫ t2

t1
1

p
p−1 ds)

p−1
p (

∫ t2

t1
σ

p
1(n1(s) − m1(s))pds)

1
p |p]

≤ (t2 − t1)p−1
∫ t2

t1
E[|σ1(n1(s) − m1(s))|p]ds

≤ (t2 − t1)p−1
∫ t2

t1
2p−1(σp

1E[|n1(s)|p] + σ
p
1E[|m1(s)|p])ds

≤ F2(t2 − t1)
p
2 ,

(4.11)

where F2 = 2p(t2 − t1)
p
2σ

p
1 Qp.

Finally, we investigate n1(t). For any 0 ≤ t1 ≤ t2, by integrating the fifth equation of system (2.5)
one has

n1(t2) − n1(t1) =

∫ t2

t1
σ1(

x1(s)
1 + x1(s)

− n1(s))ds.

Similar to Eq (4.11), one obtains

E[|n1(t2) − n1(t1)|p] = E[|
∫ t2

t1
σ1(

x1(s)
1 + x1(s)

− n1(s))ds|p]

≤ E[|(
∫ t2

t1
1

p
p−1 ds)

p−1
p (

∫ t2

t1
σ

p
1(

x1(s)
1 + x1(s)

− n1(s))pds)
1
p |p]

≤ (t2 − t1)p−1
∫ t2

t1
E[|σ1(

x1(s)
1 + x1(s)

− n1(s))|p]ds

≤ (t2 − t1)p−1
∫ t2

t1
2p−1(σp

1E[|
x1(s)

1 + x1(s)
|p] + σ

p
1E[|n1(s)|p])ds

≤ (t2 − t1)p−1
∫ t2

t1
2p−1(σp

1E[|x1(s)|p] + σ
p
1E[|n1(s)|p])ds

≤ F2(t2 − t1)
p
2 .

(4.12)

Repeating the same analysis method as above, we obtain that x2, m2 and n2 own similar results as those
of Eqs (4.10)–(4.12), respectively. Thus, it follows from Lemma 3.4 in [50] that almost every sample
path of X(t) is uniformly continuous. �

Lemma 4.4. [51]. Let h(t) be a nonnegative function defined on [0,+∞) such that h(t) is integrable
on [0,+∞) and is uniformly continuous on [0,+∞). Then limt→+∞ h(t) = 0.

Lemma 4.5. If b1b2 − c1c2 > 0, then the solution X(t) = (x1(t), x2(t),m1(t),m2(t), n1(t), n2(t)) > 0 to
system (2.5) is globally attractive, that is, for any solution X̄(t) = (x̄1(t), x̄2(t), m̄1(t), m̄2(t), n̄1(t), n̄2(t))
to system (2.5) with X̄(0) > 0, there exist limt→+∞ |xi(t) − x̄i(t)| = 0, limt→+∞ |mi(t) − m̄i(t)| = 0,
limt→+∞ |ni(t) − n̄i(t)| = 0 a.s., i = 1, 2.
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Proof. It follows from the last two equations of system (2.5) that

d(ni(t) − n̄i(t)) =
{
σi(

xi(t)
1 + xi(t)

−
x̄i(t)

1 + x̄i(t)
) − σi(ni(t) − n̄i(t))

}
dt, i = 1, 2. (4.13)

Integrating both sides of Eq (4.13) over the interval [0, t] yields that

ni(t) − n̄i(t) = (ni(0) − n̄i(0))e−σit + σie−σit
∫ t

0
eσi s(

xi(s)
1 + xi(s)

−
x̄i(s)

1 + x̄i(s)
)ds.

As a consequence, one has

|ni(t) − n̄i(t)| ≤ |ni(0) − n̄i(0)|e−σit + σie−σit
∫ t

0
eσi s|

xi(s)
1 + xi(s)

−
x̄i(s)

1 + x̄i(s)
|ds.

Note that

|
xi(t)

1 + xi(t)
−

x̄i(t)
1 + x̄i(t)

| = |
xi(t) − x̄i(t)

(1 + xi(t))(1 + x̄i(t))
| ≤ |xi(t) − x̄i(t)|,

we have

|ni(t) − n̄i(t)| ≤ |ni(0) − n̄i(0)|e−σit + σie−σit
∫ t

0
eσi s|xi(s) − x̄i(s)|ds, (4.14)

from which we conclude that∫ t

0
|ni(s) − n̄i(s)|ds ≤ −

1
σi

(e−σit − 1)|ni(0) − n̄i(0)| + σi

∫ t

0
dν

∫ ν

0
eσi(s−ν)|xi(s) − x̄i(s)|ds

=
1
σi

(1 − e−σit)|ni(0) − n̄i(0)| + σi

∫ t

0
eσi s|xi(s) − x̄i(s)|ds

∫ t

s
e−σiνdν

=
1
σi

(1 − e−σit)|ni(0) − n̄i(0)| +
∫ t

0
|xi(s) − x̄i(s)|(1 − eσi(s−t))ds

≤
1
σi
|ni(0) − n̄i(0)| +

∫ t

0
|xi(s) − x̄i(s)|ds, i = 1, 2.

(4.15)

Similarly, one has∫ t

0
|mi(s) − m̄i(s)|ds ≤

1
σi
|mi(0) − m̄i(0)| +

∫ t

0
|ni(s) − n̄i(s)|ds, i = 1, 2. (4.16)

Assign

µ = b1b2 − c1c2, M(t) =
b2 + c2

µ
| ln x1(t) − ln x̄1(t)| +

b1 + c1

µ
| ln x2(t) − ln x̄2(t)|. (4.17)

A direct calculation of the right differential D+M(t) of M(t) leads to

D+M(t)
= b2+c2

µ
sgn{x1(t) − x̄1(t)}d(ln x1(t) − ln x̄1(t)) + b1+c1

µ
sgn{x2(t) − x̄2(t)}d(ln x2(t) − ln x̄2(t))

≤
b2+c2
µ

(c1|m2(t) − m̄2(t)| − b1|x1(t) − x̄1(t)|)dt + b1+c1
µ

(c2|m1(t) − m̄1(t)| − b2|x2(t) − x̄2(t)|)dt,
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from which and Eqs (4.15) and (4.16) one can obtain

M(t) − M(0)

≤
b2 + c2

µ

[ c1

σ2
|m2(0) − m̄2(0)| + c1

∫ t

0
|n2(s) − n̄2(s)|ds − b1

∫ t

0
|x1(s) − x̄1(s)|ds

]
+

b1 + c1

µ

[ c2

σ1
|m1(0) − m̄1(0)| + c2

∫ t

0
|n1(s) − n̄1(s)|ds − b2

∫ t

0
|x2(s) − x̄2(s)|ds

]
≤

c1(b2 + c2)
σ2µ

|m2(0) − m̄2(0)| +
c1(b2 + c2)

µ

[ 1
σ2
|n2(0) − n̄2(0)| +

∫ t

0
|x2(s) − x̄2(s)|ds

]
+

c2(b1 + c1)
σ1µ

|m1(0) − m̄1(0)| +
c2(b1 + c1)

µ

[ 1
σ1
|n1(0) − n̄1(0)| +

∫ t

0
|x1(s) − x̄1(s)|ds

]
−

b1(b2 + c2)
µ

∫ t

0
|x1(s) − x̄1(s)|ds −

b2(b1 + c1)
µ

∫ t

0
|x2(s) − x̄2(s)|ds

=
c1(b2 + c2)

σ2µ
|m2(0) − m̄2(0)| +

c1(b2 + c2)
σ2µ

|n2(0) − n̄2(0)| −
∫ t

0
|x1(s) − x̄1(s)|ds

+
c2(b1 + c1)

σ1µ
|m1(0) − m̄1(0)| +

c2(b1 + c1)
σ1µ

|n1(0) − n̄1(0)| −
∫ t

0
|x2(s) − x̄2(s)|ds.

Rearranging the above inequality leads to

M(t) +

2∑
i=1

∫ t

0
|xi(s) − x̄i(s)|ds ≤ M(0) +

c1(b2 + c2)
σ2µ

(|m2(0) − m̄2(0)| + |n2(0) − n̄2(0)|)

+
c2(b1 + c1)

σ1µ
(|m1(0) − m̄1(0)| + |n1(0) − n̄1(0)|) < +∞,

from which one gets |xi(t) − x̄i(t)| ∈ L1[0,+∞). Similarly, it follows from Eqs (4.15) and (4.16) that
|mi(t) − m̄i(t)|, |ni(t) − n̄i(t)| ∈ L1[0,+∞). Thus, we obtain from Lemmas 4.3 and 4.4 that

lim
t→+∞

|xi(t) − x̄i(t)| = lim
t→+∞

|mi(t) − m̄i(t)| = lim
t→+∞

|ni(t) − n̄i(t)| = 0, i = 1, 2,

which confirms Lemma 4.5. �

Theorem 4.1. If a1 − ξ1 − c1 > 0, a2 − ξ2 − c2 > 0 and b1b2 − c1c2 > 0, then system (2.5) admits a
unique stationary distribution.

Proof. To finish this proof, we will consider the following two steps.
Step 1: We first prove the existence of stationary Markov process.

It follows from Lemma 4.1 and Remark 4.1 that we only need to find a nonnegative C2-function
W(X(x1, x2,m1,m2, n1, n2)) and a closed setU ⊂ R6

+ such that LW(X) ≤ −1 on X ∈ R6
+ \U. Let q > 1

and
W(X) = δ1(− ln x1 +

c1

σ2
n2) + δ2(− ln x2 +

c2

σ1
n1)

+

2∑
i=1

{
1
q

xq
i +

1
2σi

n2
i −

1
σi

ln ni +
1

4σi
m2

i −
1

2σi
ln mi},

(4.18)
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where δi = 2
λi

max{2,Hi}, λi = ai − ξi − ci, i = 1, 2, and the constants Hi > 0 will be given later. An
application of Itô’s formula and Lemma 3.1 gives

LW(X) ≤ −δ1λ1 − b1xq+1
1 + [a1 + 1

2 (q − 1)(α2
11 + α2

12) + c1]xq
1 + b1δ1x1 −

1
n1

x1
1+x1

− δ2λ2 − b2xq+1
2 + [a2 + 1

2 (q − 1)(α2
21 + α2

22) + c2]xq
2 + b2δ2x2 −

1
n2

x2
1+x2

− 1
4m2

1 −
1
4m2

2 −
3
4n2

1 −
3
4n2

2 −
1

2m1
n1 −

1
2m2

n2 + 5.
(4.19)

Choose ε > 0 sufficiently small such that

0 < ε < min{
λi

4bi
, [

bi

2(H3 + 6)
]

1
q+1 , [

1
4(H3 + 6)

]
1
4 , [

3
4(H3 + 6)

]
1
4 ,

1
2(H3 + 6)

,

√
1 + 4/(H3 + 6) − 1

2
},

i = 1, 2, where the constant H3 > 0 is supplied later. A bounded closed set is defined by

Uε = {X ∈ R6
+|ε ≤ xi ≤

1
ε
, ε3 ≤ mi ≤

1
ε2 , ε

2 ≤ ni ≤
1
ε2 }, i = 1, 2.

Assign

Uε
1 = {X ∈ R6

+|0 < x1 < ε}, U
ε
2 = {X ∈ R6

+|0 < x2 < ε},

Uε
3 = {X ∈ R6

+|x1 >
1
ε
}, Uε

4 = {X ∈ R6
+|x2 >

1
ε
},

Uε
5 = {X ∈ R6

+|m1 >
1
ε2 }, U

ε
6 = {X ∈ R6

+|m2 >
1
ε2 },

Uε
7 = {X ∈ R6

+|n1 >
1
ε2 }, U

ε
8 = {X ∈ R6

+|n2 >
1
ε2 },

Uε
9 = {X ∈ R6

+|0 < m1 < ε
3, n1 > ε

2, n2 > ε
2}, Uε

10 = {X ∈ R6
+|0 < m2 < ε

3, n1 > ε
2, n2 > ε

2},

Uε
11 = {X ∈ R6

+|0 < n1 < ε
2, x1 > ε, x2 > ε}, U

ε
12 = {X ∈ R6

+|0 < n2 < ε
2, x1 > ε, x2 > ε}.

To prove that LW(X) ≤ −1 for X ∈ R6
+ \ U

ε , we will consider the following six cases.
Case 1. When X ∈ Uε

1, one has from Eq (4.19) that

LW(X) ≤ −
1
2

b1xq+1
1 −

δ1λ1

4
−
δ1λ1

4
+ b1δ1ε −

δ1λ1

2
+ H1,

where
H1 = sup

(x1,x2)∈R2
+

{−1
2b1xq+1

1 + [a1 + 1
2 (q − 1)(α2

11 + α2
12) + c1]xq

1

− b2xq+1
2 + [a2 + 1

2 (q − 1)(α2
21 + α2

22) + c2]xq
2 + b2δ2x2 + 5}.

We have from δ1 = 2
λ1

max{2,H1} that δ1λ1/4 ≥ 1. Then

LW(X) ≤ −
1
2

b1xq+1
1 −

δ1λ1

4
≤ −

δ1λ1

4
≤ −1.

Similarly, for X ∈ Uε
2 and δ2 = 2

λ2
max{2,H2}, one has

LW(X) ≤ −
1
2

b2xq+1
2 −

δ2λ2

4
−
δ2λ2

4
+ δ2b2ε −

δ2λ2

2
+ H2 ≤ −

δ2λ2

4
≤ −1,

where
H2 = sup

(x1,x2)∈R2
+

{−1
2b2xq+1

2 + [a2 + 1
2 (q − 1)(α2

21 + α2
22) + c2]xq

2

− b1xq+1
1 + [a1 + 1

2 (q − 1)(α2
11 + α2

12) + c1]xq
1 + b1δ1x1 + 5}.
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To discuss the following Cases 2-6, we reconsider Eq (4.19) and obtain

LW(X) ≤ −b1
2 xq+1

1 − 1
n1

x1
1+x1
− 1

4m2
1 −

3
4n2

1 −
n1

2m1

−
b2
2 xq+1

2 − 1
n2

x2
1+x2
− 1

4m2
2 −

3
4n2

2 −
n2

2m2
+ H3 + 5,

(4.20)

where
H3 = sup

(x1,x2)∈R2
+

{−1
2b1xq+1

1 + [a1 + 1
2 (q − 1)(α2

11 + α2
12) + c1]xq

1 + b1δ1x1

− 1
2b2xq+1

2 + [a2 + 1
2 (q − 1)(α2

21 + α2
22) + c2]xq

2 + b2δ2x2}.

Case 2. When X ∈ Uε
3, it follows from Eq (4.20) that LW(X) ≤ H3 + 5 − 1

2b1ε
−(q+1) ≤ −1. Similarly,

if X ∈ Uε
4, then LW(X) ≤ H3 + 5 − 1

2b2ε
−(q+1) ≤ −1.

Case 3. When X ∈ Uε
5 and X ∈ Uε

6, one has LW(X) ≤ H3 + 5 − m2
i

4 < H3 + 5 − 1
4ε4 ≤ −1.

Case 4. When X ∈ Uε
7 and X ∈ Uε

8, then LW(X) ≤ H3 + 5 − 3n2
i

4 < H3 + 5 − 3
4ε4 ≤ −1.

Case 5. When X ∈ Uε
9 and X ∈ Uε

10, we get LW(X) ≤ H3 + 5 − 1
2mi

ni < H3 + 5 − 1
2ε3 ε

2 ≤ −1.
Case 6. When X ∈ Uε

11 and X ∈ Uε
12, then LW(X) ≤ H3 + 5 − 1

ni

xi
1+xi

< H3 + 5 − 1
ε2

ε
1+ε
≤ −1.

From the above discussions we know the closed setUε satisfying supX∈R6
+\U

ε LW(X) ≤ −1.
Step 2: When b1b2 − c1c2 > 0, we know from Lemma 4.5 that the solution X(t) is globally attractive.

Combining Step 1 and Step 2, we complete the proof of Theorem 4.1. �

5. Numerical simulations

In this section, we will employ several specific examples to simulate the solutions to system (2.5),
and verify the analytical results of the previous section.

For system (2.5), we first fix the parameter values as follows: a1 = 0.295, a2 = 0.3, b1 = 0.75,
b2 = 0.65, c1 = 0.05, c2 = 0.05, σ1 = 0.1, σ2 = 0.2 and initial value x1(0) = 0.1 and x2(0) = 0.12.
We will reveal how two coupling noise sources influence the long-time behaviors by choosing different
noise intensities α2

11, α2
12, α2

21 and α2
22.
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Figure 1. Species x1 and x2 are extinct exponentially in system (2.5).

Choose α2
11 = 0.652, α2

12 = 0.752, α2
21 = 0.642, α2

22 = 0.742. A calculation gives that a1 + c1 = 0.3 <
ξ1 = 0.4925 and a2 + c2 = 0.35 < ξ2 = 0.4786, which surely satisfies Theorem 3.1. Thus, both species
will be EE (see Figure 1).
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Choose α2
11 = 0.652, α2

12 = 0.752, α2
21 = 0.032, α2

22 = 0.022. By calculating we have a1 + c1 = 0.3 <
ξ1 = 0.4925 and a2 = 0.3 > ξ2 = 0.00065, it then follows from Theorem 3.2 that species x1 is EE while
x2 is PM (see Figure 2).
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Figure 2. Species x1 is extinct exponentially while x2 is persistence in the mean in
system (2.5).

Choose α2
11 = 0.032, α2

12 = 0.022, α2
21 = 0.652, α2

22 = 0.752. Since a1 = 0.295 > ξ1 = 0.00065
and a2 + c2 = 0.35 < ξ2 = 0.4925, Theorem 3.3 indicates that species x1 is PM while x2 is EE (see
Figure 3).
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Figure 3. Species x1 is persistence in the mean while x2 is extinct exponentially in
system (2.5).

Choose α2
11 = 0.032, α2

12 = 0.022, α2
21 = 0.022, α2

22 = 0.012. Together with Theorem 3.4, we have
from a1 = 0.295 > ξ1 = 0.00065 and a2 = 0.3 > ξ2 = 0.00025 that both species are PTA (see Figure 4).

Furthermore, taking the same noise intensities as in Figure 4, a calculation shows that a1 − ξ1 − c1 =

0.24435 > 0, a2 − ξ2 − c2 = 0.24975 > 0 and b1b2 − c1c2 = 0.485 > 0. So we know, by Theorem 4.1,
that system (2.5) owns a unique stationary distribution (see Figure 5).
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Figure 4. Species x1 and x2 are permanent in time average in system (2.5).
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Figure 5. Blue bar frequency histogram of system (2.5) at time 200; Red line the
probability density function (PDF) of its corresponding stationary distribution simulated
by 2500 sample trajectories.

6. Discussion

This paper is concerned with a stochastic facultative mutualism model with saturation effect and
distributed delays, in which strong kernel functions are incorporated (see model (2.3)). By analyzing
a corresponding equivalent system (2.5), a set of easily verifiable sufficient conditions for the survival
results and stationary distribution of system (2.5) is established. Note that ξ1 = 0.5(α2

11 + α2
12) and

ξ2 = 0.5(α2
21 + α2

22) and from the above theoretical results, we have the following conclusions:

• Theorems 3.1–3.4 imply that large coupling noise intensities are harmful for the survival of both
species while suitably small coupling noise intensities are advantage for them (see Figures 1–4).
• It follows from Theorems 3.2 and 3.3 that if the intrinsic growth rate of one species is small, the

coupling noise intensities are large amplitude and the cooperation from the other species is not
enough, then one species will be extinct exponentially (see Figures 2–3). However, if the other
species only owns large intrinsic growth rate and relatively small coupling noise intensities, then
it will be persistent in the mean (see Figures 2–3).
• Compared with the conditions of Theorems 3.1, 3.4 and 4.1, that is, ai + ci < ξi, ξi < ai and
ξi < ai − ci (i = 1, 2), we find that the intrinsic growth rates ai are larger and larger while the
coupling noise intensity ξi is smaller and smaller, then both species go from exponent extinction
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(see Figure 1) to permanence in time average (see Figure 4) to the existence of a unique stationary
distribution (see Figure 5). In addition, b1b2 − c1c2 > 0 reveals that the effect of interspecific
mutualism is less than that of intra-specific competition.
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