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Abstract: In this paper, we propose a dengue transmission model of SIR(S)-SI type that accounts
for two sex-structured mosquito populations: the wild mosquitoes (males and females that are Wol-
bachia-free), and those deliberately infected with either wMel or wMelPop strain of Wolbachia. This
epidemiological model has four possible outcomes: with or without Wolbachia and with or without
dengue. To reach the desired outcome, with Wolbachia and without dengue, we employ the dynamic
optimization approach and then design optimal programs for releasing Wolbachia-carrying male and
female mosquitoes. Our discussion is focused on advantages and drawbacks of two Wolbachia strains,
wMelPop and wMel, that are recommended for dengue prevention and control. On the one hand, the
wMel strain guarantees a faster population replacement, ensures durable Wolbachia persistence in the
wild mosquito population, and requiters fewer releases. On the other hand, the wMelPop strain displays
better results for averting dengue infections in the human population.
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1. Introduction

Laboratory experiments have revealed that the intracellular bacterium Wolbachia, deliberately in-
troduced in Aedes aegypti female mosquitoes (the major transmitters of dengue and other vector-borne
infections), is capable of suppressing or even blocking the development of the dengue virus inside the
mosquito [1–4]. This naturally entails the reduced rate of the virus transmission towards human hosts
and leads to a considerable reduction of the dengue morbidity in human populations.
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Wolbachia is transmitted maternally from the female insect to her offspring and grants a repro-
ductive advantage to its carriers relative to wild insects that are Wolbachia-free. The reproductive
advantage of Wolbachia-carrying insects is attributed to the phenotype of cytoplasmic incompatibility
(CI, see Table 1), according to which the cross-mating between Wolbachia-carrying males and wild
females renders inviable eggs thus reducing the non-Wolbachia offsprings and favoring the invasion of
the bacterium in wild insect populations.

Table 1. Illustration of the CI-reproductive phenotype and maternal transmission of Wol-
bachia.

Ae. aegypti offspring
Adults Wolbachia-infected ♀ Uninfected ♀

Wolbachia-infected ♂ Wolbachia-infected offspring (♂♀) Inviable eggs (no offspring)
Uninfected ♂ Wolbachia-infected offspring (♂♀) Uninfected offspring (♂♀)

Wolbachia-based biocontrol of dengue has recently emerged as a novel method for prevention this
viral disease, and it operates by releases of Wolbachia-infected mosquitoes targeting to crush the wild
populations [5, 6]. The releases of Wolbachia-infected Ae. aegypti mosquitoes have the potential to
ultimately annihilate the local circulation of the dengue virus by a combination of three basic mecha-
nisms:

– direct reduction and/or blocking of mosquito’s ability to transmit the virus;
– reduction of the vectorial density by suppressing mosquito populations;
– shortening the mosquito lifespan so that she cannot mature the viral infection and dies before

becoming infectious.

Depending on the Wolbachia strain employed for biocontrol, a stronger or weaker impact on the
dengue transmissibility can be expected. In particular, wMelPop strain of Wolbachia confer stronger
inhibition of dengue virus replication in mosquitoes than wMel strain does [3, 5, 7, 8].

On the other hand, Wolbachia infection caused by wMelPop strain imposes higher fitness costs
than does wMel strain on transinfected insects, such as increased adult mortality, lower fecundity,
lengthened larval development time, and reduced survival of quiescent eggs in diapause [5, 6]. Due
to the lower comparative fitness, wMelPop Wolbachia invasion of the natural mosquito population is
harder to achieve, sustain, and protect from occasional immigration of wild insects. Nonetheless, the
wMelPop strain can reduce the total size of Ae. aegypti population to a greater extent, and the impact
of wMelPop-based biocontrol can be seen earlier than in the case of wMel-based biocontrol.

Regardless of the strain, Wolbachia-based biocontrol is aimed at replacing the wild mosquitoes,
which are capable of transmitting dengue, with Wolbachia-carrying insects, whose capacity of the
disease transmission is very low. To achieve the population replacement, considerable quantities of
transinfected insects are mass-reared in a destined facility and then the field releases are performed.
This general methodology raises various pertinent questions of different nature, and some of them can
be answered by applying the mathematical modeling approach.

In the present study, we have tried to assess the impact of two Wolbachia strains, wMelPop and
WMel, on dengue prevention and control and to produce some useful recommendations for Wolbachia-
based biocontrol from the standpoint of mathematical modeling and dynamic optimization. Our main
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intention was to bring forth a methodology capable of providing quantitative estimations of the three
key metrics of Wolbachia-based biocontrol when the initial size of the wild mosquito population to
be replaced can be fairly assessed. The proposed methodology stems from the dynamic optimization
approach and allows to design the strain-dependent optimal release programs that can be characterized
by the following three quantifications: (a) optimal time of effective releases; (b) a total number of
Wolbachia-carrying insects to be mass-reared, and (c) the estimated number of human infections to be
prevented.

The quantitative outcomes of our study have resulted unbiased in the sense that we refrain from
recommending univocally one particular strain for Wolbachia-based biocontrol given that each of them
exhibits advantages and drawbacks. Nonetheless, our qualitative arguments can be accounted for when
the ultimate choice of an appropriate strain should be taken by the decision-makers.

This paper is organized as follows. In Section 2 we introduce a dengue transmission model that is
designed on the basis of the sex-structured population dynamics model involving Wolbachia proposed
by Campo-Duarte et al. [9]. This epidemiological model of agrees with other dengue transmission
models accounting for Wolbachia-carrying vectors in the sense of having four possible outcomes: with
or without Wolbachia and with or without dengue [10–12]. To reach the desired outcome (with Wol-
bachia and without dengue), we propose to employ the dynamic optimization approach based on the
optimal control and described in Section 3. Major results related to the design and evaluation of the
strain-based optimal release programs are engrossed in Section 4, while the practical recommendations
are recapitulated in Section 5.

2. Dengue transmission model involving Wolbachia

Epidemiological models describing dengue transmission dynamics traditionally include
Susceptible-Infected-Recovered (SIR) compartments for human hosts and Susceptible-Infected (SI)
compartments for female mosquitoes or vectors, which act as transmitters of the dengue virus [13].
If the vector population is subdivided into two competing groups of mosquitoes – one consisting of
wild insects and another comprising Wolbachia-carriers – each group of vectors must be also divided
into Susceptible-Infected compartments. Furthermore, these two groups of vectors compete for the
same food resources, breeding sites, and mating opportunities. These aspects should be depicted in the
population dynamics model describing mosquitoes’ growth.

In this section, we outline the sex-structured model depicting the population dynamics of wild and
Wolbachia-carrying mosquitoes that was proposed and examined by Campo-Duarte et al. [9] (Subsec-
tion 2.1). Further on, this model is laid into the basis of the vector-host model describing the dengue
transmission dynamics (Subsection 2.2), which is then analyzed in Subsection 2.3.

2.1. Population dynamics of wild and Wolbachia-carrying mosquitoes

Let Mn(t), Fn(t) and Mw(t), Fw(t) denote, respectively, the densities of wild and Wolbachia-infected
male and female mosquitoes present in the target locality at the day t. Recently, Campo-Duarte et
al. [9] have proposed the following sex-structured mathematical model without pair formation that
describes the interaction of wild and Wolbachia-carrying mosquito population:

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2952–2990.



2955

dMn

dt
= G1

(
Mn, Fn,Mw, Fw

)
=

εnρnFnMn

Mn + Fn + Mw + Fw
e−σ(Mn + Fn + Mw + Fw) − µnMn, (2.1a)

dFn

dt
= G2

(
Mn, Fn,Mw, Fw

)
=

(1 − εn)ρnFnMn

Mn + Fn + Mw + Fw
e−σ(Mn + Fn + Mw + Fw) − δnFn, (2.1b)

dMw

dt
= G3

(
Mn, Fn,Mw, Fw

)
=

εwρwFw(Mn + Mw)
Mn + Fn + Mw + Fw

e−σ(Mn + Fn + Mw + Fw) − µwMw, (2.1c)

dFw

dt
= G4

(
Mn, Fn,Mw, Fw

)
=

(1 − εw)ρwFw(Mn + Mw)
Mn + Fn + Mw + Fw

e−σ(Mn + Fn + Mw + Fw) − δwFw. (2.1d)

The recruitment rates of new individuals (i.e., the positive terms in the right-hand sides of (2.1)) are

modeled using the so-called “harmonic form” of the birth function, that is,H(M, F) :=
MF

M + F
where

M and F denote the densities of adult male and female individual that are available for mating. Notably,
Caswell & Weeks [14] have provided solid arguments that the harmonic form is a fitting choice for
modeling the birth functions, as it fulfils a number of criteria for sexual reproduction. In particular,
H(M, F) is non-negative and increasing with respect to male and female densities, andH(M, F) → 0
whenever M → 0 or F → 0.

In the dynamical system (2.1), the subindexes {n,w} indicate that the key parameters ε, ρ, µ, δ > 0
belong to either uninfected or Wolbachia-infected mosquitoes, respectively. Namely, ε{n,w}/(1 − ε{n,w})
express the adult sex ratio in offspring; ρ{n,w} stands for the number of viable eggs laid by one female
mosquito in average per day, while µ{n,w} and δ{n,w} are sex-specific mortality rates for males and fe-
males. There is evidence [15] that mating females have higher longevity than mating males; therefore,
it is assumed that

µn ≥ δn, µw ≥ δw.

The exponential term in the recruitment part of all four equations of (2.1) expresses the survival
of eggs to adulthood through larvae and pupae stages and the parameter σ > 0 regulates the larval
development under density dependence and competition. Thus, higher values of σ imply stronger
competition and fewer breeding sites, while its lower values permit that a larger fraction of eggs sur-
vives to adulthood.

Equations (2.1a)-(2.1b) basically state that wild males and females are progenies of wild
mosquitoes, Mn and Fn. On the other hand, equations (2.1c)-(2.1d) reflect the reproductive phenotype
of cytoplasmic incompatibility induced by Wolbachia together with its maternal transmission [5, 16].
Namely, Wolbachia-infected males and females are produced by Wolbachia-carrying females Fw after
their successful matings with either wild or Wolbachia-carrying males, Mn and Mw (see Table 1).

Survival and persistence of both mosquito sub-populations are guaranteed by the following condi-
tions [9] imposed on the parameters of the model (2.1):

Qn =
(1 − εn)εnρn

εnδn + (1 − εn)µn
=

ρn

δn/(1 − εn) + µn/εn
> 1, (2.2a)

Qw =
(1 − εw)εwρw

εwδw + (1 − εw)µw
=

ρw

δw/(1 − εw) + µw/εw
> 1, (2.2b)

where the quantitiesQn andQw are referred to as basic offspring numbers of uninfected and Wolbachia-
infected mosquitoes, respectively. Conditions (2.2) are quite natural and simply imply that, in the
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Figure 1. Illustration of the reproductive preeminence of Wolbachia-carrying mosquitoes
granted by the CI-phenotype and maternal transmission.

absence of density dependence, mosquitoes’ birth rates ρn, ρw are always greater than the sum of their
death rates, weighted by a possible sex-ratio distortion.

Note that system (2.1) is neither strictly mutualistic nor competitive in a general sense. How-
ever, uninfected males and females do exhibit obligatory mutualism induced by the CI-phenotype (see
Eqs. (2.1a)-(2.1b) and Table 1), while the presence of Wolbachia-infected males is facultative (not
obligatory) for survival and persistence of Wolbachia-carriers, both males and females. In essence,
Eqs. (2.1c)-(2.1d) state that Wolbachia-infected offsprings result from successful mating of Wolbachia-
carrying females with either infected or uninfected males. Figure 1 clearly illustrates the reproductive
preeminence of Wolbachia-carrying mosquitoes granted by the CI-phenotype and maternal transmis-
sion: every posterior generation has a greater share of Wolbachia-carriers than the previous one.

On the other hand, the prime advantage of wild mosquitoes with respect to Wolbachia-carriers
consists in their unaltered individual fitness since Wolbachia reduces the individual fitness of its hosts
[5]. Namely, wild females are more fertile than Wolbachia-infected ones, and wild mosquitoes (both
males and females) live longer than their Wolbachia-infected coevals. The latter is expressed by the
following conditions imposed on the mosquito-related parameters of the model (2.1):

ρn ≥ ρw, µn ≤ µw, δn ≤ δw. (2.3)

Model (2.1) expresses that wild mosquitoes Mn, Fn compete with Wolbachia-carriers for “better
mating options”, and they tend to decrease their densities for higher densities of Mw, Fw. The latter is
attested by the following relationships:

∂G1

∂Mw
< 0,

∂G1

∂Fw
< 0,

∂G2

∂Mw
< 0,

∂G2

∂Fw
< 0

for all positive Mn, Fn,Mw, Fw. Alternatively, Wolbachia-carriers Mw and Fw, despite bearing reduced
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fitness, tend to increase their density for lower densities of wild females in the sense that

∂G3

∂Fn
< 0,

∂G4

∂Fn
< 0

for all positive Mn, Fn,Mw, Fw. Therefore, model (2.1) captures the frequency-dependence and exhibits
the property of bistability, which is inherent to other models describing Wolbachia invasion either in
terms of the infection frequencies [17–19] or competitive population dynamics [20–26]. The bistability
property of Wolbachia invasion in wild insect populations fully agrees with the principle of competitive
exclusion [27] according to which only one of two species competing for the same resources should
ultimately survive. This property and other characteristic features of the system (2.1) have been estab-
lished by Campo-Duarte et al. [9] and we state here some cardinal results that are necessary for further
inferences.

Proposition 1 ( [9]). Under the conditions (2.2), (2.3) and for any nonzero initial condition(
Mn(0), Fn(0),Mw(0), Fw(0)

)
∈ R4

+ the ODE system (2.1) has a unique nonnegative and bounded solu-
tion that exists for all t > 0 and admits the following estimate:

Nm(t) := Mn(t) + Fn(t) + Mw(t) + Fw(t) ≤ max
{
N̄m,Nm(0)

}
, where N̄m =

1
σ

ln
(
ρn

δn

)
. (2.4)

Additionally, the ODE system (2.1) has three nonnegative steady states in R4
+ and exhibits bistability

in the following sense:

1. A Wolbachia-free equilibrium

E]
n =

(
M]

n, F
]
n, 0, 0

)
with M]

n =
δn

σ(1 − εn)ρn
Qn lnQn and F]

n =
µn

σεnρn
Qn lnQn (2.5)

that is locally asymptotically stable in R4
+ (nodal attractor) and is reachable at low frequencies of

Wolbachia-carriers.
2. A Wolbachia-invasion equilibrium

E]
w =

(
0, 0,M]

w, F
]
w
)

with M]
w =

δw

σ(1 − εw)ρw
Qw lnQw and F]

w =
µw

σεwρw
Qw lnQw (2.6)

that is locally asymptotically stable in R4
+ (nodal attractor) and is reachable at high frequencies

of Wolbachia-carriers.
3. A strictly positive coexistence equilibrium Ec =

(
Mc

n, F
c
n,M

c
w, F

c
w
)

with coordinates

Mc
n =

δn

σ(1 − εn)ρn
Q0 lnQ0, Fc

n =
µn

σεnρn
Q0 lnQ0, (2.7a)

Mc
w =

δw(1 − Rw
0 )

σ(1 − εw)ρw
Q0 lnQ0, Fc

w =
µw(1 − Rw

0 )
σεwρw

Q0 lnQ0. (2.7b)

that is unstable (saddle point) and exists only if

Q0 =
QnQw

Qw + Qn(1 − Rw
0 )
> 1 and Rw =

(1 − εw)ρw/δw

(1 − εn)ρn/δn
< 1. (2.8)
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It was also proved [9] that relationships (2.8) hold under the conditions (2.3). Furthermore, the
quantity Rw

0 can be viewed as the basic reproductive ratio of Wolbachia infection among the mosquito
population. Indeed, the numerator of Rw

0 in (2.8) expresses an average number of Wolbachia-carrying
female mosquitoes produced by one Wolbachia-infected female mosquito during her lifespan while
the denominator of Rw

0 stands for an average number of wild female mosquitoes produced by one wild
female mosquito during her lifespan. Thus, Rw

0 < 1 fully agrees with the reduced individual fitness of
Wolbachia-carrying mosquitoes.

In the next section we propose a dengue transmission model where the ODE system (2.1) describes
the population dynamics of two interacting Ae. aegypti sub-populations – wild and Wolbachia-carrying
mosquitoes.

2.2. Vector-host model with Wolbachia

The dengue virus (DENV) is transmitted from an infectious human individual to a female mosquito
during her blood-feeding. The virus then replicates inside the mosquito and can be transmitted to a sus-
ceptible human host during subsequent blood-feeding. It should be emphasized that male mosquitoes
never become infected with DENV or other arboviruses since they do not ingest human blood. There
is solid evidence that wMel Wolbachia strain induces resistance to dengue virus in Ae. aegypti fe-
males [1,3,5], while a more virulent strain wMelPop Wolbachia is even capable of blocking the dengue
virus [4, 5, 7]. These factors should reduce the dengue incidence among the human population since
Wolbachia detains or inhibits the replication of DENV within the mosquito that minifies the number of
effective contacts (through infectious bites) between the human hosts and Ae. aegypti females.

Let us suppose that at the day t ≥ 0 there are two populations present in some target locality:
the mosquito population Nm(t) defined in (2.4) with time-variable size, and the population of human
individuals Nh that is assumed essentially invariant in time, i.e.,

Nh = S (t) + I(t) + R(t) and
dNh

dt
= 0 for all t ≥ 0. (2.9)

In the above expression, three disjoint compartments S (t), I(t), and R(t) represent, respectively, the
numbers of susceptible, infectious, and recovered human individuals.

To develop the modeling framework of dengue transmission accounting for wild and Wolbachia-
carrying vectors, we suppose that each group of female mosquitoes Fn and Fw is further subdivided
into two disjoint compartments:

Fn(t) = FnS (t) + FnI(t), Fw(t) = FwS (t) + FwI(t),

where the subscript S indicates the female mosquitoes uninfected with dengue (both Wolbachia-
carrying and wild insects), whereas the subscript I indicates the dengue-infected female mosquitoes
(both Wolbachia-carrying and wild vectors) that are capable of transmitting the DENV virus to the
human hosts.

In order to keep our model mathematically tractable, we introduce the following general assump-
tions:

(i) Both populations Nh and Nm are well-mixed and homogeneous in terms of attraction, susceptibil-
ity, and exposure to the dengue virus.
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(ii) Virus incubation periods in mosquitoes and human hosts are disregarded.
(iii) There is no mortality due to the dengue disease for human hosts.
(iv) Recovered human hosts may become infected only with heterologous DENV serotypes after los-

ing their temporary cross-immunity.
(v) Transovarial or vertical DENV transmission by female mosquitoes is ignored.

Remark 1. Assumptions (i)–(iii) are quite typical for many dengue transmission models [13, 28]. As-
sumption (iv) is plausible if there are different DENV serotypes circulating in the environment [29].
Furthermore, assumption (v) stays in line with the review performed by Grunnill & Boots [30] ac-
cording to which vertical transmission of DENV is infrequent in Ae. aegypti females; therefore, the
importance of transovarial transmission is insignificant for epidemiological persistence of dengue at a
local or regional level.

Using the idea of Cardona-Salgado et al. [10], the dynamics of dengue transmission between human
hosts and two mosquito populations can be described by the following ODE system:

dS
dt

= ηNh −
bS (βhnFnI + βhwFwI)

Nh
+ αR − ηS , (2.10a)

dI
dt

=
bS (βhnFnI + βhwFwI)

Nh
− (γ + η)I, (2.10b)

dR
dt

= γI − (α + η)R, (2.10c)

dMn

dt
=
εnρnMn (FnS + FnI)

Nm
e−σNm − µnMn, (2.10d)

dMw

dt
=
εwρw (FwS + FwI) (Mn + Mw)

Nm
e−σNm − µwMw, (2.10e)

dFnS

dt
=

(1 − εn) ρnMn (FnS + FnI)
Nm

e−σNm −
bβnhIFnS

Nh
− δnFnS , (2.10f)

dFnI

dt
=

bβnhIFnS

Nh
− δnFnI , (2.10g)

dFwS

dt
=

(1 − εw) ρw (FwS + FwI) (Mn + Mw)
Nm

e−σNm −
bβwhIFwS

Nh
− δwFwS , (2.10h)

dFwI

dt
=

bβwhIFwS

Nh
− δwFwI . (2.10i)

Equations (2.10a)-(2.10c) refer to the traditional framework of SIR-models for the human popula-
tion (Susceptible-Infectious-Recovered individuals) and verify the relationship (2.9). In these equa-
tions, η > 0 denotes the rate of demographic inflow and outflow (birth/death rates) of the human
population, while α ≥ 0 expresses the rate of loss of the temporary cross-immunity by human hosts.
Equation (2.10c) states that human individuals recover from the disease after 1/γ days and then become
susceptible to heterologous DENV serotypes after 1/α days. If there are different DENV serotypes
circulating simultaneously in the environment, then we set α > 0 and thus open the possibility of re-
infection after the loss of cross-immunity. On the other hand, the dominance of one particular DENV
serotype implies that α = 0. In other words, recovered human hosts become completely immune to
homologous DENV serotype. The detailed rationale of this modeling approach is attributed to Barrios
et al. [29] (see Remark 1 in that work).
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Our principal attention will be centered on the dynamics of human DENV infections represented
in the model (2.10) by the class I. It is worthwhile to point out that the evolution of human infections
exhibits much faster dynamics than the demographic changes in the human population. This was
the reason for assuming the total size of the human population essentially invariant in time (cf. the
relationship (2.9)). However, the duration of DENV infections in humans is in the range of days or
weeks, so it is comparable to the lifespan of mosquitoes. Therefore, the measures of external control
intervention applied to the mosquito population (such as the releases of Wolbachia-carrying insects)
should be reflected on the dynamics of infectious people bearing a similar (or a bit faster) timescale
with the dynamics of mosquitoes.

The core parameter related to the disease transmission is the biting rate b > 0 that expresses the
number of successful bites (or blood meals) that one female mosquito takes on average per day in order
to mature her eggs. It is worthwhile to note that the presence of DENV within mosquitoes does not
affect their biting habits [31], while Wolbachia infection does not alter the host-seeking abilities of
female mosquitoes [32, 33]. Therefore, we can assume the same biting rate b for all effective contacts
between female mosquitoes and human hosts, namely, the bites received by human hosts, and the bites
taken by either wild or Wolbachia-carrying female mosquitoes.

Susceptible human hosts become infected with dengue virus after receiving bites from infectious
female mosquitoes FnI and FwI with effective contact rates βhn and βhw, respectively (see equations
(2.10a)-(2.10b)). Here we assume that a human host becomes infected with the same probability after
being bitten by an infectious vector (with or without Wolbachia) since there is no evidence attesting
otherwise. However, there is sufficient evidence that the DENV pathogen is passed from infectious
human hosts to susceptible female mosquitoes FnS and FwS with different effective contact rates βnh and
βwh (cf. equations (2.10f)-(2.10i)), because Wolbachia reduces or even blocks the DENV replication
within mosquito and thus suppresses the development of viral load sufficient for transmission [1,3–5,7].
Therefore, we introduce the following relationships:

βhn = βhw, βnh > βwh. (2.11)

Another important feature regarding the virus transmission probabilities βhn, βhw and βnh, βwh is that
they denote the so-called effective contact rates. In other words, they account only for infectious bites,
i.e., those leading to new infections when the viral load becomes sufficient for transmission after the
extrinsic and intrinsic virus incubation in mosquitoes and human hosts, respectively. This particular
way of defining the virus transmission probabilities (βhn, βhw, βnh, βwh) compensates the omission of the
virus incubation periods in the model (2.10) (see Assumption (ii) on page 2959).

After taking a bite on an infectious human individual, a small share of wild mosquitoes and the
majority of Wolbachia-carriers cannot develop the viral load sufficient for transmitting the virus to
other human hosts. In this sense, such female mosquitoes remain latent or non-infectious during their
lifetime and do not contribute to the disease propagation. Only the females that do develop the viral
infection are considered capable of producing new infections in the human population. Likewise, some
human individuals, after receiving a bite from an infectious mosquito, may not develop the viral load
sufficient for becoming infectious. These features are contemplated in the definitions of βhn, βhw, βnh,

and βwh as effective contact rates, i.e., those really leading to the appearance of new infections.
It is easy to check that by summing up the equations (2.10f) and (2.10g) we obtain the equation

(2.1b), while the sum of (2.10h) and (2.10i) results in (2.1d). Figure 2 exhibits the flowchart diagram
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Figure 2. Flowchart diagram of the dengue transmission model (2.10): solid lines indicate
transitions from one compartment to another, dashed blue-colored lines depict successful
matings (resulting in viable offspring), and dashed red-colored lines highlight the pathogen
transmission. The human-related compartments (S , I, and R) are located in the middle row
of the diagram, while the compartments related to wild mosquitoes (Mn and Fn = FnS + FnI)
and Wolbachia-carrying mosquitoes (Mw and Fw = FwS + FwI) are located in the upper and
lower rows of the diagram, respectively.

of the vector-host model (2.10) where solid lines indicate transitions from one compartment to another,
dashed blue-colored lines depict successful matings (resulting in viable offspring), and dashed red-
colored lines highlight the pathogen transmission.

Taking into account the properties of the model (2.1) summarized in Proposition 1, it is easy to see
that state variables

X(t) :=
(
S (t), I(t),R(t),Mn(t),Mw(t), FnS (t), FnI(t), FwS (t), FwI(t)

)
(2.12)

of the model (2.10) are defined over the closed and bounded domain ΩX ⊂ R
9
+ given by

ΩX =
{
X ∈ R9

+ : S (t) + I(t) + R(t) = Nh,

0 ≤ Mn(t) + Mw(t) + FnS (t) + FnI(t) + FwS (t) + FwI(t) ≤ N̄m for all t ≥ 0
}
. (2.13)

This domain is invariant in the sense that all trajectories of (2.10) engendered by an initial condition
X(0) ∈ ΩX remain in ΩX for all t > 0. Therefore, it is safe to affirm that the epidemiological ODE
system (2.10) is mathematically well-posed.

The asymptotic behavior of trajectories of the dengue transmission model is addressed in the next
subsection section, where we also derive the basic reproductive number and calculate locally stable
equilibria of the ODE system (2.10).
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2.3. Local analysis of the vector-host model

One of the core metrics in epidemiology is the so-called basic reproduction number R0 that ex-
presses the expected number of secondary infections produced, in a completely susceptible popula-
tion, by one infective individual during his/her entire period of infectiousness [34]. In other words, R0

characterizes the speed with which an infection propagates through a host population.
For compartmental epidemiological models, such as the model (2.10), the basic reproductive num-

ber R0 can be obtained as the largest eigenvalue (or spectral radius) of the next-generation matrix
evaluated at the disease-free steady state [35]. However, due to the bistable nature of mosquito popu-
lation dynamics (2.1), the epidemiological system (2.10) has two disease-free equilibria. One of them
corresponds to the persistence of wild mosquitoes (Mn, Fn) and another complies with the population
replacement and survival of Wolbachia-carriers (Mw, Fw). Using the conventional approach developed
by Cardona-Salgado et al. [10], both disease-free steady states of (2.10) can be written in a closed form
as

E0 =
(
Nh, 0, 0, φM]

n, (1 − φ)M]
w, φF]

n, 0, (1 − φ)F]
w, 0

)
(2.14)

=


E0

n =
(
Nh, 0, 0,M

]
n, 0, F

]
n, 0, 0, 0

)
for φ = 1,

E0
w =

(
N, 0, 0, 0,M]

w, 0, 0, F
]
w, 0

)
for φ = 0,

where φ ∈ {0, 1} is an auxiliary binary variable.
The application of the next-generation method [35] to the symbolic form of E0 given by (2.14),

renders the closed form of the basic reproductive number also parameterized by φ ∈ {0, 1} :

R0 = φ

b2βnhβhn
F]

n

Nh

(γ + η)δn
+ (1 − φ)

b2βhwβwh
F]

w

Nh

(γ + η)δw
= φRn

0 + (1 − φ) Rw
0 . (2.15)

Meticulous details regarding the calculation of R0 are omitted here; however, interested readers may
consult a step-by-step procedure applied to a vector host model involving only female mosquitoes and
developed by Cardona-Salgado et al. [10] (see Appendix A in that work). It is worth pointing out that
in the case of vector-borne diseases, there are two stages involved in the pathogen transmission from
one human host to another (human-to-vector and vector-to-human), and that R0 given by (2.15) stands
the expected number of secondary human infections produced, in a completely susceptible human
population, by one infective human individual during his/her entire period of infectiousness.

From the closed form (2.15) it follows that, in the absence of Wolbachia-infected mosquitoes (φ =

1), we directly obtain the basic reproductive number for traditional dengue transmission models of
SIR(S)-SI type [28, 34], that is,

R0 = Rn
0 =

b2βnhβhn
F]

n

Nh

(γ + η)δn
. (2.16)

Here,
F]

n

Nh
stands for the so-called “vector density” that expresses the average number of wild female

mosquitoes per one human host. The numerator of (2.15) contains parameters referring to the disease
transmission, while its denominator contains parameters related to the disease transition.
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Similarly, in the absence of wild mosquitoes (φ = 0), we obtain from (2.15)

R0 = Rw
0 =

b2βwhβhw
F]

w

Nh

(γ + η)δw
. (2.17)

where
F]

w

Nh
expresses the average number of Wolbachia-carrying female mosquitoes per one human host

(i.e., vector density with respect to Wolbachia-carriers). In virtue of the relationships (2.3) and (2.11)
it holds that

Rn
0 > Rw

0 .

Let us also recall that R0 acts as a threshold value for determination of stability of the disease-free and
endemic equilibria for dengue transmission models [11, 34], in the following sense:

• R0 < 1 implies that an infectious human individual induces, on average, less than one secondary
infection during his/her period of infectiousness, and the disease will eventually disappear.
• R0 > 1 implies that an infective human individual induces, on average, more than one secondary

infection, and the disease will persists in the host population.

Our dengue transmission model (2.10) inherits bistability from the model (2.1) that describes the
population dynamics of two groups of vectors capable of transmitting the DENV pathogen to human
individuals and vice versa. Therefore, besides having two disease-free equilibria, it is also expected
to have two disjoint endemic equilibria E]

n and E]
w corresponding to the persistency of either wild

or Wolbachia-infected mosquito population. Thus, the evolution of the dengue transmission system
(2.10) essentially depends on the ultimate survival or extinction of either wild or Wolbachia-carrying
mosquito population.

Let us suppose that wild mosquitoes persist in the target locality and Wolbachia-carrying mosquitoes
eventually become extinct, that is, φ = 1, meaning that

Mn → M]
n, Fn = FnS + FnI → F]

n, Mw → 0, Fw = FwS + FwI → 0 as t → ∞.

In this case, the dengue transmission system (2.10) evolves towards one of the following equilibria:

• A disease-free equilibrium E0
n =

(
Nh, 0, 0,M

]
n, 0, F

]
n, 0, 0, 0

)
if R0 = Rn

0 < 1.
• An endemic equilibrium E]

n =
(
S ]

n, I
]
n,R

]
n,M

]
n, 0, F

]
nS , F

]
nI , 0, 0

)
if R0 = Rn

0 > 1.

The coordinates M]
n and F]

n of E0
n are defined by (2.5), while the coordinates of E]

n are positive
solutions of the nonlinear system composed by six algebraic equations:

0 = ηNh −
bβhnF]

nI

Nh
S ]

n + αR]
n − ηS ]

n,

0 =
bβhnF]

nI

Nh
S ]

n − (η + γ)I]n,

0 = γI]n − (α + η)R]
n,

0 =
εnρnM]

n

(
F]

nS + F]
nI

)
M]

n + F]
nS + F]

nI

e−σ
(
M]

n + F]
nS + F]

nI
)
− µnM]

n,
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0 =
(1 − εn)ρnM]

n

(
F]

nS + F]
nI

)
M]

n + F]
nS + F]

nI

e−σ
(
M]

n + F]
nS + F]

nI
)
−

bβnhI]n
Nh

F]
nS − δnF]

nS ,

0 =
bβnhI]n

Nh
F]

nS − δnF]
nI .

This system can be solved by applying the stylized method presented by Cardona-Salgado et al. [10]
(see Appendix B in that work), and we display here the final outcomes:

S ]
n = Nh −

α + η + γ

α + η
I]n, (2.18a)

I]n =
(α + η)Nh

(
Rn

0 − 1
)

Cn(α + η) + Rn
0 (α + µ + γ)

, (2.18b)

R]
n =

γ

α + η
I]n, (2.18c)

M]
n =

εnδn

(1 − εn)µn
F]

n, (2.18d)

F]
nS =

F]
n

1 + CnI]n/Nh

, (2.18e)

F]
nI =

F]
nCnI]n/Nh

1 + CnI]n/Nh

, (2.18f)

where F]
n and Rn

0 are given by (2.5) and (2.16) in terms of the model’s parameters, while the new
quantity

Cn :=
bβnh

δn
(2.19)

is introduced in (2.18b), (2.18e), (2.18f) to express the average number of infectious bites bβnh taken
by a susceptible wild female mosquito (not infected with DENV) on infectious human hosts during
her lifespan 1/δn. It should be noted that the coordinates I]n,M

]
n are directly expressed in terms of the

model’s parameters, whereas other components of E0
n are given in function of I]n, which stays positive

while Rn
0 > 1. Furthermore, it is easy to check that it holds

S ]
n + I]n + R]

n = Nh, F]
nS + F]

nI = F]
n.

Let us now suppose that Wolbachia-carrying mosquitoes persist in the target locality and wild
mosquitoes eventually become extinct, that is, φ = 0, meaning that

Mw → M]
w, Fw = FwS + FwI → F]

w, Mn → 0, Fn = FnS + FnI → 0 as t → ∞.

In this case, the dengue transmission system (2.10) evolves towards one of the following equilibria:

• A disease-free equilibrium E0
w =

(
Nh, 0, 0, 0,M

]
w, 0, 0, F

]
w, 0

)
if R0 = Rw

0 < 1.
• An endemic equilibrium E]

w =
(
S ]

w, I
]
w,R

]
w, 0,M

]
w, 0, 0, F

]
wS , F

]
wI
)

if R0 = Rw
0 > 1.

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2952–2990.



2965

The components M]
w and F]

w of E0
n are defined by (2.6), while the coordinates of E]

w are positive
solutions of the following nonlinear system:

0 = ηNh −
bβhwF]

wI

Nh
S ]

w + αR]
w − ηS ]

w,

0 =
bβhwF]

wI

Nh
S ]

w − (η + γ)I]w,

0 = γI]w − (α + η)R]
w,

0 =
εwρwM]

w

(
F]

wS + F]
wI

)
M]

w + F]
wS + F]

wI

e−σ
(
M]

w + F]
wS + F]

wI
)
− µwM]

w,

0 =
(1 − εw)ρwM]

w

(
F]

wS + F]
wI

)
M]

w + F]
wS + F]

wI

e−σ
(
M]

w + F]
wS + F]

wI
)
−

bβwhI]n
Nh

F]
wS − δwF]

wS ,

0 =
bβwhI]w

Nh
F]

wS − δwF]
wI .

Using the same method attributed to Cardona-Salgado et al. [10] we can calculate the components
of E]

w and then display them in a similar way to (2.18):

S ]
w = Nh −

α + η + γ

α + η
I]w, (2.20a)

I]w =
(α + η)Nh

(
Rw

0 − 1
)

Cw(α + η) + Rw
0 (α + µ + γ)

, (2.20b)

R]
w =

γ

α + η
I]w, (2.20c)

M]
w =

εwδw

(1 − εw)µw
F]

w, (2.20d)

F]
wS =

F]
w

1 + CwI]w/Nh

, (2.20e)

F]
wI =

F]
wCwI]w/Nh

1 + CwI]w/Nh

. (2.20f)

Here F]
w and Rw

0 are given by (2.6) and (2.17) in terms of the model’s parameters and we have intro-
duced in (2.20b), (2.20e), (2.20f) a resembling quantity

Cw :=
bβwh

δw
(2.21)

that expresses the average number of infectious bites bβwh taken by a susceptible Wolbachia-carrying
female mosquito (not infected with DENV) on infectious human hosts during her lifespan 1/δw. Like-
wise the previous case with φ = 1, the coordinates I]w,M

]
w are directly expressed in terms of the model’s

parameters, whereas other components of E0
w are given in function of I]w, which stays positive while

Rw
0 > 1. Again, one can easily check the validity of the following relationships:

S ]
w + I]w + R]

w = Nh, F]
wS + F]

wI = F]
w.
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n

Figure 3. Left and right charts: Eigenvalue distribution (real parts) corresponding to the
disease-free E0

n and endemic E]
n equilibria when only wild mosquitoes persist (φ = 1). Cen-

tral chart: basic reproduction number Rn
0 as a function of trials k = 1, 2, . . . , 104.

Thus, we finally have four possible equilibria of the vector-host model (2.10) that includes two
mosquito populations: E0

n,E
]
n,E0

w and E]
w. To analyze the local stability of these four equilibria, the

standard procedure consists in the calculation of eigenvalues of the Jacobian matrices of the right-hand
sides of (2.10) evaluated at each equilibrium. However, this procedure is rather knotty and cumbersome
from the computational standpoint. As an alternative, we propose to use the Monte Carlo method
[36, 37], adopted for population and epidemiological models [9, 10, 23].

To implement the Monte Carlo method, let us recall that the coordinates of all four steady states can
be expressed explicitly in terms of seventeen positive parameters(

σ, εn, εw, ρn, ρw, µn, µw, δn, δw, η, b, βhn, βhw, βnh, βwh, γ, α
)

related to the dengue transmission model (2.10). The baseline numerical values of these seventeen
parameters, as well as their referenced ranges, are provided in Tables 3 and 4 (see Section 4 below).

The first step was to define a sampling pool S =
17∏
i=1

Pi ∈ R
17
+ as a Cartesian product of seventeen

closed intervals of the form Pi = [pi − θpi, pi + θpi] where each pi, i = 1, . . . , 17 stands for the baseline
value of one single parameter (see Tables 3 and 4) and θ > 0 defines the range of variation. Our
sampling embraced 104 assorted scenarios S = (s1, . . . , s17) ∈ S where each si ∈ Pi, i = 1, . . . 17 was
chosen in random for θ = 0.15 (that is, with 15% deviation from the baseline values) under uniform
distribution with no correlation between parameters. The result of numerical simulations are displayed
by Figures 3, 4, and 5 with explanation given below.

We have conducted the simulations for a larger number of trials but to keep the graphical presen-
tation cleaner the results displayed in Figure 3 correspond to the total of 104 attested trials. The well-
posedness of this approach was guaranteed by verifying repeatedly the following conditions before
each trial:

µn < µw, δn < δw, ρn > ρw, M]
n > M]

w, F]
n > F]

w, βnh > βwh, Qn > Qw, Qw > 1, Q0 > 1.

For numerical simulations, we have considered two Wolbachia strains, wMelPop and wMel, using
their underlying parameter values from Table 4, and each trial k = 1, 2, . . . , 104 comprised the accom-
plishment of three consecutive actions:
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Figure 4. Left chart: Eigenvalue distribution (real parts) corresponding to the disease-free
equilibrium E0

w when only the mosquitoes carrying wMelPop strain persist (φ = 0). Right
chart: basic reproduction number Rw

0 as a function of trials k = 1, 2, . . . , 104 for wMelPop
strain of Wolbachia.

1. The values of Rn
0 and Rw

0 were computed by formulas (2.16) and (2.17) for each strain and then
plotted versus the trial number k = 1, 2, . . . , 104 (see Figure 3(b) for Rn

0 and Figures 4(b), 5(b) for
Rw

0 corresponding to wMelPop and wMel Wolbachia strains, respectively).
2. For each Wolbachia strain, the real parts of nine eigenvalues of the Jacobian matrices of (2.10)

have been evaluated in the disease-free steady states, E0
n and E0

w, and then their distributions
were plotted (see Figure 4(a) for E0

n and Figures 4(a), 5(a) corresponding to wMelPop and wMel
Wolbachia strains, respectively).

3. For each Wolbachia strain, the components of endemic steady states E]
n and E]

w were calculated
according to formulas (2.18) and (2.20) and then tested for positiveness. Only for attested points,
the Jacobian of (2.10) was evaluated, the real parts of its eigenvalues were computed, and then
their distributions were plotted in Figure 3(c).

It is worthwhile to point out that the components of E]
w completely failed the positiveness test for

all trials and for both Wolbachia strains. Only the components of E]
n have been attested. This outcome

was quite expectable since all trials revealed that Rw
0 < 1 for wMelPop and wMel strains.

Considering the simulation results for the disease-free equilibrium E0
n (see Figure 3(a)), we detect

that there is one eigenvalue (ν9) with strictly positive real part, while the rest of eigenvalues (νi, i =

1, . . . , 8) exhibit strictly negative real parts. Thus, we conclude that the disease-free equilibrium E0
n

is unstable (saddle point). On the other hand, for the endemic equilibrium E]
n, all eigenvalues have

strictly negative real parts (see Figure 3(c)), so we conclude that E]
n is locally asymptotically stable

(nodal attractor). In other words, persistence of wild mosquitoes (Mw(t)+FwS (t)+FwI(t)→ 0 as t → ∞)
implies the persistence of the disease and the dengue transmission system (2.10) evolves toward the
endemic equilibrium E]

n. This outcome is validated in Figure 3(b) that displays Rn
0 > 1 for all trials

k = 1, . . . , 104.
The simulation results for the disease-free equilibria E0

w (corresponding to both Wolbachia strains,
wMelPop and wMel, see Figures 4(a) and 5(a), respectively) display that all eigenvalues of the Ja-
cobian evaluated at E0

w exhibit strictly negative real parts. Additionally, the coordinates of E0
w failed

the positiveness test for all trials k = 1, 2, . . . , 104 due to the fact that Rw
0 < 1 (cf. Figures 4(b)
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Figure 5. Left chart: Eigenvalue distribution (real parts) corresponding to the disease-free
equilibrium E0

w when only the mosquitoes carrying wMel strain persist (φ = 0). Right chart:
basic reproduction number Rw

0 as a function of trials k = 1, 2, . . . , 104 for wMel strain of
Wolbachia.

and 5(b)). Thus, we can conclude that for both Wolbachia strains, the disease-free equilibria E0
w are

locally asymptotically stable (nodal attractors). Therefore, if the insects carrying either wMelPop or
wMel strain of Wolbachia can ultimately manage to invade and conquer the grounds (meaning that
Mn(t) + FnS (t) + FnI(t) → 0 as t → ∞), there will be no endemic equilibria and the solutions of the
dengue transmission system (2.10) will evolve towards the disease-free steady state E0

w.
From the above conclusions, it becomes clear that the reduction of the dengue morbidity and

eventual disease eradication in the target locality can be reached by replacing the wild population
of mosquitoes by Wolbachia-carriers. The latter is known as “Wolbachia-based biocontrol”, a novel
method that persuades two principal objectives:

1. Establishment and persistence of Wolbachia-infected mosquitoes within the target locality (or
population replacement of wild mosquitoes by Wolbachia-infected mosquitoes).

2. Reduction of human morbidity and the incidence of dengue in the target locality.

The major issue here consists in finding an appropriate and efficient way to achieve both objectives
by an external intervention capable of moving the system (2.10) from its habitual endemic steady state
E]

n to the desired disease-free equilibrium E0
w.

In the following section, we sketch out the method that enables the design of optimal programs
for releases of Wolbachia-carrying insects in order to cope simultaneously with both objectives in
minimum time.

3. Optimal control technique for design of release policies

An external intervention aimed at the population replacement can be modeled by introducing an
exogenous time-dependent variable that mimics the releases of Wolbachia-carrying mosquitoes. For
example, Campo-Duarte et al. [9] had studied the population dynamics model (2.1) with an exogenous
(or control) variable that denoted the rate of release of Wolbachia-carrying mosquitoes. Under such an
approach, the release size for each day t was proportional to the number of Wolbachia-infected insects
present in the target locality on the same day t. However, that approach needed faithful assessments
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of the population sizes and did not account for the limited capacities for the rearing of Wolbachia-
carrying insects. Other studies were conducted by considering the population dynamics of only female
mosquitoes [23, 25] as well as its combination with dengue transmission [10], while supposing the
presence of sufficient males for successful matings. In those studies, the control variable expressed
the number of Wolbachia-infected female mosquitoes to be released daily in the target locality. The
major limitation of that approach was an a priori knowledge of the Allee threshold (minimum viable
population size) of the wild female mosquitoes that was explicitly included in the mosquito population
dynamics.

It is worthwhile to point out that such a limitation has no place for the sex-structured mosquito pop-
ulation dynamics described by (2.1) since the Allee threshold related to wild and Wolbachia-infected
populations can be identified by the components of the coexistence equilibrium Ec =

(
Mc

n, Fn,Mc
w, F

c
w
)

computable through the model’s parameters (see formulas (2.7)). In particular, Campo-Duarte et al. [9]
have shown that if for some T > 0 a point

(
Mn(T ), Fn(T ),Mw(T ), Fw(T )

)
∈ R4

+ satisfies the conditions

Mn(T ) < Mc
n, Fn(T ) < Fc

n, Mw(T ) > Mc
w, Fw(T ) > Fc

w, (3.1)

then this point belongs to the attraction basin of the steady state E]
w =

(
0, 0,M]

w, F
]
w
)

and the Wolbachia
invasion eventually occurs, that is,

(
Mn(t), Fn(t),Mw(t), Fw(t)

)
→ E]

w for t > T and t → ∞.
In this paper, we propose to define the control variable in a different way in order to express the

releases of both male and female insects transinfected with Wolbachia.
Let u(t) : [0,T ] 7→ [0, umax] denote the number of Wolbachia-carrying to be released at the day t in

the target locality. Here, umax > 0 is the maximal number of Wolbachia-carriers available for a single
daily release, and this number is defined by the production capacity of a facility where these Wolbachia-
carrying insects are reared. Let us suppose that the overall time T > 0 of control intervention is finite
but is left free.

In mathematical terms, the main goal of control intervention consists in driving the population
dynamics system (2.1) to the “secure region” of the attraction basin corresponding to the desired steady
state E]

w (defined by (2.6)) where the relationships (3.1) will remain valid for all successive times
t > T . The latter can be done by deliberately increasing the densities of Wolbachia-infected males and
females, Mw(t) and Fw(t) through an external input defined by u(t), and thus suppressing the densities
Mn(t) and Fn(t) of wild mosquitoes below their minimum viable population sizes Mc

n and Fc
n. It is

also clear that under sustained reduction of the female population, the size of the male population will
undergo an inevitable reduction since the wild males are progenies of mating between wild males and
wild females.

Therefore, it is useful from the practical standpoint to replace the conditions (3.1) by equality-type
constraints:

Fn(T ) = FnS (T ) + FnI(T ) = εFc
n, (3.2)

where 0 < ε < 1 is some value assigned by the decision-makers. Other objectives of the control
intervention include:

• minimization of the total number of dengue infections in human hosts acquired during the inter-

vention, that is,
T∫

0
I(t)dt;
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• minimization of the total time T :=
T∫

0
dt of control intervention;

• minimization of the cumulative control effort over the period [0,T ] that refers to the rearing of

Wolbachia-carrying insects and that can be expressed [10] as
T∫

0

1
2

u2(t)dt.

All indicated goals of the control intervention can be recapped by the objective functional

J(u,T ) = A1Φ
(
FnS (T ), FnI(T )

)
+

T∫
0

[
A2I(t)+A3+

1
2

A4u2(t)
]

dt (3.3)

where the scalar function

Φ
(
FnS (T ), FnI(T )

)
:=

(
FnS (T ) + FnI(T ) − εFc

n

)2
(3.4)

replaces the endpoint constraint (3.2) with A1 > 0 denoting the penalty for violation of this constraint,
and other nonnegative coefficients Ai, i = 2, 3, 4 should be adequately chosen in order to reflect the
desired priorities of decision-making. It is worthwhile to note that the global minimum of Φ : R2

+ 7→

R+ is zero and it is attained exactly at t = T that fulfills the endpoint constraint (3.2).

Remark 2. In accordance with other studies [9,10,23,28], we assume no linear relationship between
the coverage of control interventions and their respective costs. However, we do assume that the
marginal cost of control action, i. e. A4u(t), is proportional to the control effort at each t ∈ [0; T ]
which, in its turn, is expressed by the number of Wolbachia-carriers to be released on the same day t.
This is the reason why the integrand in (3.3) is assumed quadratic with respect to the control variable
u. Furthermore, under such assumption, the costs associated with a certain release program u(t), t ∈
[0,T ] can be assessed through the cumulative number of Wolbachia-carrying insects (NWC) released
during the whole campaign:

NWC(u) =

T∫
0

u(t)dt. (3.5)

Thus, we seek to design an optimal release program u∗(t) ∈ [0, umax], t ∈ [0,T ∗] and to find the
minimum time T ∗ ∈ (0,∞) that jointly minimize the objective functional (3.3) subject to the dengue-
transmission dynamics (2.10) amended by the control intervention. To cope with this task, we formu-
late the following optimal control problem:

min
0 ≤ u(t) ≤ umax

0 < T < ∞

J(u,T ) = min
0 ≤ u(t) ≤ umax

0 < T < ∞

A1Φ
(
FnS (T ), FnI(T )

)
+

T∫
0

[
A2I(t)+A3+

1
2

A4u2(t)
]

dt (3.6)

subject to

dS
dt

= ηNh −
bS (βhnFnI + βhwFwI)

Nh
+ αR − ηS (3.7a)

dI
dt

=
bS (βhnFnI + βhwFwI)

Nh
− (γ + η)I (3.7b)
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dR
dt

= γI − (α + η)R (3.7c)

dMn

dt
=
εnρnMn (FnS + FnI)

Nm
e−σNm − µnMn (3.7d)

dMw

dt
=
εwρw (FwS + FwI) (Mn + Mw)

Nm
e−σNm − µwMw + εwu(t) (3.7e)

dFnS

dt
=

(1 − εn) ρnMn (FnS + FnI)
Nm

e−σNm −
bβnhIFnS

Nh
− δnFnS (3.7f)

dFnI

dt
=

bβnhIFnS

Nh
− δnFnI (3.7g)

dFwS

dt
=

(1 − εw) ρw (FwS + FwI) (Mn + Mw)
Nm

e−σNm −
bβwhIFwS

Nh
− δwFwS + (1 − εw)u(t) (3.7h)

dFwI

dt
=

bβwhIFwS

Nh
− δwFwI (3.7i)

with initial conditions

S (0) = S 0, I(0) = I0, R(0) = R0, Mn(0) = M0
n , Mw(0) = M0

w

FnS (0) = F0
nS , FnI(0) = F0

nI , FwS (0) = F0
wS , FwI(0) = F0

wI
(3.8)

satisfying the relationships

S (0) + I(0) + R(0) = Nh, Mn(0) ≤ M]
n, FnS (0) + FnI(0) ≤ F]

n.

The optimal control problem (3.6)-(3.8) possesses the core properties that are sufficient to assure
the existence of its solution [38] when umax is large enough. Namely,

• the control domain [0, umax] is closed, bounded, and convex in R;
• the trajectories of (3.7) are bounded for all admissible u(t) ∈ [0, umax];
• the right-hand sides of (3.7) are linear in the control variable u;
• the terminal-state function (3.4) is continuous in its variable and bounded from below;
• the integrand of (3.6) is convex in u and satisfies the coercivity condition

A2I(t) + A3 +
1
2

A4u2
1(t) ≥ K1

∥∥∥u
∥∥∥α − K2

with K1 =
1
2

A4 > 0, α = 2 > 1, and K2 = 0.

Formal solution of the optimal control problem (3.6)-(3.8) can be achieved by applying the Pon-
tryagin maximum principle that constitutes the necessary condition for optimality of

(
u∗,T ∗

)
. Here,

we are interested in the particular variant of maximum principle that is applicable to optimal control
problems with free terminal time [39].

To formulate the Pontryagin maximum principle, we define the so-called Hamiltonian function
H(X, u, λ) : ΩX × [0, umax] × R9 7→ R associated with the optimal control problem (3.6)-(3.8)

H(X, u, λ) := −A2I − A3 −
1
2

A4u2 + λ · F(X, u) (3.9)
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where X is the vector of state variables defined by (2.12), F(X, u) :=
(
F1(X, u), . . . ,F9(X, u)

)
denotes

the right-hand sides of the system (3.7), and λ :=
(
λ1, . . . , λ9

)
can be viewed as a vector of Lagrange

multipliers linked to the differential constraints (3.7).
On the other hand, λi = λi(t), i = 1, . . . , 9 are time-varying real adjoint functions that express the

marginal variations in the value of objective functional J(u,T ) induced by changes in the current
values of state variables X (in the “component-by-component” sense). Thus, the current values of
λi = λi(t), i = 1, . . . , 9 reflect additional benefits or costs associated with changes in the vector of states
X and they are the necessary elements of the Pontryagin maximum principle [39], which is formulated
as follows.

Let
(
u∗,T ∗

)
be an optimal pair in the sense that u∗(t) is a piecewise continuous real function with

domain [0,T ∗] and range [0, umax] and

J(u∗,T ∗) ≤ J(u,T )

for all other controls u and times T . Let X∗(t) = X
(
t, u∗(t)

)
be the corresponding vector of states defined

for all t ∈ [0,T ∗]. Then, there exists a piecewise differentiable adjoint vector function λ : [0,T ∗] 7→ R9

satisfying the adjoint system of differential equations

dλ
dt

= −
∂H

(
X∗, u∗, λ

)
∂X

(3.10)

with transversality condition

λ(T ∗) = −A1
∂Φ

∂X

∣∣∣∣∣∣
T=T ∗

(3.11)

and 0 < T ∗ < ∞ fulfills the time-optimality condition

H(X∗(T ∗), u∗(T ∗), λ(T ∗)) = 0. (3.12)

The Pontryagin maximum principle converts the problem of finding a control that minimizes the
objective functional (3.6) subject to the ODE system (3.7) with initial conditions (3.8) into the point-
wise maximization of the Hamiltonian with respect to the control variable. Effectively, the Hamiltonian

(3.9) is concave with respect to u since we have
∂2H
∂u2 = −A4 < 0, and hence it holds that

H(X∗(t), u∗(t), λ(t)) ≥ H(X∗(t), u(t), λ(t)). (3.13)

for all admissible controls u(t) : [0,T ∗] 7→ [0, umax] and almost for all t ∈ [0,T ∗]. Relationship (3.13)
implies that H(X∗, u, λ) attains its maximum with respect to u exactly at u = u∗ in the pointwise sense,
and we can rewrite this relationship in a more convenient and explicit [39] form:

u∗(t) = 0 if
∂H
∂u

< 0,

0 < u∗(t) < umax if
∂H
∂u

= 0,

u∗(t) = umax if
∂H
∂u

> 0.


(3.14)
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It is easy to check that

∂H
∂u

= 0 implies − A4u + εwλ5 + (1 − εw)λ8 = 0 (3.15)

and we can obtain the compact form of (3.14)

u∗(t) = max
{

0,min
{

1
A4

(
εwλ5 + (1 − εw)λ8

)
, umax

}}
, (3.16)

which is also known as the characterization of optimal control.

Remark 3. Relationships (3.14) and (3.15) have an interesting interpretation regarding the costs and
benefits of control strategies. It stems from (3.15) that, under the optimal release program u∗, the
marginal cost of control action (expressed by the term A4u(t)) is equal to its marginal benefit (given
by the term εwλ5 + (1 − εw)λ8). It also follows from (3.14) that it will be optimal to use all available
resources, i.e., to set u∗(t) = umax if the marginal cost of u∗ drops below its marginal benefit (that is, if
∂H
∂u

> 0 in (3.14)). Moreover, no release will be needed (u∗(t) = 0) if the marginal cost of u∗(t) exceeds

its marginal benefit (that is, if
∂H
∂u

< 0 in (3.14)).

Using the closed form of u∗(t), the original optimal control problem (3.6)-(3.8) can be reduced
to a two-point boundary value problem that consists of eighteen differential equations with eighteen
endpoint conditions specified at t = 0 and t = T ∗. This boundary value problem is often referred to as
optimality system, and its entries are:

• nine direct differential equations (3.7) where u(t) is replaced by its characterization (3.16);
• nine adjoint differential equations (3.10) where u(t) is replaced by its characterization (3.16);
• nine initial conditions (3.8) specified at t = 0;
• nine transversality conditions (3.11) specified at t = T ∗.

Here, it is essential to recall that the optimal time 0 < T ∗ < ∞ must be determined from the time-
optimality condition (3.12).

Due to non-linearity and high dimension, the optimality system described above does not admit a
closed-form solution, and it can only be solved numerically. Traditional techniques for solving two-
point boundary value problems for ODE systems (such as forward-backward sweep methods, shooting
techniques, and collocation methods) require an a priori knowledge of both endpoints; therefore, they
are unable to guarantee the convergence of numerical algorithm when the final time T ∗ is left free.

As an alternative, we propose to employ the GPOPS-II Next-Generation Optimal Control Soft-
ware [40, 41] designed for MATLAB platform, which is capable of dealing with time-optimal con-
trol problems. Note that the GPOPS-II manual with detailed descriptions is downloadable from
http://gpops2.com/, while its concise description can be found in the work by Campo-Duarte et
al. [9] (see Appendix B in that paper).

This solver does not rely on numerical integration and implements an adaptive combination of two
collocation techniques (direct and orthogonal collocation) known as Radau pseudospectral method
[42], which is capable of dealing with free terminal time T . The main limitation of the GPOPS-II
package is that it requires the Hamiltonian to be twice continuously differentiable in all its variables.
However, the Hamiltonian (3.9) meets this condition.
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4. Numerical results and discussion

Our numerical simulations will be carried out for two Wolbachia strains, and our ultimate goal is
to conduct an epidemiological assessment of these two strains. Several studies have pointed out that
wMelPop strain of Wolbachia, despite its high fitness cost, possesses the best features for prevention
and control of arboviral infections [3, 6, 8]. On the other hand, many scholars have claimed that wMel
strain of Wolbachia, despite its lower potential for the virus inhibition, have better perspectives for a
faster invasion into wild mosquito populations due to its lower fitness cost [2, 4, 5]. The latter implies
that the population replacement will be easier to achieve by releasing the insects carrying wMel strain.

From the mathematical standpoint, reaching the population replacement means moving the dengue
transmission system (3.7) from its habitual state (e.g., endemic equilibrium E]

n) characterized by the
disease persistence with R0 = Rn

0 > 1, to the desirable disease-free equilibrium E0
w where R0 =

Rw
0 < 1. Whilst the system is being moved from its initial state to E0

w by external releases u(t) of
Wolbachia-carrying insects, new dengue infections among human hosts are still expected. Our interest
lies in comparing the number of human infections that can be averted by releasing the insects carrying
each Wolbachia strain (wMelPop versus wMel) until the population replacement is achieved, and also
in assessing the underlying costs of intervention in terms of the overall time of the release campaign
and the total number of mosquitoes needed for its successful accomplishment.

4.1. Preliminary settings

To make our simulations more meaningful and realistic, let Nh express the total size of Santiago
de Cali, which is one of the largest Colombian cities regarded as “endemic” with respect to dengue
morbidity [43, 44].

Our numerical simulations will be focused on the “worst” scenario, that is, supposing that the wild
mosquitoes have equilibrium densities just before the control intervention (t = 0), while Wolbachia-
carrying insects are not present in the target locality. Therefore, the initial conditions assigned to the
dengue transmission system (2.10) are taken equal to the endemic equilibrium (2.18) for all numerical
simulations (see Table 2).

Table 2. Initial conditions assigned to the vector-host model (2.10) corresponding to the
endemic equilibrium (2.18) (all values are multiplied by 104).

S (0) I(0) R(0) Mn(0) Mw(0) FnS (0) FnI(0) FwS (0) FwI(0)
224.251 0.054 0.162 280.583 0 336.377 0.323 0 0

The values of parameters of the dynamical system (2.10) related to the human inhabitants are speci-
fied in Table 3 and those related to the vector-host virus transmission and to the population dynamics of
three mosquitoes species (wild and transinfected with either wMelPop or wMel strains of Wolbachia)
are given in Table 4. It is worthwhile to point out that previous studies [28, 29, 45] have revealed that
the average vector density of Ae. aegypti in Cali, Colombia is about 1.5 female insects per one hu-

man inhabitant. Therefore, we have fitted the parameter σ to satisfy the relationship
F]

n

Nh
≈ 1.5 where

F]
n = F]

nS + F]
nI is given by (2.5).
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Table 3. Parameters of the vector-host model (2.10) related to the human inhabitants

Values Ranges Comments and references
Nh = 224.467 × 104 size of Cali, Colombia [46]
η = 1/(75 · 365) 72 − 79 years life expectancy in Colombia [47]
γ = 1/7 4 − 12 days human recovery rate [28, 29]
α = 1/30 14 − 56 days human reinfection rate [29]

Table 4. Parameters of the vector-host model (2.10) related to the DENV transmission and
to the population dynamics of mosquitoes; the subscript “�” stands for “{n,w}”

Parameters Wild mosquitoes Carriers of Carriers of Comments and
(n) wMelPop (w) wMelPop (w) references

σ 5.56425 × 10−7 5.56425 × 10−7 5.56425 × 10−7 Fitted to size of Cali [28, 29]

b
1
3

1
3

1
3

Mosquito biting rate is not

altered by Wolbachia [28, 33]
ε� 0.5 0.5 0.5 Equal sex ratio [48]
ρ� 4.55 [49] 4.55 × 0.5 [5] 4.55 × 0.9 [5] Wolbachia reduces

the fecundity of females

µ�
1

25
[15]

1/25
0.5

[5]
1/25
0.9

[5] Wolbachia increases

the mortality of males

δ�
1

30
[49]

1/30
0.5

[5]
1/30
0.9

[5] Wolbachia increases

the mortality of females
βh� 0.063 0.063 0.063 Mosquito-to-human infectiveness

is not altered by Wolbachia [28, 33]
β�h 0.52 [28] 0.52 × (1 − 0.95) [5] 0.52 × (1 − 0.8) [5] Human-to-mosquito infectiveness

is altered by Wolbachia

In the absence of Wolbachia-carrying mosquitoes and using the parameters values from Tables 3
and 4, the basic reproductive number is calculated according to (2.16) and is R0 = Rn

0 = 1.14631 > 1.
This stays in line with the existence of endemic equilibrium E]

n.
The ultimate goal of control intervention consist in moving the dynamical system (2.10) from its

endemic equilibrium E]
n to the disease-free steady state E0

n by releasing a reasonable number of male
and female mosquitoes infected with Wolbachia u(t) = εwu(t)+(1−εw)u(t) ≤ umax at each day t ∈ [0,T ∗]
in the target locality. Here, umax > 0 denotes the maximum capacity of daily releases that should match
the daily output of the mass-rearing facility where Wolbachia-carrying insects are bred.

The daily output of the mass-rearing facility should be sufficiently high so the daily releases allow
reaching the frequency of Wolbachia that ensures its invasion and ultimate persistence in the target
locality. From the mathematical standpoint, this will also guarantee the existence of the solution to the
optimal control problem (3.6)-(3.8) which, otherwise, would possess no feasible solution. In effect, if
umax is not high enough, then the releases of Wolbachia-carriers may go on forever without achieving
the frequencies ensuring their definitive invasion. The latter is attributed to the reduced individual
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Figure 6. Expected changes in R0 due to the releases of Wolbachia-carrying mosquitoes

fitness of Wolbachia-carriers at high frequencies of wild coevals and it has been addressed in several
studies encompassing the population dynamics of Wolbachia invasion [9, 20–26].

As Wolbachia-carrying mosquitoes are being released in the target locality, they will gradually
replace the wild mosquitoes, especially wild females, that are capable of transmitting dengue and other
infections. Therefore, it is expected that the dengue incidence would also slow down, and a lesser
number of secondary infections would be entailed by each infective human host. As a consequence,
the basic reproductive number R0 given by (2.15) will be gradually reduced from Rn

0 = 1.1431 > 1
(when φ = 1) to either Rw

0 = 0.1937 < 1 or Rw
0 = 0.01719 < 1 depending on the Wolbachia

strain that is used to mosquito transinfection during mass-rearing (when φ = 0). Figure 6 illustrates
schematically such a situation where the binary variable φ ∈ {0, 1} is deliberately allowed to take on
intermediate values from a continuous domain [0, 1].

When the population of wild females drops below its minimum viable population size Fc
n (see Eq.

(2.7a)) and the overall number of Wolbachia-carrying females exceeds its minimum viable population
size Fc

w (given by (2.7b)), the releases can be suspended (u(t) = 0) and the epidemiological system (3.7)
will still evolve towards the disease-free steady state E0

w. In this case, the population replacement will
eventually occur leading to the local extinction of the disease. This is exactly the desirable outcome
to be sought by solving the optimal control problem (3.6)-(3.8). Moreover, we expect to achieve this
outcome in the minimum time and using the least possible number of Wolbachia-carrying mosquitoes.

All entries of the objective functional (3.3), (3.6) are measured in different units. In order to make
them more comparable, their underlying weight coefficients Ai, i = 1, 2, 3, 4 must account for proper
scaling. In this study, we adopt the following scaling:

A1 =
P1

F]
n

, A2 =
P2

I]n
, A3 =

P3

365
, A4 =

P4

umax
, (4.1)

where F]
n = F]

nS + F]
nI and I]n refer to the coordinates of the endemic equilibrium (2.18), time is scaled

to years (= 365 days), and the control effort is normalized by the maximal release capacity umax. In the
gauged values (4.1), the coefficients Pi, i = 1, 2, 3, 4 define “pure” priorities of the decision-making,
which are dimensionless.

Our top priority should be to seek for replacement of wild mosquitoes (capable of transmitting
the virus to human individuals) by Wolbachia-carrying insects whose vectorial capacity is drastically
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reduced by the Wolbachia bacterium [1–5, 7]. Therefore, the largest value must be assigned to P1 thus
seeking to fulfill the endpoint condition (3.2) and to obtain that Φ

(
FnS (T ), FnI(T )

)
= 0 in (3.3), (3.6).

On the other hand, the lowest priority can be assigned to P4 that stands for the rearing (unit) cost of
Wolbachia-carrying mosquitoes.

Previous studies [10] revealed that time to reach the population replacement is more important than
reduction of the overall number of human infections, and the latter has rather explicit explanation based
on the rational choice. Namely, the longer wild mosquitoes remain in the system, the higher number
of human infections they produce. Therefore, it is prudent to consider that P2 < P3.

In view of the above rationale, we have assigned the following “pure” priorities in all numerical
simulations presented in Subsection 4.2:

P1 = 105, P2 = 10, P3 = 102, P4 = 1. (4.2)

Another issue to address is the choice of ε ∈ (0, 1) in the terminal part of the objective functional
(3.3), (3.6). In this context, it is useful to recall that Campo-Duarte et al. [9] have disclosed an in-
teresting feature related to the fulfillment of the terminal condition Fn(T ∗) = 10−k, k = 2, 4 by the
optimal release strategies. If such very small values of Fn(T ∗) are sought, the optimal release strategy
indicates suspension of active releases just several days after that Fn(t) drops below the threshold of
minimum viable population size Fc

n and this occurs well before the terminal constraint become active.
Therefore, it seems reasonable to consider sufficiently large values for ε ∈ (0, 1) in the terminal part Φ

of the objective functional (3.3), (3.6). Thus, we set ε = 0.9 for all numerical simulations presented in
Subsection 4.2.

It follows from the formulation of the optimal control problem (3.6)-(3.8) that T ∗ will be delivered
by the numerical algorithm together with underlying optimal release program u∗(t) defined on [0,T ∗].
However, if we consider different scenarios (such as two Wolbachia strains and contrasting maximum
rearing capacities umax), the value of T ∗ is expected to be dissimilar for each scenario. Therefore, we
have to determine an “equable” observation interval [0, T̂ ] with T̂ exceeding any other T ∗ obtained for
each considered scenario.

Furthermore, the optimal release programs u∗(t) defined on [0,T ∗] for each particular T ∗ can be
overspread to the equable observation interval [0, T̂ ] by a simple transformation:

û∗(t) =

{
u∗(t), t ∈ [0,T ∗],

0, t ∈ [T ∗, T̂ ].
(4.3)

To justify such an extension, it is worthwhile to recall that each optimal release program u∗(t) gets
effectively suspended when the endpoint constraint (3.2) becomes active (i.e., the terminal function Φ

in J(u,T ) achieves its global minimum equal to zero), and this occurs exactly at t = T ∗.
Moreover, all optimal state trajectories:(

S ∗(t), I∗(t),R∗(t),M∗
n(t),M∗

n(t), F∗nS (t), F∗nI(t), F
∗
wS (t), F∗wI(t)

)
are delivered by the numerical algorithm

as real functions defined for t ∈ [0,T ∗], and they can also be overspread to the equable interval [0, T̂ ]
by running the controlled system (3.7) with û∗(t) defined by (4.3).

To compare the effects of the optimal release programs on dengue transmission under different
scenarios, it is also appropriate to evaluate their outcomes over the equable interval [0, T̂ ], that is,
during and after the control intervention. To assess the benefits of optimal release strategies under
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different scenarios, it is convenient to employ an auxiliary variable known as cumulative incidence and
defined as

Ic(t) =

t∫
0

I(τ)dτ, (4.4)

where I(·) stands for the state profile of the system (2.10) without control intervention (u(t) = 0).
Formula (4.4) states that Ic(t) sums up all new infections acquired by human individuals during the
period [0, t] without taking into account their posterior recovery. In a similar way, we can also define

I∗c(t) =

t∫
0

I∗(τ)dτ (4.5)

where I∗(·) stands for the state profile of the controlled system (3.7) under the optimal release program
û∗(t) expressed by (4.3). Here, I∗c(t) expresses the total number of human infections acquired during
the period [0, t] under the optimal release program û∗(t).

In effect, the current values of Ic(t) and I∗c(t) can be obtained by complementing the systems (2.10)
and (3.7) with an additional differential equation and its underlying initial condition

dIc

dt
=

bS (βhnFnI + βhwFwI)
Nh

, Ic(0) = 0 (4.6)

and then by solving numerically these systems composed by ten ODEs with corresponding initial
conditions.

Formulas (4.4) and (4.5) then allow us to quantify the benefit of each optimal release program û∗(t).
The latter can be expressed by the total number of human infections that are averted or prevented under
the action of û∗(t) during the whole observation interval [0, T̂ ]. Let us denote by AHI

(
û∗

)
the number

of averted human infections during the period [0, T̂ ] and express it as

AHI
(
û∗

)
=

T̂∫
0

[
I(τ) − I∗(τ)

]
dτ = Ic(T̂ ) − I∗c(T̂ ). (4.7)

On the other hand, to assess the cost of each optimal release program û∗(t) one can use two quanti-
ties: the overall time of the control intervention T ∗ and the total number of Wolbachia-carrying insects
to be mass-reared for releases, NWC(u∗) which was introduce in Remark 2, formula (3.5).

Thus, for each scenario, the optimal release program û∗(t) extended to the equable observation
period [0, T̂ ] will be characterized by three quantities: AHI

(
û∗

)
,T ∗, and NWC(u∗).

Several scenarios encompassing two Wolbachia strains (wMelPop and wMel) are presented and
analyzed in the following subsection. Our core interest stands in determining which strain of Wolbachia
exhibits better potentials for dengue prevention in the long-term perspective.

4.2. Numerical results for wMelPop and wMel strains

Empirical evidence suggests that two Wolbachia strains, wMelPop and wMel, affect to a greater or
lesser extent the individual fitness of their carriers [2, 4, 5] and also have different capacities for virus
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inhibition [3, 6, 8]. These features are reflected by the values of parameters borrowed from existent
literature (see Table 4, columns 3 and 4), which will be used for numerical solutions of the optimal
control problem (3.6)-(3.8).

Many scholars point out that, due to more severe fitness loss induced by wMelPop strain in Ae.
aegypti mosquitoes, more intense and sophisticated release programs are needed in order to achieve
the population replacement. Therefore, it is reckoned that the costs of control intervention will be
considerably higher for wMelPop than for wMel. On these grounds, it is reasonable to concede greater
values of umax (i.e., maximum daily capacity of the mass-rearing facility where Wolbachia-carrying
insects are artificially bred) for wMelPop strain and lesser values of umax for wMel strain. Furthermore,
it is not difficult to foreknow that the optimal time T ∗ of active releases will be shorter for wMel strain
than for wMelPop.

On the other hand, the benefits of employing the wMelPop strain, quantified by the overall number
of averted human infections, are also expected to be higher by comparison with the wMel strain.

To illustrate such predictions and to derive other interesting insights regarding the Wolbachia-based
biocontrol, we have explored the following six scenarios:

wMelPop strain

Case A:umax = 10 × 104; Case B:umax = 12 × 104; Case C:umax = 17 × 104.

wMel strain

Case A:umax = 1 × 104; Case B:umax = 3 × 104; Case C:umax = 8 × 104.

(4.8)

It was established by numerical simulations that the optimal control problem (3.6)-(3.8) does not
have feasible solution if the values for umax are chosen below those set for Cases A in (4.8).

For each scenario, the optimal control problem (3.6)-(3.8) has been solved numerically, and its
underlying solutions have been extended to the equable interval of 500 days, that is, we have set
T̂ = 500 in order to assure that [0, T̂ ] be longer than [0,T ∗] for any T ∗ obtained as optimal solution
for each particular scenario. To quantify the benefits of all scenarios, we have also assessed by the
formula (4.4) the cumulative incidence without control intervention and obtained Ic(T̂ ) = 4.3486×104,
meaning that 43486 new dengue cases are expected during 500 days without performing the releases.

As mentioned in the end of Section 3, we have employed the GPOPS-II Next-Generation Optimal
Control Software [40, 41] which is an advance solver that handles all internal computations by scaling
an input interval [0,T ] (given as an initial guess) to the interval [−1, 1]. This operation mode allows this
solver to deal with time-optimal problems, and to obtain T ∗ as an output only if the time-optimality
condition (3.12) is satisfied within the limits of prescribed accuracy. For our calculations, we have
assumed the standard numerical tolerance of 10−5 with respect to scaling and we also acknowledge
that for all six scenarios the numerical algorithm had effectively found the optimal solution.

The results of numerical solutions of the optimal control problem (3.6)-(3.8) with the weigh co-
efficients (4.1), (4.2) and initial conditions given in Table 2 are displayed in Figures 7 (for wMelPop
strain) and 8 (for wMel strain). In these two figures, each row contains three charts corresponding to
each scenario described in (4.8) for different values of umax. In all charts, the vertical dashed line t = T ∗

indicates the optimal time at which the boundary condition (3.2) is met and after which the releases are
suspended.
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Optimal release program Mosquito population dynamics Cumulative incidences
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wMelPop Case A: umax = 10 × 104, optimal time T ∗ = 477 days
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wMelPop Case B: umax = 12 × 104, optimal time T ∗ = 277 days
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wMelPop Case C: umax = 17 × 104, optimal time T ∗ = 199 days

Figure 7. Numerical solutions for wMelPop strain: (left column) optimal release program;
(central column) optimal states for uninfected (solid curves) and Wolbachia-infected (dashed
curves) male mosquitoes (blue color) and female mosquitoes (red color); (right column)
cumulative incidence without control (red line) and with control (blue line); vertical lines
mark T ∗.

Charts in the left columns of Figures 7 and 8 display the optimal release programs û∗(t) ex-
tended to the equable interval [0, T̂ ] = [0, 500], and their positive parts denote the optimal controls
u∗(t), t ∈ [0,T ∗], i.e., solutions to the optimal control problems (3.6)-(3.8) corresponding to each par-
ticular scenarios from (4.8).
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Optimal release program Mosquito population dynamics Cumulative incidences
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wMel Case A: umax = 1 × 104, optimal time T ∗ = 218 days
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wMel Case B: umax = 3 × 104, optimal time T ∗ = 77 days
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wMel Case C: umax = 8 × 104, optimal time T ∗ = 45 days

Figure 8. Numerical solutions for wMel strain: (left column) optimal release program; (cen-
tral column) optimal states for uninfected (solid curves) and Wolbachia-infected (dashed
curves) male mosquitoes (blue color) and female mosquitoes (red color); (right column) cu-
mulative incidence without control (red line) and with control (blue line); vertical lines mark
T ∗.

Charts in the central columns of both figures present the population dynamics (optimal state profiles)
of wild mosquitoes (solid curves) and Wolbachia-carrying mosquitoes (dashed curves) on the extended
interval [0, T̂ ] = [0, 500]. The profiles of male insects M∗

n(t) and M∗
w(t) are plotted in blue color, and

the state trajectories F∗n(t) = F∗nS (t) + F∗nI(t) and F∗w(t) = F∗wS (t) + F∗wI(t) are drawn in red color.
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Table 5. Quantifications for all considered scenarios: optimal time T ∗ of effective releases,
expected benefits (number of averted human infections, ADI), and the total number of Wol-
bachia-carriers (NWC) to be mass-reared.

Costs and benefits corresponding to wMelPop strain
Scenario umax Time T ∗ (days) Cost NWC(u∗) Benefit AHI(û∗)
Case A 10 × 104 477 4.14 × 107 3.95 × 104

Case B 12 × 104 277 2.54 × 107 4.02 × 104

Case C 17 × 104 199 2.05 × 107 4.07 × 104

Costs and benefits corresponding to wMel strain
Scenario umax Time T ∗ (days) Cost NWC(u∗) Benefit AHI(û∗)
Case A 1 × 104 218 2.15 × 106 3.37 × 104

Case B 3 × 104 77 2.15 × 106 3.88 × 104

Case C 8 × 104 45 2.31 × 106 4.03 × 104

Finally, the charts in the right columns of Figures 7 and 8 show the cumulative incidences in absence
of control intervention (Ic(t), red curves) and under the corresponding optimal release program û∗(t)
(I∗c(t), blue curves), both extended to [0, T̂ ] = [0, 500].

Table 5 summarizes the key metrics of all six scenarios: optimal time T ∗ of effective releases,
expected benefits expressed via AHI

(
û∗

)
, the total number of human infections prevented by the corre-

sponding optimal release strategy during the equable interval of T̂ = 500 days, and the overall number
of Wolbachia-carrying insects NWC(u∗) that are needed for implementation of the optimal release
program u∗(t), t ∈ [0,T ∗].

Looking at the left column of Figure 7, we observe that, when using the wMelPop Wolbachia strain,
all optimal release programs u∗(t) exhibit a somewhat “bell-shaped” structure. Such an outcome stays
in concordance with previous results obtained for this particular strain [9, 10, 23]. On the other hand,
the optimal release programs u∗(t) designed for wMel Wolbachia strain (see left column of Figure 8)
exhibit a monotone decreasing structure. However, the optimal release programs u∗(t) designed for
both Wolbachia strains possess common characteristics: higher values of umax ensure shorter optimal
time T ∗ of effective releases.

Furthermore, the charts in the left lower corners of Figures 7 and 8 indicate that the maximum daily
release capacities umax = 17× 104 and umax = 8× 104 (for wMelPop and wMel strains, respectively) are
not achieved during the implementations of the optimal release programs.

This reveals the existence of a certain tradeoff between the initial size of the targeted wild popula-
tion to be replaced and the daily productivity of the mass-rearing facilities where Wolbachia-carrying
mosquitoes are artificially bred. Thus, if the initial size of the targeted wild population remains the
same, any increase in umax above a certain “top level” is unnecessary: it neither alters the structure of
u∗(t) nor it reduces the optimal time T ∗. Such an important feature should be taken into account when
the production capacity of the mass-rearing facilities is determined.

Inspecting the central columns of Figures 7 and 8, it is easy to see that the underlying optimal release
programs u∗(t) induce steady decline of the wild mosquito populations M∗

n(t) and F∗n(t) = F∗nS (t)+F∗nI(t)
(solid curves), which becomes more pronounced for higher values of umax and still continues even when
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the release program is suspended (that is, when the vertical line t = T ∗ gets crossed). It is essential to
recall that u∗(t) is suspended exactly at t = T ∗ (cf. formula (4.3)), that is, when the current sizes of all
four mosquito populations meet the conditions (3.1) and the end-point constraint (3.2) becomes active.

By comparison of the results presented in the central columns of Figures 7 and 8, one can easily
detect the striking dissimilarities between two sets of charts with regards to the current sizes of the
wild and Wolbachia-infected mosquito populations at which the releases get effectively suspended (see
the intersections of the vertical line t = T ∗ with the state profiles in the indicated charts). Such a
disparity has a very natural explanation that stems from the different level of fitness loss induced by the
wMelPop and wMel strains in transinfected mosquitoes (cf. parameter values given in Table 4 for these
two strains). The latter entails different values of the minimum viable population sizes determined by
the coexistence equilibrium Ec =

(
Mc

n, F
c
n,M

c
w, F

c
w
)

of the population dynamics model (2.1). Namely,
using formulas (2.7) together with the parameter values from Table 4 for each Wolbachia strain, we
can obtain the minimum viable population sizes corresponding to both strains:

wMelPop strain:

Mc
n = 418 341, Fc

n = 502 010, Mc
w = 1 255 024, Fc

w = 1 506 029;

wMel strain:

Mc
n = 2 133 293, Fc

n = 2 559 952, Mc
w = 500 402, Fc

w = 600 483.

(4.9)

As a result, the right columns of Figures 7 and 8, as well as the estimations of the total number
of averted infections, AHI(û∗) (see the last column of Table 5) clearly highlight a better performance
of wMelPop strain for short- and long-term prevention and control of human infections. Indeed, the
wMelPop strain, being a stronger blocker of the virus in mosquitoes, outperforms the more suitable for
mass-rearing wMel strain thanks to this important feature; albeit, this is not the only reason.

By revisiting the charts in the central columns of Figures 7 and 8 (in particular, those located in
the upper rows), it is detected that around t = 250 (the mid-point of [0, T̂ ]) the population of wild
females F∗(t) = F∗nS (t) + F∗nI(t), fully capable of transmitting the virus, is reduced by more than 50%
for wMelPop-based biocontrol and by less the 30% in case of wMel-based biocontrol. In other words,
when wMel strain is employed, wild females remain in the locality at higher frequencies and for a
longer time. As a result, more human infections are expected during and after the releases of wMel-
carrying insects compared to the releases of wMelPop-infected mosquitoes.

Another important characteristic in favor of the wMelPop strain is exactly the drastically reduced
individual fitness it induces in mosquitoes. Scientific evidence [5, 7, 8, 16] asserts that the lifespan of
wMelPop-infected females is 50% shorter than that of the wild females, and about 40 − 45% shorter
than of wMel-infected females. Therefore, even if some wMelPop-carrying females manage to acquire
the virus (with a small probability of about 5% [5]), it is unlikely they live enough to develop a viral
load sufficient for its transmission to human hosts.

Moreover, the reduced individual fitness of wMelPop-infected mosquitoes decreases their saturation
density expressed by the steady-state values M]

w and F]
w. The latter can be identified by examining once

again the charts in the central columns of Figures 7 and 8 and also calculating these steady-state values
for both strains:
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wMelPop strain: M]
n = 1 673 366, F]

n = 2 008 039;

wMel strain: M]
n = 2 633 696, F]

n = 3 160 435.
(4.10)

Thus, when the population replacement of wild mosquitoes by wMelPol-carriers is finally achieved,
the average vectorial density (that is, the average number of female mosquitoes per one human in-
dividual) in the target locality will be considerably lower than in case of population replacement by
wMel-carriers. Since Wolbachia-carrying females still need to ingest human blood for maturing their
eggs, human inhabitants would get bitten more often (on average) by wMel-carrying females than by
wMelPop-carrying females, once the invasion of either strain is ultimately attained in the target locality.

These two last features of wMelPop strain (reduced lifespan and vectorial density at saturation
level) are not accounted for by the quantitative metrics given in Table 5 but they should be taken into
consideration by the healthcare entities in order to decide which strain to choose for Wolbachia-based
biocontrol.

5. Conclusions

In this paper, we have presented a dengue transmission model that accounts for the sex-structured
population dynamics of wild and Wolbachia-carrying mosquitoes, of which only the female insects are
capable of transmitting the DENV pathogen to human individuals. The presence of male mosquitoes
(that do not transmit the virus) in the model facilitated to mimic more explicitly the reproductive
phenotype of cytoplasmic incompatibility, induced by Wolbachia and was also helpful for modeling
the releases of entire cohorts of Wolbachia-carrying insects thus avoiding their sex-separation during
mass-rearing and saving the corresponding costs. It is worthwhile to emphasize that the inclusion
of male mosquitoes into the dengue transmission system constitutes the contextual difference of the
present study from the one accomplished by Cardona-Salgado et al. [10] that was entirely focused on
releasing only female mosquitoes transinfected with wMelPop strain of Wolbachia.

The principal goal of this paper was to analyze the performance of two Wolbachia strains, wMelPop
and wMel, that are recommended for dengue prevention and control. Our approach, stemming from the
fusion of mathematical modeling, analysis of the dynamical systems, and dynamic optimization via op-
timal control, has rendered rather interesting results and has also given rise to a set of recommendations
for the practical implementation of Wolbachia-based biocontrol.

Using the optimal control approach, we have considered several scenarios and designed underlying
programs for optimal releases of transinfected mosquitoes carrying either wMelPop or wMel strain
while varying the daily capacities of releases and keeping the same decision-making priorities.

In our study, we have deliberately focused on the “worst possible option” by supposing that, at
the beginning of all release programs, the wild mosquitoes have equilibrium densities. This situation
is the most compatible with the climatic conditions of the city of Cali, Colombia. This city, located
very close to the equator, provides the ideal environment all year round for fast reproduction, abundant
perseverance, and persistence of Ae. aegypti mosquitoes due to frequent intermittent rainfalls combined
with the absence of seasonal temperature variations.

On the other hand, wild mosquito populations may exhibit seasonal size variations in other tropical
and sub-tropical regions [50, 51], and our methodology for the design of optimal release strategies can
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be naturally adapted to match diverse initial values of the wild population. Indeed, given the bistable
nature of the population dynamics model (2.1) and regardless of the strain used for Wolbachia-based
biocontrol, all three key metrics of the optimal release programs (T ∗,NWC(u∗), and AHI(û∗)) can be
greatly improved by taking lower initial values of wild mosquitoes. In such a case, the shorter overall
time of effective releases can be expected, the smaller total number of Wolbachia-carrying insects
would be needed, and the greater number of human infections can be avoided.

In this context, the best timing for implementation of Wolbachia-based biocontrol by either wMel
or wMelPop strain will be the periods of relatively low mosquito abundance. Such periods usually
correlate with cooler and windier seasons in tropical and sub-tropical regions [50, 51] or arise after
carefully planned and thoroughly implemented vector control measures [28, 45, 52, 53].

Concerning the simulation results obtained in this study, they have revealed rather interesting and
potentially useful insights regarding the performance of two Wolbachia strains for dengue prevention
and control. Let us now highlight the advantages and disadvantages of each strain by comparison.

Advantages of wMel-based biocontrol:

1. Artificial breeding of wMel-carrying insects requires a lower daily production capacity of a mass-
rearing facility than does the cultivation of wMelPop-carriers.

2. Release programs designed for wMel strain require for mass-rearing of smaller overall quantities
of transinfected insects than wMelPop-based release programs.

3. Shorter time of effective daily releases is needed for wMel-based biocontrol than for wMelPop-
based biocontrol.

4. After the population replacement is achieved, the wMel-infected population will be more robust
and less vulnerable to the possible massive immigrations of wild mosquitoes than the wMelPop-
infected population. This is explained by a wide gap between the minimum viable population
sizes of wild mosquitoes Mc

n and Fc
n that favors the carriers of wMel strain (see relationships

(4.10))

Advantages of wMelPop-based biocontrol:

1. wMelPop-based release strategies ensure a faster decline of wild female mosquitoes, capable of
transmitting the virus, and thus guarantee an earlier reduction in the overall number of human
infections than the release strategies based on wMel strain.

2. Among Wolbachia-carrying females that somehow manage to become DENV-infected, the wMel-
carriers have a higher probability to develop the virus load sufficient for transmission than those
transinfected with wMelPop strain whose lifespan is a lot shorter.

3. In general terms, optimal release programs designed for wMelPop strain exhibit better outcomes
for short- and long-term dengue prevention and control than those designed for wMel strain.

4. After the population replacement is achieved, the wMelPop-carrying population will exhibit lower
average vectorial density at saturation level than the wMel-infected population, and the human
inhabitants would receive a fewer number of mosquito bites.

From the foregoing arguments, it is rather hard to univocally conclude which Wolbachia strain is
more appropriate and beneficial, but each of them has the potential to ultimately annihilate the local
circulation of the dengue virus and bring the system to the disease-free steady state. Unfortunately,
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we do not have any reliable information about the possible differences in the costs of mass cultivation
of insects transinfected with each strain, nor about the relationship between such costs and expenses
associated with traditional vector control measures (insecticides or larvicides spraying), nor with costs
intended for the prevention of human dengue infections. Our arguments have the quantifying nature
but other aspects and potential hazards of releasing Wolbachia-carrying insects, as well as the societal
acceptance of such releases, must be carefully evaluated by other specialists (biologists, ecologists,
healthcare managers, etc.). Also, we do believe that the outcomes of this study will be helpful and
informative to local authorities in countries affected by dengue and motivate them for more responsible
decision-making.
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