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Abstract: Disease-related gene prioritization is one of the most well-established pharmaceutical 

techniques used to identify genes that are important to a biological process relevant to a disease. In 

identifying these essential genes, the network diffusion (ND) approach is a widely used technique 

applied in gene prioritization. However, there is still a large number of candidate genes that need to be 

evaluated experimentally. Therefore, it would be of great value to develop a new strategy to improve 

the precision of the prioritization. Given the efficiency and simplicity of centrality measures in 

capturing a gene that might be important to the network structure, herein, we propose a technique that 

extends the scope of ND through a centrality measure to identify new disease-related genes. Five 

common centrality measures with different aspects were examined for integration in the traditional 

ND model. A total of 40 diseases were used to test our developed approach and to find new genes that 

might be related to a disease. Results indicated that the best measure to combine with the diffusion is 

closeness centrality. The novel candidate genes identified by the model for all 40 diseases were 

provided along with supporting evidence. In conclusion, the integration of network centrality in ND is 

a simple but effective technique to discover more precise disease-related genes, which is extremely 

useful for biomedical science. 
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1. Introduction  

Network medicine is an essential network-based approach that applies appropriate methods in 

various types of biological networks, making it beneficial for the completion of several tasks [1]. 

Interactome-based approaches to human diseases have been collated in [2] to highlight the importance 

of physical interactions within the cell. The types of molecular data and analytical methods utilized in 

inferring molecular networks have also been discussed [3]. Human interactomes with co-expression 

networks have been discovered to be capable of predicting novel disease genes and disease 

modules [4]. Specifically, the key network modules related to chronic obstructive pulmonary 

disease [5] and glioblastoma [6] have been identified. 

To enhance the understanding of disease mechanisms, disease and gene association studies are 

required in biological science. Several studies have provided associations between diseases and genes 

using gene prioritization to identify the genes with close relationships to diseases. The identification 

of those genes can be useful in disease diagnosis and prevention. Given that wet-lab experiments are 

time consuming and costly, a great number of computational approaches have been formulated to 

prioritize candidate disease genes [7-9]. For example, inflammatory bowel disease-related proteins 

have been successfully identified using a reverse k-nearest neighbor search [8], while epilepsy-related 

genes have been recognized using a random walk with a restart algorithm [9]. Moreover, the disease 

module detection (DIAMOnD) algorithm is able to identify the community of diseases around a set of 

known disease proteins in a network [10]. Meanwhile, for cancerous diseases, the SWItchMiner 

(SWIM) uses the concept of nearest neighbor node to identify crucial nodes [11]. 

Network diffusion (ND) is one of the most promising methods to identify novel targets for many 

diseases [12,13]. It starts with a set of seed nodes which are known disease-related genes and then 

disperses the scores throughout the network with an iterative technique and random walks. It is worth 

noting that with the use of initial scores marked by known disease-related genes, ND results in a good 

ranking performance, but it may be limited to some topological structures [14] and unknown disease-

related genes hidden at crucial central locations in the network. Many modified versions of ND have 

been proposed. For example, the statistical normalization of input scores has been applied to reduce 

bias and variance of values throughout the network [14]. An adaptive version of ND, namely, network 

smoothing index and permutation-adjusted score with network resampling has also been applied in the 

analysis of enriched disease modules of autism [15] and prostate adenocarcinoma [16]. In addition, it 

has been later proven by calculating the median degree of output nodes that network propagation tends 

to return the hub nodes [17]. Interestingly, hub nodes can be identified by various centrality measures. 

Network centrality by itself has been used to prioritize disease genes based on the interaction 

network. Different types of centralities measure different aspects of calculations to distinguish the role 

of a certain node in the network related to the network topology. The co-occurrence gene-interaction 

network has been analyzed to identify the disease-gene associations of cancerous diseases [18]. 

Recently, Zhao et al. reported that complex disease genes tend to have higher betweenness centrality, 

smaller average shortest path length, and smaller clustering coefficient; they also have no significance 

in degree centrality [19]. Moreover, the combination of all five centralities (i.e., degree centrality, 

eigenvector centrality, closeness centrality, betweenness centrality, and k-clique percolation) is useful 

in identifying non-cancerous disease-related genes [20]. 

In this work, we propose the use of a centrality measure together with ND to prioritize and identify 

novel disease-related genes. The standard calculation of ND was applied, and five commonly used 

centrality measures, namely, betweenness centrality, closeness centrality, degree centrality, eigenvector 
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centrality, and pagerank centrality, were investigated and evaluated. The trade-off weighting 

parameters between the diffusion scores and centrality scores were captured with the normalization of 

the parameters obtained from a binary logistic regression. Various performance measures were applied 

such as ten-fold cross-validation, ROC curve, and precision-recall curve. Finally, the top-ranking 

disease-related genes were identified and validated with supporting evidence.  

2. Materials and methods 

2.1. Workflow 

 

Figure 1. Workflow of the analysis. 
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The overview of our workflow is shown in Figure 1. First, a protein-protein interaction (PPI) 

network of humans was constructed from the STRING database [21] and known disease-related genes 

were extracted from the DisGeNet database [22] . Afterward, ND score for each disease was calculated 

to obtain stable scores for all proteins, and the calculation of each centrality was applied to all proteins 

in the network. The combination of each centrality measure and ND technique was then evaluated and 

the parameters were tuned using binary logistic regression. The ND and best centrality model were 

used and evaluated with ten-fold cross-validation technique. Finally, the prioritization scores and the 

top candidates were selected and reported with supporting evidence.  

2.2. Data preparation 

The PPI network and evidence of their corresponding genes were obtained from the STRING 

database version 11.0 [21]. The interactions with a confidence score lower than 900 were excluded, 

isolated nodes were eliminated, and multiple edges were removed. With these filters, we obtained a 

weighted connected network of 11,919 proteins and 323,823 interactions. All isolated nodes and 

islands were discarded. The weight values ranging from 900 to 999 were rescaled into the range of 

[0.1, 1]. Disease-gene associations were retrieved from the DisGeNET database [22]. All disease genes 

were mapped onto the PPI network. Forty diseases from the database were selected for this study. The 

list of diseases and the number of genes corresponding to each disease are shown in Supplementary 

Table T1. Notice that there are approximately 1,200–3,600 proteins associated with a disease. 

Therefore, there are highly unbalanced data between the known and unknown disease-related genes 

for each disease. 

2.3. Network diffusion 

ND is an effective and widely used technique to identify disease-related genes. Diffusion requires 

prior data of gene-disease associations to be assigned as initial scores of nodes. Then the score of each 

node diffuses through the edges. 

Let G  be a graph with n  nodes and 
ij

w  be edge weights connecting between node i  and j . 

Weight adjacency matrix W  is an n n  matrix whose ( , )i j  entry is defined as 
ij

w  if a connection 

exists between node i  and j ; otherwise, it is 0. 

Let D  be an n n  diagonal matrix with = ,
ii ij

j

D W  and = −L D W  be the Laplacian of the 

graph. The ND score (Ds) using regularized Laplacian kernel [23] is defined as 

𝐷𝑠 = 𝐾 ⋅ 𝑦, (1) 

where 1 −= +( )K I L   is a kernel and y   is an initial label vector of length n  . This label is 

defined as 1 if gene i  has an association with a disease and 0 otherwise. I  is an n n  identity 

matrix, and   is a constant of the diffusion rate.  
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2.4. Network centrality 

To find the impact of each node or protein in the PPI network, the centrality measure could be 

exploited. The five most widely used centrality measures are betweenness, closeness, degree, 

eigenvector, and pagerank.  

Betweenness centrality CB: The betweenness centrality measures the number of times a protein 

is in-between the shortest path between any two other proteins in the network. We could calculate the 

betweenness centrality of a protein i  as  

( )
( ) st

B
s t i st

i
C i



 

=  , (2) 

where 
st

 is the number of the shortest path between nodes s  and t  and  ( )
st

i  is the number of 

the shortest path between nodes s   and t   that passes through node i  . As the defined weight is 

originally derived from the confidence score of the STRING database, this score indicates how much 

two proteins are likely to interact with each other. In other words, higher weights mean more similarity 

for those two proteins. However, to calculate the shortest path for betweenness centrality, the weight 

of the edges should reflect a distance (or difference) between two proteins. Therefore, the reciprocal 

of the defined weight should be applied as the distance between two proteins in the network which can 

be used to find the shortest path. 

Closeness centrality CC: The closeness centrality is the inverse distances between a protein and 

all other proteins in the network. It can be calculated as the reciprocal of the sum of the length of the 

shortest paths between the node and all other nodes in the graph,  

1

1
( )

( , )

n

C
j
i j

C i
d i j=



= , (3) 

where ( , )d i j  is the shortest distance between node i  and node j . Thus, a central node obtains high 

closeness value. Note that in the same manner, to calculate the shortest path or distance as betweenness 

centrality, the distance between two proteins is the reciprocal of the originally defined weight. 

Degree centrality CD: The degree centrality of a protein in a network is simply the number of 

connections of that protein to the other proteins in the network. In the biological network, most proteins 

have a low number of connections and a small number of proteins have a high number of connections. 

The high-degree proteins are called “hubs” and are important for cell viability. The degree can simply 

be calculated as  

( )
D ij

j

C i w=  . (4) 

Eigenvector centrality CE: The extended version of degree centrality is eigenvector centrality. It 

takes the global structure of the network together under the assumption that important nodes should be 

located near the other important ones, and their scores should be nearly the same or the average. A 

node with high eigenvector centrality has a great number of neighbors, and its neighbors also have a 

great number of neighbors. Eigenvector centrality can be formulated as 
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1

( , )

( ) ( )
E ij E

i j

C i w C j


=  , (5) 

where   is the largest eigenvalue of W .  

 PageRank centrality CP: With a definition that is similar to that of eigenvector centrality, 

pagerank centrality is used for a directed network and for node labelling. In case of an undirected 

network, the pagerank centrality of a node i  is defined as  

( )
( )

i

P

P
j B j

C j
C i c

N

=  , (6) 

where 
i

B  is the set of neighbors of node ,i
j

N  is the number of neighbors of node j , and c  is a 

factor used for normalization.  

2.5. Our proposed model and parameter tuning technique 

2.5.1. Proposed model with the integration of network diffusion and centrality 

We intend to develop a simple and effective formula to integrate the values of ND scores and 

centrality. Let Cs  and Ds  be two variables of centrality and diffusion scores, respectively. Then, 

the score combination can be written as 

1=  + − ( )
score

CD m Cs m Ds ,  (7) 

where 0 1 [ , ]m   is a weight constant that can be found by training a binary logistic regression. 

According to the ND score in Equation 1, Equation 7 can be rewritten as 

11( ) ( ) .
score

CD m Cs m I L y −=  + −  +     (8) 

Let 1 = , then 
1−= + =( ) [ ]

ij
Q I L q . Therefore, our formula for node i  and disease d  is 

1

1
=

=  + −  ( , ) ( )
n

score d d ij j
j

CD i d m Cs m q y .  (9) 

The result of selecting 1 =  is to obtain the matrix Q  which can be considered as matrix of relative 

forest accessibilities. This matrix provides information on how close any two nodes in the network (or 

forest) are to each other. 
ij

q  represents the close connection. If nodes 𝑖 and 𝑗 are farther from each 

other, then 
ij

q  is small. More details of the calculation can be found in [24]. Therefore, the second 

term of our model gives a higher score to a node that is close to a disease-related gene node. For a 
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disease d , tuning parameter 
d

m  was done by binary logistic regression with 10 random selections of 

70% of the data to obtain the coefficient of the model. 

2.5.2. Parameter tuning technique with binary logistic regression 

According to the proposed model in Equation 8 (general) and Equation 9 (for each disease), binary 

logistic regression was used to tune the parameter m. This parameter is a key point to assign a 

proportion between genes that have close connections to a known disease-related gene, that is, genes 

that are located centrally or importantly in the flow and structure of the whole network. Thus, in the 

regression, the centrality and diffusion scores were used as factors or predictors of the binary logistic 

regression whose corresponding outcomes are disease-related genes or not. Finally, the logistic 

regression yields the probability of the observed data as a function of the unknown parameters. Then, 

the maximum likelihood estimators were applied to find the best-fit parameters that will maximize this 

function. Afterward, the obtained parameters were rescaled in the range of 0 and 1 as a representative 

of a proportion (m) of a centrality and (1 - m) for the diffusion. The same procedure was applied to all 

diseases via Equation 9 to find the md for each disease.  

2.5.3. Cross-validation strategy 

To formulate a fair performance measurement, 10-fold cross-validation was selected as a 

validation strategy in our work. The data were divided into 10 parts: one part for testing and nine parts 

for training. Each part can take a turn to be a testing set iteratively. For each iteration, we set the initial 

scores of testing samples to zero to demonstrate that there was no association between a gene and a 

disease in this testing set. Afterward, ND calculation was performed, and the resulting scores were 

used to make a prediction as to which genes are associated with a disease. Finally, we obtained the 

association scores for all samples.  

2.5.4. Performance measurement 

Various metrics have been used to measure the performance of the proposed model as highly 

unbalanced data between known and unknown disease-gene relations is considered as a challenge. The 

precision and the top newly identified disease-related genes would be of much interest in this 

prioritization. Ten-fold cross-validation was performed five times to obtain the average performance 

and to make a final prediction score for each gene of each disease. All of the prediction results for each 

gene in the five runs were summed and used to calculate an average prediction value for each gene 

of a disease. Then, the averaged prediction score was used to measure the performance of each 

disease model. 

Confusion matrix: The confusion matrix is shown in Table 1, where positivity and negativity 

stand for a gene having an association and no association with a disease, respectively. Let known 

disease-related genes be a positive class and unknown disease-related genes be a negative class. To 

calculate the values for the confusion matrix, genes whose averaged prediction scores matched and/or 

ranked above a certain threshold, were predicted to be in the positive class. 

True positive rate (TPR) or Sensitivity is calculated as TP/(TP+FN) and false positive rate (FPR) 

is calculated as TN/(TN+FP).  
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Area Under the Receiver Operating Characteristic Curve (AUROC): The receiver operating 

characteristic (ROC) curve is a plot displaying the relation between true positive rate (TPR) and false 

positive rate (FPR), at any cut point c  , and the AUROC is defined by 𝐴𝑈𝑅𝑂𝐶 =

∫ 𝑇𝑃𝑅(𝑐) 𝑑𝐹𝑃𝑅(𝑐)
−∞

𝑐=∞
. AUROC would be 1 for the best binary classifier and 0.5 for random prediction. 

Table 1. Confusion matrix. 

 Gold Standard 

Positive Negative 

Predicted 
Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

 

Partial Area Under the ROC Curve (pAUROC): All possible genes in the entire network were 

analyzed and ranked. To measure the performance precisely, only high-ranked genes were considered. 

Thus, pAUROC is employed and defined as 𝑝𝐴𝑈𝑅𝑂𝐶 = ∫ 𝑇𝑃𝑅(𝑐) 𝑑𝐹𝑃𝑅(𝑐)
𝑐𝑝

𝑐=∞
, 𝐹𝑃𝑅(𝑐𝑝) = 𝑝, 𝑝 ∈

(0,1). In this study, we selected 0 05= .p . It means that only 5% of the FPR are considered.  

Area Under the Precision-Recall Curve (AUPRC): The precision-recall curve shows the relation 

between precision and recall. The AUPRC is defined by 𝐴𝑈𝑃𝑅𝐶 = ∫ 𝑃𝑟𝑒𝑐(𝑐) 𝑑𝑅𝑒𝑐𝑎𝑙𝑙(𝑐)
−∞

𝑐=∞
 for any 

cut point c . Similarly, AUPRC should be 1 for the best binary classifier. However, AUPRC is more 

informative for an imbalanced dataset. 

Top-k: The number of true positives in the top k  predicted genes are of interest in retrieving a 

positive and a new positive sample. Top k measures how many genes are correctly predicted in the first 

k top ranking. Thus, if top k  is equal to k , it implies that all top k  predicted genes are correctly 

labelled. In this study, we set k = 100 to measure the percentage of how many true disease-related 

genes could be detected in the Top 100 ranked genes. 

3. Results 

3.1. Power-law distribution network and evaluation of centrality to disease-related genes 

We first constructed a PPI network based on the STRING database (see Materials and Methods). 

The weighted PPI network consists of 11,919 proteins and 323,823 interactions with edge weights 

ranging from 0.1 to 1. The network follows the power-law distribution [25] (Figure 2), in which a large 

number of nodes have a low degree and a small number of nodes have a high degree. The list of 

diseases and the number of genes corresponding to each disease are shown in Supplementary Table 

T1. 

The betweenness, closeness, degree, eigenvector, and pagerank centralities were calculated for 

each gene in the network. Note that each centrality was calculated once for all diseases, while ND was 

calculated for each disease separately with a change of the initial scores for known disease-related 

genes. When comparing the scores of each method to the known disease-related genes for each disease, 

we found that betweenness and closeness centralities yield higher performance than the others. This 
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result is in an agreement with the study of Zhao et al. [20], which indicated that disease genes tend to 

have high betweenness centrality and small average shortest path length, which refers to the meaning 

of closeness. Table 2 shows the mean and standard deviations of each performance of each centrality 

for all 40 diseases. Figure 3 shows the AUROC of the centrality measures for all 40 diseases. The plot 

of the means and standard deviations of AUROC, pAUROC, AUPRC, and Top 100 performances for 

each centrality show the same results and can be found in Supplementary Figure F1.  

 

Figure 2. Degree distribution of the constructed protein-protein interaction network. 

 

Figure 3. AUROC of centrality measure for each disease. 
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In Table 2, closeness centrality provides the best performance in AUROC of approximately 66%, 

while betweenness centrality and pagerank centrality come in second and third, respectively. 

Interestingly, betweenness centrality yields the best pAUROC. As we set p = 0.05, 5% of false positive 

rate was considered. It indicates to what level the high scores could represent disease-related genes. 

Closeness centrality also provides the best performance for AUPRC and Top 100. On the average, 

nearly 62% of all Top 100 detected genes are true positives or true disease-related genes. 

Table 2. The performance of each method for ranking disease-related genes. 

 AUROC pAUROC AUPRC Top 100 

Betweenness centrality 0.6532 ± 0.0150 0.1027 ± 0.0065 0.2754 ± 0.0633 57.6000 ± 9.7212 

Closeness centrality 0.6645 ± 0.0335 0.0940 ± 0.0173 0.2840 ± 0.0773 61.8000 ± 13.0977 

Degree 0.6048 ± 0.0164 0.0380 ± 0.0130 0.1970 ± 0.0591 22.2250 ± 6.8444 

Eigenvector centrality 0.5862 ± 0.0265 0.0125 ± 0.0033 0.1750 ± 0.0584 9.5750 ± 5.8172 

PageRank centrality 0.6128 ± 0.0137 0.0784 ± 0.0122 0.2366 ± 0.0613 50.0500 ± 9.9123 

3.2. Improved performance of network diffusion with centrality 

Since ND requires an initial score for the seed nodes, which are the disease-related genes in our 

study, the ranking performance using the ND score is higher than network centrality, which does not 

use disease-gene association data. Network centrality was calculated directly based on the structure of 

the network without the information of known disease-related genes, while ND had prior information 

on some known disease-related genes and their calculations based on both the structure of the network 

and prior knowledge on which genes are related with a disease. Therefore, the prediction results from 

ND are better than those from network centrality. However, the use of network centrality that can 

capture how topologically important a node is in the network can be used to improve the performance 

of ND. The combination of the ND and centrality for each disease can be formulated as shown in 

Equation 9 (see Materials and Methods). The weight parameter 
d

m  was learned using binary logistic 

regression for a disease d . Two terms of rescaled network centrality and ND were used as features and 

the initial score was used as a class. The rescaled coefficients were then used as parameter md for each 

disease, as presented in Supplementary Table T2. 

Table 3. Means and standard deviations of the performance of each method. 

 AUROC pAUROC AUPRC Top 100 

Network diffusion (ND) 0.7279 ± 0.0175 0.1411 ± 0.0164 0.3458 ± 0.0680 49.7917 ± 9.9291 

ND + Betweenness centrality 0.7322 ± 0.0181 0.1600 ± 0.0163 0.3641 ± 0.0668 57.0167 ± 9.4824 

ND + Closeness centrality 0.7316 ± 0.0189 0.1822 ± 0.0192 0.3797 ± 0.0622 60.8500 ± 8.7981 

ND + Degree 0.7170 ± 0.0164 0.1446 ± 0.0156 0.3405 ± 0.0670 57.6500 ± 9.0467 

ND + Eigenvector centrality 0.7185 ± 0.0169 0.0935 ± 0.0129 0.3045 ± 0.0686 18.2083 ± 7.9535 

ND + PageRank centrality 0.7241 ± 0.0176 0.1569 ± 0.0164 0.3561 ± 0.0648 61.0333 ± 9.1980 

 Table 3 shows the mean values and the standard deviations of the performances of AUROC, 

pAUROC, AUPRC, and Top 100 for all 40 diseases. Note that ND with pagerank centrality yields the 

best result in the Top 100 rank hits. However, it is good in terms of accuracy. Most of the centralities 
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combined with ND exhibit better performances in several aspects than using ND only. However, ND 

with eigenvector centrality yields the lowest result for pAUPRC and Top 100 performances and makes 

a worse prediction than ND. This result indicates that disease-related genes do not necessarily have 

high connections to other high-connection genes. Degree centrality is not very helpful in improving 

the performance of ND. To better compare how well betweenness centrality and closeness centrality 

could improve the predictions, the number of tested diseases in which the model could yield high 

performance was counted (Table 4). Although betweenness centrality exhibits good performance in 

AUROC values, it is only one disease better than closeness centrality. In another round, closeness 

centrality offers much better pAUROC, AUPRC, and Top 100 performances. Therefore, closeness 

centrality is suitable for integration into ND for our model. 

Table 4. The number of diseases whose performances were greater than a certain threshold. 

 Network diffusion (ND) ND + Betweenness centrality ND + Closeness centrality 

AUROC 

≥ 0.75 4 6 5 

≥ 0.70 35 37 36 

≥ 0.65 40 40 40 

pAUROC 

≥ 0.20 0 1 6 

≥ 0.15 8 30 39 

≥ 0.10 40 40 40 

AUPRC 

≥ 0.50 2 2 3 

≥ 0.40 7 8 11 

≥ 0.30 29 35 39 

Top 100 

≥ 70 2 4 7 

≥ 60 7 12 18 

≥ 50 16 31 37 

Table 3 and Table 4 confirm the results in Table 2 and Figure 3 that betweenness centrality and 

closeness centrality are of interest to be combined with the ND scores. Figures 4 and 5 represents the 

performance plots for each disease when applying each centrality to the ND. We found that for 40 

diseases, on the average, ND with betweenness centrality performs a bit better than that with closeness 

centrality, as shown in Table 3. There is no difference in the performance AUROC when either 

betweenness or closeness centrality is used. However, when considering the other performances, which 

are pAUROC, AUPRC, and Top 100 measures, it turns out that ND with closeness centrality yields a 

better performance, as shown in Table 4, which presents the number of diseases whose performances 

were greater than a certain threshold. Note that this indicates that it has better precision in recognizing 

disease-related genes for most diseases. Furthermore, for the calculation of the shortest paths, 

closeness centrality can be calculated faster than betweenness centrality. Therefore, we propose the 

final model for a disease d based on the closeness centrality, which can be calculated as  

( )1 1

1
1

= =

=  + −   ( , ) ( )
,

n n

score d d ij j
j j

CD i d m m q y
d i j

, 
(10) 

  

to be our prioritization method to identify the disease-related genes for each disease. The obtained 

coefficients with p-value are shown in Supplementary Table T3. Note that all disease models have p-
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values that are less than the significance level of 0.05, implying that both predictors are meaningful.  

 

Figure 4. AUROC performance of network diffusion with each centrality. 

 

Figure 5. pAUROC performance of network diffusion with each centrality. 
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3.3. Comparison between proposed method and state-of-the-art methods 

We also compared our result with those generated by the state-of-the art-methods in [12]. First, 

the baseline method is applied for each disease using none of the disease-gene associations. “Random” 

permutes the input score of labels or randomly identifies the gene relation to each disease with the 

same number of genes as the goal standard. “Randomraw” also permutes the input score of labels and 

then computes the diffusion score to represent the effect from the network. “PageRank with a uniform 

prior (pr)” [26] equally diffuses the score from each node. “Extending Guilt by Association’ by Degree 

(EGAD)” [27] uses the PPI network and assesses how well it groups known sets of genes. Next, we 

also compared our result with those of semi-supervised learning methods. The “K-nearest neighbors 

(KNN)” and “Weighted Sum with Linear Decay (wlsd)” [28] use techniques of label propagation and 

random walk algorithms, choosing parameter 2k =  and coefficient of linear decay 3d = . 

Focusing on the diffusion approaches in this work, we already included the definition of raw 

diffusion (raw) in the methodology. However, the method needs improvement, and several studies 

have developed raw diffusion. “GeneMania-based weights (gm)” [29] is similar to raw diffusion, 

defining -1 on negative, 1 on positive, and 0 on unknown. “Monte Carlo normalized scores (mc)” [30] 

uses the concept of statistical normalization to compute the probability that the score will be greater 

than when randomly permuted. The p-value is computed using 100 permutation times. “Z-scores (z)” [30] 

reduces the computational time of mc using expectation and variance. Using a different kernel, 

“Personalized PageRank (ppr)” [31] also diffuses the score from the initial labels. 

We showed that the diffusion approaches, especially our combination method, yields better 

performance than both the baseline method and semi-supervised learning method (Figs. 6 – 9). For the 

baseline method, EGAD performs best, followed by pr, when validated with AUROC and AUPRC. 

However, the result generated by EGAD when validated with pAUROC and Top 100 is similar to that 

of random and randomraw, which are unsatisfied. Moreover, pagerank is categorized as inappropriate 

for ranking when compared with the other centrality measures. Thus, using only network interaction 

is not sufficient for identifying disease-gene relations. 

The developed methods using the association between disease and gene or semi-supervised 

learning methods are also considered. The results of KNN and WSLD are better than that of the 

baseline method, but still need improvement. 

Compared with other diffusion methods, ppr demonstrates the lowest performance in AUROC. 

The use of the regularized Laplacian matrix might be effective. As we considered raw diffusion, the 

improved method of gm is similar in this work since we also considered two classes, i.e., known and 

unknown. However, the use of mc and z yields similar result as that of raw diffusion, which is not 

appropriate for application in our work and is too time consuming for statistical normalization. 

The proposed combination method performs best based on AUROC, pAUROC and AUPRC. 

However, its performance in the Top 100 identification is still limited. 
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Figure 6. AUROC performance of the proposed method and state-of-the-art methods. 

 

Figure 7. pAUROC performance of the proposed method and state-of-the-art methods. 
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Figure 8. AUPRC performance of the proposed method and state-of-the-art methods. 

 

Figure 9. Top 100 performance of the proposed method and state-of-the-art methods. 
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Table 5. Novel disease-related genes proposed based on our method, with “*” indicating 

one to four literature support and “**” indicating five or more literature support. 

 Disease Proposed disease-related genes that are not found in DisGeNET 

1 Adenocarcinoma 
SPINK6*, CYP2R1*, GSTM5*, SCGB1D2*, CLDN12*, JAML, 

FJX1*, PTGDS*, GLO1**, CLDN23*, METAP1* 

2 Glioblastoma 
PCSK2, NANP, JAML, CD6, PRDM14, PMAIP1*, IL17RE, 

ZBTB33, XBP1**, PFKFB2*, MITF*, BID*, IL20RA 

3 Schizophrenia GABRA2**, DLGAP4*, GABRA3*, NLGN3*, HOMER3 

4 Alzheimer's Disease 
TBXAS1, CNTFR*, AKTIP*, FTS**, FAM160A2, FCN1, MAG*, 

ZBTB33* 

5 
Rheumatoid 

Arthritis 

IL20RB*, SPN*, TNFRSF4**, JAML, SELPLG*, IL20RA*, 

TNFSF8* 

6 
Malignant neoplasm 

of breast 
IL17RA*, PRSS57, HSD17B3* 

7 
Malignant tumor of 

colon 

JAML, PRDM14*, S100PBP, POR*, UGT1A10**, PMAIP1*, 

TBXAS1*, RAG2* 

8 Diabetes Mellitus 
IL17RA**, DUOXA2, NKX6-1**, SCG5**, SGNE1*, CIDEA**, 

POGZ, TRPM8*, PPRC1, FABP6*, TFR2**, TBXAS1*, BTLA* 

9 Melanoma 
NCR3**, DIABLO*, JAML, STAT5A*, POGZ, TP53BP2*, 

TIGAR* 

10 
Neoplasm 

Metastasis 
MFAP2*, MFAP5, CLDN12* 

11 Obesity TNFSF4, TNLG2B, EPHX1**, HSD17B2* 

12 Prostatic Neoplasms 

HSD17B2**, HSD17B6*, CYP11B1*, AKR1C2**, CYP2R1*, 

AKR1C4*, S100PBP, AKR1D1, CD6, HGFAC, WT1*, ZBTB33*, 

HSD11B1*, PTGES**, GSTM2* 

13 
Malignant neoplasm 

of lung 

CHRNB2, GSTM5*, JAML, DIABLO*, MAP3K4*, FJX1*, 

GSR*, HEL-75 

14 
Malignant neoplasm 

of prostate 
AKR1C1**, CYP11B1*, AKR1D1, TXN2, PTGIS*, HSD11B1* 

15 Prostate carcinoma CYP11B2*, CYP11B1*, AKR1C1*, AKR1D1*, DNAJC1, ASCC3 

16 Breast Carcinoma HSD3B2*, HSD17B3*, UGT1A4** 

17 Liver carcinoma HSD17B2*, HSD17B7*, HSD3B1* 

18 
Squamous cell 

carcinoma 

PKP2*, CYP2B6, DSC1*, PKP3, JAML, TBXAS1, CYP3A4*, 

CYP2C9**, CD6* 

19 
Colorectal 

Carcinoma 

UGT1A4*, RTCB, UGT1A8*, UGT1A3*, C2orf49, ZNRF3*, 

TBXAS1* 

20 Leukemia DUOXA2, HOXA6*, HOXB5*, HOXB6*, FBXO45, TCF12* 

21 
Malignant neoplasm 

of stomach 
POGZ, PORCN*, TBXAS1, PAX9*, NAXE, FJX1, HGFAC* 

Continued on next page 

 

 



2925 

Mathematical Biosciences and Engineering  Volume 18, Issue 3, 2909–2929. 

 Disease Proposed disease-related genes that are not found in DisGeNET 

22 Neuroblastoma 

DCT, POGZ*, PANX1*, METAP1, PMEL, MITF*, RAG2, 

CNTFR*, NEUROG3*, BID*, MSRB2, DIABLO*, AIFM1*, 

BCL2L1*, PAX9* 

23 
Pancreatic 

carcinoma 

IL17RA, IL25, S100P**, RAG1, DHPS*, NKX6-1, C1GALT1, 

BID, BTLA 

24 
Malignant neoplasm 

of pancreas 
IL17RA, TRPA1*, ASCC2, DHPS, BTLA*, C1GALT1* 

25 Carcinogenesis 
IL17RE, IL17B, UGT1A10*, TXN2*, TBXAS1*, UGT1A9*, 

TCF3*, GSTM5* 

26 Carcinoma of lung 
SLC24A5, JAML, STK3*, TRPV1*, ZBTB33*, NEIL1*, QTRT2, 

CD6, CYP2C8* 

27 Colon Carcinoma 
UGT1A4*, UGT1A10*, UGT1A3*, HCST, PRDM14, JAML, 

UGT1A8*, DIABLO*, S100PBP, CD6, APPL1, HAVCR2* 

28 Stomach Carcinoma CLDN12*, POGZ, LHPP, WNT4, PTGIS, PORCN, WNT8A 

29 
Central 

neuroblastoma 

POGZ, METAP1, PMEL, MITF, PRDX1, ABCD4, BCL2L1*, BID, 

IL17RE 

30 
Primary malignant 

neoplasm of lung 

GSTM5, TNFRSF8, TXN2, SFTPC*, PCSK2*, CD6, UGT1A3, 

UGT1A10, NEIL1* 

31 
Mammary 

Neoplasms 

EPHX1*, TBXAS1*, HSD3B2*, SRD5A1*, TNFRSF18, RERE*, 

HPGDS*, JAML, CYP4A11*, CYP11B2*, HSD17B3*, CD6* 

32 Colorectal Cancer 
UGT1A3*, RTCB, ZBTB8OS, UGT1A8*, C2orf49, RSPO1*, 

ZNRF3*, TBXAS1*, UGT1A4* 

33 
Non-Small Cell 

Lung Carcinoma 

SPINK6, PUM2*, PTGDS*, DHPS, DIABLO*, PRDM14*, 

UGT1A3*, TSNAX, UGT1A10*, DOHH, BBC3* 

34 

Diabetes Mellitus, 

Non-Insulin-

Dependent 

NPPC, SCG5*, SGNE1*, ATP2A1*, HSD17B6, SELPLG*, 

CYP24A1* 

35 Glioma 
PCSK2, MLANA*, IL17RE, LINGO1*, POGZ, SPINT1*, 

ZBTB33*, BID, BCL2L11* 

36 
Leukemia, 

Myelocytic, Acute 

HOXA6*, HOXC6*, HOXC5*, JAML*, TNFRSF8*, TNFRSF4*, 

LGALS9*, SECTM1*, DRG1, BID 

37 Ovarian Carcinoma DNAJC1, MFAP2, JAML, POGZ, ZBTB33, FASLG, TNFSF6 

38 Tumor Progression 
HCST, JAML, TRPV1*, NCR3*, DHPS*, MYOCD, PANX1*, 

IL22RA1*, FBLN2, METAP1* 

39 
Malignant neoplasm 

of ovary 

DNAJC1, MFAP2, CYP2R1*, MST1*, DHPS, PSTPIP1, 

TNFSF9*, TNLG5A 

40 
Intellectual 

Disability 
ALG1, PIGP*, PIGM*, KCNJ8* 

3.4. Identification of disease-related genes 

To identify the disease-related genes, our final model with closeness centrality in Equation 10 (see 

Results) was used for all 40 diseases. Five instances ten-fold cross-validation were performed for each 
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disease. The genes that were found in the Top 50 predicted genes for each disease in all five rounds 

were selected as the most likely to be disease-related genes for a certain disease. Based on this criterion, 

the list of our proposed disease-related genes is shown in Table 5. Genes that are not found in the 

DisGeNET database are proposed as new disease-related genes. Meanwhile, some genes were verified 

through a literature search on the PubMed database. To search for literature support, the easyPubMed 

R package was applied for all proposed genes of each disease. Afterward, manual curation was 

performed to select only the most relevant literature. In Table 5, the newly proposed genes based on 

our method were marked as “*” to indicate one to four literature support and “**” to indicate five or 

more literature support. For example, SPINK6 and STK39 have been reported to be related to non-

small cell type lung cancer (NSCLC), including adenocarcinoma [32-34]. Moreover, our approach 

found that AKTIP and CNTFR are related to Alzheimer’s disease, in agreement with previous research 

[35-39]. The full list of all disease-related genes for all 40 diseases, as well as, the literature support, 

can be found in Supplementary Table T4 and T5. 

4. Discussion 

Graph-based techniques such as ND and network centrality, are widely and commonly used to 

prioritize and identify disease-related genes. ND has an advantage in terms of the use of initial scores 

from known disease-related genes while network centrality focuses on the essentiality of a node based 

on its connections and locations that reflect the topological community of the network. In this work, 

applying ND alone yielded an acceptable performance that was obviously better than using centrality 

alone. However, the combination of ND and network centrality improved the prediction performance 

substantially, indicating its efficacy in identifying new disease-related genes.  

Disparate aspects were noted for the different centrality measures. Closeness centrality works best 

in explaining disease-related genes in the PPI network in our study. Closeness centrality determines 

that a certain gene is in the central position, that most of the genes in the network are close to it, and 

that they can reach it in the shortest way compared with the others. It reflects that disease-related genes 

are more likely to be reachable in the network community. The second-best centrality is betweenness 

centrality, which explains the load of the shortest paths for a node in the network. This centrality 

measure also manifests better performance when combined with ND. However, it could not improve 

precision much because its high scores not only reflect the load but also account for high connections, 

as measured by degree centrality. Most of the high-connection nodes also have high loads of the 

shortest path, but high-load nodes do not necessarily have high connections. As expected, ND with 

degree centrality provides better performance, but the different is not that notable. Since the 

constructed PPI network follows the power-law distribution that is common in many real-world 

networks, the network contains a high number of low-degree nodes and a small number of high-degree 

nodes. High-degree nodes (or high-connection nodes) are known to be related to the essentiality of the 

genes or proteins in the network and are not highly associated with the disease-related genes. 

Meanwhile, eigenvector centrality does not improve the prediction at all, but it reveals that disease-

related genes are not involved with the high-connection nodes in the network. Therefore, closeness 

centrality is an effective measure to determine which genes are related to a disease and, when combined 

with ND, may be used to propose new disease-related genes in this work. 

To propose new disease-related genes, five instances of ten-fold cross-validations were performed 

for each disease. Genes that commonly appeared in the Top 50 predicted genes for each run were 
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reported as related to a disease with high confidence and some literature support. Some of these 

predicted genes are already in the DisGeNET database, while the rest are proposed as new disease-

related genes. Notably, many of the new proposed disease-related genes found literature support, while 

the remaining ones comprised a great starting point for investigating disease treatment. 

5. Conclusion 

A new measure that can be used for the identification of disease-related genes based on ND and 

network centrality is proposed in this work. Through a constructed PPI network, ND and five network 

centralities consisting of betweenness, closeness, degree, eigenvector, and pagerank were calculated 

for each gene in the network and for each disease separately. Closeness centrality with ND was the 

best performer in many circumstances and was used to predict new potential disease-related genes. 

The results show that the top-ranking genes are highly related to the biological evidence, which is 

beneficial in developing the model for identification tasks and applying it to other diseases. All in all, 

our simple and effective method constitutes a great tool for pharmaceutical tasks and drug development. 
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