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Abstract: In this paper, a prey-predator model with modified Leslie-Gower and simplified Holling-
type IV functional responses is proposed to study the dynamic behaviors. For the deterministic system,
we analyze the permanence of the system and the stability of the positive equilibrium point. For the
stochastic system, we not only prove the existence and uniqueness of global positive solution, but also
discuss the persistence in mean and extinction of the populations. In addition, we find that stochastic
system has an ergodic stationary distribution under some parameter constraints. Finally, our theoretical
results are verified by numerical simulations.
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1. Introduction

In the 1960s, mite pests broke out on fruit trees in Washington state of the United States, resulting
in a large area of production reduction. Mite pests can not only cause the leaves of fruit trees to turn
green and fall off, but also cause the trees to weaken, affecting the flowering and fruiting of the next
year. Mite pests have a high reproductive rate, one female adult mite can reproduce more than 10,000
larvae within a month under suitable conditions. At the same time, mite pests are easy to develop
resistance, so it is difficult to control them. Washington state is a major quality apple producing area in
the United States, and its cultivation technology and pest control level are in the leading position in the
United States. In 1969, Dr. S. C. Hoyt proposed a comprehensive pest management strategy combining
chemical control with biological control [1]. The main pest of fruit trees, Tetranychus mcdanieli was
controlled by protecting and utilizing its natural enemy, Typhlodromus occidentalis Nesbitt. In 1988,
D. J. Wollkind et al. [2] studied a mite predator-prey model with Leslie term and Holling type function,
and discussed the dependence between the sub-stability of the system and temperature. The form of
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the model is as follows: 
ẋ(t) = ax(t)

(
1 −

x(t)
K

)
−

kx(t)y(t)
r1 + x(t)

,

ẏ(t) = cy(t)
(
1 −

y(t)
r2x(t)

)
,

(1.1)

where x(0) = x0, y(0) = y0. x(t) and y(t) stand for the population density of prey and predator at time
t, respectively. a and c are the corresponding intrinsic growth rates of the two populations. k is the
maximum per capita consumption rate of prey caused by the predator, and r1 denotes the density of
prey required to reach half of this rate. K and r2 represent the environmental carrying capacity of the
prey and the conversion factor of prey into predator, respectively. a, c, k, r1, r2, K > 0. The model (1.1)
adopts Holling-type II functional response, which is a common response of predatory mites. In 1997,
J.B. Collings [3] studied the effects of different functional responses on the dynamic behavior of mite
predator-prey interaction models. For Holling-type I, II, and III functional responses, the models have
similar dynamic properties in a given temperature range, including bifurcation and stability. If Holling-
type IV is used to replace Holling-type II functional response in the system (1.1), the model still has
similar properties when the interaction level of prey interference is low. However, when the level of
interference is higher, there will be significant differences, such as the emergence of bistability and
attractors. Holling-type IV functional response [4] is the following rational nonmonotonic function:

h(x) =
kx

ax2 + bx + c
,

also known as Monod-Haldane function. The parameter a measures the level of prey interference with
predation. The function reflects that the unit predation rate of predator reaches the maximum with
the increase of prey density, and then decreases when it exceeds the critical value. Holling-type IV
functional response is mainly used to describe the inhibition effect of microbial population, the group
defense of prey population, and the aggregation effect of biological population, such as a fish school
that is several miles long may make it difficult for predators to attack.

It is pointed out in [5] that when the density of apple tree pests (such as T. mcdanieli) is high, they
will produce a kind of webbing which is known to interfere with predators by decreasing their walking
speed and reducing their chances of contacting the prey, so as to effectively reduce the probability of
being preyed upon. Sometimes predatory mites even starve in front of the prey. It is reasonable to
choose Holling-type IV functional response if we assume that the prey mite and webbing density are
directly related. This paper discusses the population dynamics of prey mite interference with predation,
which is of great significance to the control of fruit pests.

In 1981, W. Sokol et al. [6] adopted the simplified Holling-type IV functional response function
h(x) = kx

r1+x2 to model and claimed that it was better consistent with the experimental data. Similarly,
[7, 8] used this response function to get the following mites predator-prey model:

ẋ(t) = ax(t)
(
1 −

x(t)
K

)
−

kx(t)y(t)
r1 + x2(t)

,

ẏ(t) = cy(t)
(
1 −

y(t)
r2x(t)

)
.

(1.2)

In the second equation of model (1.2), y(t)
r2 x(t) is called the Leslie-Gower term [9, 10], which reflects

the inverse relationship between the decrease of the predator’s number and the per capita availability
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of their favorite prey. However, due to the influence of environment and season on population growth
and reproduction, the number of prey may decrease sharply in a certain period of time. In order to
survive, the predator will catch and feed on other prey to get enough food for growth. Considering that
the number of prey is insufficient, reference [11] has obtained a modified Leslie-Gower term by adding
a positive number to the denominator of the Leslie-Gower term: y(t)

r2+x(t) , where r2 expresses the quantity
of available food different from the predator’s favorite prey. By coupling the modified Leslie-Gower
term with the system (1.2) to get the mites model as follows [12]:

ẋ(t) = x(t)
(
a − bx(t) −

ky(t)
r1 + x2(t)

)
,

ẏ(t) = y(t)
(
c −

py(t)
r2 + x(t)

)
,

(1.3)

where b and p signify the competition strength in the prey individuals and the maximum per capita
reduction rate of the predator, respectively. a, b, c, k, r1, r2, p > 0.

Nevertheless, biological populations are inevitably affected by many environmental factors, such as
temperature, sunlight, humidity and so on [13]. These disturbances are random, little and independent,
and white noise can be used to express the influence of these disturbances. Many scholars have studied
the dynamic behavior of stochastic system by introducing environmental white noise into deterministic
model [14–21]. This paper assumes that the intrinsic growth rates a and c of system (1.3) are disturbed
by environmental white noise: a → a + αḂ1(t), c → c + βḂ2(t). The following stochastic system is
obtained: 

dx(t) = x(t)
(
a − bx(t) −

ky(t)
r1 + x2(t)

)
dt + αx(t)dB1(t),

dy(t) = y(t)
(
c −

py(t)
r2 + x(t)

)
dt + βy(t)dB2(t),

(1.4)

where B1(t) and B2(t) are independent Brownian motion, α2 and β2 represent the intensity of white
noise.

In this paper, we will compare the deterministic system (1.3) with the stochastic system (1.4),
focusing on the long-time dynamics of the populations. In Section 2, we first discuss the permanence
of deterministic system (1.3), and then obtain the stability conditions of positive equilibrium by using
Routh-Hurwitz criterion and constructing an appropriate Lyapunov function. For the stochastic system
(1.4), we demonstrate the existence and uniqueness of the global positive solution. Then the conditions
for the persistence in mean and extinction of populations are discussed. And the parameter constraint
criterion for the existence of the ergodic stationary distribution is found, which will be presented in
Section 3. In Section 4, numerical simulations are used to verify our theoretical results.

2. Deterministic system

2.1. Permanence

Definition 2.1. [22] If there exists 0 < M < N such that for any solution (x(t), y(t)) ∈ R2
+ of the system

(1.3), there is

M ≤ min
{

lim
t→+∞

inf x (t) , lim
t→+∞

inf y (t)
}
≤ max

{
lim

t→+∞
sup x (t) , lim

t→+∞
sup y (t)

}
≤ N,
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then the system (1.3) is permanent.

Theorem 2.1. Let (x(t), y(t)) ∈ R2
+ be the solution of the system (1.3) satisfying the initial condition

(x(0), y(0)) ∈ R2
+, then

1
b

[
a −

ck (r2b + a)
pr1b

]
≤ lim

t→+∞
inf x (t) ≤ lim

t→+∞
sup x (t) ≤

a
b
,

cr2

p
≤ lim

t→+∞
inf y (t) ≤ lim

t→+∞
sup y (t) ≤

c
p

(
r2 +

a
b

)
.

The system (1.3) is permanent if apr1b > ck (r2b + a) .

Proof. Derived from system (1.3)
dx
dt
≤ x(a − bx),

dy
dt
≥ y

(
c −

py
r2

)
.

On the basis of Lemma 2.3 in [23], we have

lim
t→+∞

sup x (t) ≤
a
b
, (2.1)

lim
t→+∞

inf y (t) ≥
cr2

p
. (2.2)

Therefore, for any ε1 > 0, there exists T1 > 0; when t ≥ T1 , there is x ≤
a
b

+ ε1. So when t ≥ T1, we
can get

dy
dt
≤ y

(
c −

py
r2 + a

b + ε1

)
.

In accordance with Lemma 2.3 in [23]

lim
t→+∞

sup y (t) ≤
c
(
r2 + a

b+ε1

)
p

,

when ε1 → 0, we obtain that

lim
t→+∞

sup y (t) ≤
c
(
r2 + a

b

)
p

. (2.3)

From (2.3), for any ε2, there exists T2 > 0; when t ≥ T2, there is y ≤ c(r2+ a
b )

p + ε2. Hence, when t ≥ T2

dx
dt
≥ x

(
a − bx −

ky
r1

)
≥ x

[
a − bx −

k (cr2b + ca + bpε2)
pr1b

]
.

According to Lemma 2.3 in [23]

lim
t→+∞

inf x (t) ≥
1
b

[
a −

k (cr2b + ca + pbε2)
pr1b

]
,

when ε2 → 0, we can see that

lim
t→+∞

inf x (t) ≥
1
b

[
a −

ck (r2b + a)
pr1b

]
. (2.4)

Consequently, we have known that the system (1.3) is permanent if apr1b > ck (r2b + a) . �
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2.2. Equilibrium points analysis

In this section, we analyze the types of equilibrium points of the system(1.3). E1 = (0, 0) is the
trivial equilibrium point. E2 =

(
a
b , 0

)
and E3 =

(
0, cr2

p

)
are two boundary equilibrium points. The

internal equilibrium point E∗ = (x∗, y∗) is the intersection point of two isoclinic lines ky
r1 + x2 = a − bx

and y =
c(r2 +x)

p in the interior of the first quadrant. According to the equations
y =

1
k

(a − bx)(x2 + r1),

y =
c
p

(x + r2),

we can obtain

H(x) = bx3 − ax2 +

(
br1 +

kc
p

)
x −

(
ar1 −

kcr2

p

)
= 0. (2.5)

The positive equilibrium points of the system (1.3) depend on the existence of the positive roots of
equation (2.5). According to Ref. [12], it is concluded that:

(i) If D = ar1 −
kcr2

p > 0, equation (2.5) may have one, two or three positive roots in different
parameter ranges.

(ii) If D = ar1 −
kcr2

p = 0, equation (2.5) may have one or two positive roots or no positive real roots
in different parameter ranges.

(iii) If D = ar1−
kcr2

p < 0, equation (2.5) may have one or two positive roots or no positive real roots
in different parameter ranges.

Therefore, the model (1.3) can have at most three positive equilibrium points, which may be saddle
point, node, focus or center under different conditions. By means of numerical simulations, the authors
revealed that the system had abundant dynamic properties including noninfinitesimal limit cycle and
bifurcation (for details, please refer to Ref. [12]).

In conclusion, if D = ar1 −
kcr2

p > 0, the model (1.3) has at least one positive equilibrium point.
Next, we focus on the stability of the positive equilibrium point E∗ = (x∗, y∗).

For the convenience of discussion, the following assumptions are given:
(H1): a > ckr2

pr1
;

(H2): a < ckr2
pr1

;

(H3): 2kx∗y∗(
r1+x∗2

)2 < min
{
b + c

x∗ , b + ck
p
(
r1+x∗2

)} ;

(H4): −b +
ky∗(x∗+ a

b )

r1

(
r1+x∗

2 ) < − y∗(r2+ a
b )

4p(r2+x∗)

(
p2

r22 + k2

r12

)
.

Based on the analysis of the types of equilibrium points in [12], we can know that: E1 = (0, 0) is
an unstable node; E2 =

(
a
b , 0

)
is a saddle point; E3 =

(
0, cr2

p

)
is a saddle point if the condition (H1)

holds; E3 =
(
0, cr2

p

)
is a stable node if the condition (H2) holds. We begin to analyze the stability of the

positive equilibrium point E∗ = (x∗, y∗) in the following content.
Theorem 2.2. If conditions (H1) and (H3) hold, thus E∗ = (x∗, y∗) is locally asymptotically stable.
Furthermore, if condition (H4) holds, then E∗ = (x∗, y∗) is globally asymptotically stable.
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Proof. The Jacobian matrix at E∗ = (x∗, y∗) is

J(x∗,y∗) =


−bx∗ +

2kx∗2 y∗(
r1 + x∗2

)2 −
kx∗

r1 + x∗2

c2

p
− c


.

The characteristic equation of J(x∗,y∗) is

λ2 +

c + bx∗−
2kx∗2 y∗(
r1 + x∗2

)2

 λ+

bx∗−
2kx∗2 y∗(
r1 + x∗2

)2

 c +
c2

p
·

kx∗

r1 + x∗2
= 0.

By (H3) we can obtain that c + bx∗− 2kx∗2 y∗(
r1+x∗2

)2 > 0,
(
bx∗− 2kx∗2 y∗(

r1+x∗2
)2

)
+ c

p ·
kx∗

r1 + x∗2
> 0. Thus, according to the

Routh-Hurwitz criterion, E∗ = (x∗, y∗) is locally asymptotically stable.
Next, we study the global asymptotic stability of E∗, as long as it is globally attractive. Define

V (x, y) =

∫ x

x∗

ξ − x∗

ξ
dξ + h

∫ y

y∗

η − y∗

η
dη,

where h is a positive number, as defined in the following text. We can see that V (x, y) is a
non-negative function, V (x, y) = 0 if and only if (x, y) = (x∗, y∗).

dV
dt

=
x − x∗

x
· x

(
a − bx −

ky
r1 + x2

)
+ h ·

y − y∗

y
· y

(
c −

py
r2 + x

)
= (x − x∗)

(
a − bx −

ky
r1 + x2 − a + bx∗ +

ky∗

r1 + x∗2

)
+ h (y − y∗)

(
c −

py
r2 + x

− c+
py∗

r2 + x∗

)
= − b(x − x∗)2

+ k (x − x∗)
y∗ (x + x∗) (x − x∗) −

(
r1 + x∗2

)
(y − y∗)(

r1 + x∗2
) (

r1 + x2)
+ ph (y − y∗)

y∗ (x − x∗) − (r2 + x∗) (y − y∗)
(r2 + x∗) (r2 + x)

.

Choose h =
r2 + x∗

y∗
, hence

dV
dt

=(x − x∗)2

−b +
ky∗ (x + x∗)(

r1 + x∗2
) (

r1 + x2)
 + (x − x∗) (y − y∗)

(
p

r2 + x
−

k
r1 + x2

)

−
p(r2 + x∗)(y − y∗)2

y∗(r2 + x)
.

The above equation can be written as

dV
dt

= − (x − x∗, y − y∗)
(
−A −B
−B C

) (
x − x∗

y − y∗

)
,
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where
A = −b +

ky∗ (x + x∗)(
r1 + x∗2

) (
r1 + x2) ,

B =
1
2

(
p

r2 + x
−

k
r1 + x2

)
,

C =
p(r2 + x∗)
y∗(r2 + x)

.

Then
dV
dt

< 0 if the above matrix is a positive definite matrix( see Ref. [11]). According to the judgment
of positive definite matrix, we only need to prove that its leading principal minors are positive. That is
to say:

(i) : −A > 0,
(ii) : −AC − B2 > 0.

In fact, if (H4) holds, then A < 0 is obviously true.
And

AC + B2 =

−b +
ky∗ (x + x∗)(

r1 + x∗2
) (

r1 + x2)
 · p(r2 + x∗)

y∗(r2 + x)
+

1
4

(
p

r2 + x
−

k
r1 + x2

)2

<

−b +
ky∗

(
a
b + x∗

)
r1

(
r1 + x∗2

)  · p(r2 + x∗)
y∗(r2 + a

b )
+

1
4

(
p2

r2
2 +

k2

r1
2

)
.

From the condition (H4), AC + B2 < 0 clearly. Hence,
dV
dt

< 0 for any point except the equilibrium

point E∗ = (x∗, y∗), and
dV
dt
|(x∗, y∗) = 0. In the end, we can conclude that E∗ is globally asymptotically

stable. �

The global stability of the positive equilibrium point in the deterministic system means that under
certain conditions, the two populations will coexist with each other over time and the population density
will be stable near the positive equilibrium point.

3. Stochastic system

In this section, we introduce environmental white noise into the deterministic system (1.3) to obtain
the stochastic system (1.4). Next, we consider the influence of white noise on the dynamic behavior of
the system (1.4).

3.1. The existence and uniqueness of global positive solution

We consider whether system (1.4) has a unique global positive solution for any given initial value
(x(0), y(0)) ∈ R2

+. Generally, we will first prove that there exists a unique local positive solution, and
then show that the solution is also global.

Theorem 3.1. For any given initial value (x(0), y(0)) ∈ R2
+ , the stochastic system (1.4) has unique

global positive solution (x(t), y(t)) ∈ R2
+ for all t ≥ 0 and exists in R2

+ with probability 1.
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Proof. The equation coefficients of the stochastic system (1.4) neither satisfy the linear growth
condition, nor the local Lipschitz condition [24]. Let u(t) = ln x(t), v(t) = ln y(t), then the system (1.4)
is transformed into the following equivalent system:

du(t) =

(
a −

α2

2
− b eu(t) −

k ev(t)

r1 + e2u(t)

)
dt + αdB1 (t) ,

dv(t) =

(
c −

β2

2
−

p ev(t)

r2 + eu(t)

)
dt + βdB2 (t) .

(3.1)

Obviously, the coefficients of equation (3.1) satisfy the local Lipschitz condition, then (3.1) exists a
unique local solution (u(t), v(t)) , t ∈ [0, τe). τe is the explosion time which means that lim

t→τe
|u(t)| = ∞ or

lim
t→τe
|v(t)| = ∞. Since the (3.1) is equivalent to the (1.4), system (1.4) has a unique local solution. On the

basis of Itô’s formula, it can be known that (x(t), y(t)) =
(
eu(t), ev(t)

)
is the only local solution satisfying

the initial value (x(0), y(0)) ∈ R2
+ for the stochastic system (1.4). In order to prove the solution is global,

we only need to prove τe = +∞.
The following proof process is similar to [25], we can refer to the detailed proof of it. In the proof

process, the most momentous thing is to construct a suitable Lyapunov function.
We define a C2-function V (x, y) : R2

+ → R+,

V (x, y) = x − log x + y − log y.

Its nonnegativity can be determined by z − log z ≥ 1 for any z > 0. In the light of Itô’s formula to get

LV (x, y) = (x − 1)
(
a − bx −

ky
r1 + x2

)
+ (y − 1)

(
c −

py
r2 + x

)
+
α2

2
+
β2

2

≤ (a + b) x + (c +
k
r1

+
p
r2

)y + (−a − c +
α2

2
+
β2

2
).

Define two positive constants

h1 = (a + b) , h2 = (c +
k
r1

+
p
r2

).

Then

LV (x, y) ≤ h1x + h2y + (−a − c +
α2

2
+
β2

2
).

By the inequality x ≤ 2(x − 1 − log x) + log 4, y ≤ 2(y − 1 − log y) + log 4,

LV (x, y) ≤ 2h1(x − 1 − log x) + 2h2(y − 1 − log y) + h1 log 4 + h2 log 4 + (−a − c +
α2

2
+
β2

2
)

≤ 2(h1 + h2)V (x, y) + (h1 + h2) log 4 + (−a − c +
α2

2
+
β2

2
)

≤ h3(1 + V(x, y)),

(3.2)

where h3 = max{2(h1 + h2), (h1 + h2) log 4 + (−a − c +
α2

2
+
β2

2
)}. From (3.2), we have

dV (x, y) = LV (x, y) dt + α (x − 1) dB1(t) + β (y − 1) dB2(t)
≤ h3(1 + V(x, y))dt + α (x − 1) dB1(t) + β (y − 1) dB2(t).
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Integrating both sides from 0 to τk ∧ T ( τk is a stopping time and T > 0 is a constant, as defined in
Ref. [25]) and taking the expectation

EV (x(τk ∧ T ), y(τk ∧ T )) ≤ V (x(0), y(0)) + E
∫ τk∧T

0
h3(1 + V(x(t), y(t)))dt

≤ V (x(0), y(0)) + h3T + h3E
∫ τk∧T

0
V(x(t), y(t))dt

≤ V (x(0), y(0)) + h3T + h3

∫ T

0
EV(x(τk ∧ t), y(τk ∧ t))dt.

By Gronwall inequality

E (V (x(τk ∧ T ), y(τk ∧ T ))) ≤ (V (x(0), y(0)) + h3T ) eh3T .

The following proof is the same as [25], so we omit it here. �

3.2. Extinction and persistence in mean

In this section, we demonstrate that population extinction and persistence in mean will occur under
some parameter constraints.

First of all, we give condition (H5): k2 +4p (r2k − r1 p) ≤ 0, then there is:

Theorem 3.2. For the stochastic system (1.4), the following conclusions hold:
(i) If a < α2

2 , c < β2

2 , both the predator and the prey are extinct.
(ii) If a > α2

2 , c < β2

2 , the prey x(t) is persistent in mean and the predator y(t) is extinct.
(iii) If a < α2

2 , c > β2

2 , the prey x(t) is extinct and the predator y(t) is persistent in mean .
(iv) If a− α2

2 > c− β2

2 > 0 and the condition (H5) is satisfied, both the prey x(t) and the predator y(t)
are persistent in mean.

Proof. According to Itô’s formula

d log x(t) =

(
a − bx(t) −

ky(t)
r1 + x2(t)

−
α2

2

)
dt + αdB1(t),

d log y(t) =

(
c −

py(t)
r2 + x(t)

−
β2

2

)
dt + βdB2(t).

Integrating both sides from 0 to t and dividing t, respectively

log x(t)
t

=
log x(0)

t
+

(
a −

α2

2

)
−

b
t

∫ t

0
x(s)ds −

1
t

∫ t

0

ky(s)
r1 + x2(s)

ds +
α

t

∫ t

0
dB1(s), (3.3)

log y(t)
t

=
log y(0)

t
+

(
c −

β2

2

)
−

1
t

∫ t

0

py(s)
r2 + x(s)

ds +
β

t

∫ t

0
dB2(s). (3.4)

(i) Applying the strong law of large number for local martingales, it can be seen from (3.3) and (3.4)

lim
t→+∞

log x(t)
t

≤ a −
α2

2
< 0,
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lim
t→+∞

log y(t)
t

≤ c −
β2

2
< 0.

Consequently
lim

t→+∞
x(t) = 0, lim

t→+∞
y(t) = 0.

Then, the prey x(t) and the predator y(t) are both extinct.
(ii) From (3.4), we have lim

t→+∞
y(t) = 0. In this case, the limit system of (1.4) is

dx(t) = x(t) (a − bx(t)) dt + αx(t)dB1(t).

Therefore, on the basis of Lemma A.1 in [26]

lim
t→+∞

1
t

∫ t

0
x(s)ds =

a − α2

2

b
> 0,

which means that the prey x(t) is persistent in mean.
(iii) According to (3.3), we can obviously get lim

t→+∞
x(t) = 0. Moreover, the limit system of (1.4) is

dy(t) = y(t)
(
c −

p
r2

y(t)
)

dt + βy(t)dB2(t).

Similarly

lim
t→+∞

1
t

∫ t

0
y(s)ds =

r2(c − β2

2 )
p

> 0.

It signifies that the predator y(t) is persistent in mean.
(iv) In the light of (3.4)

log y(t)
t

≥
log y(0)

t
+

(
c −

β2

2

)
−

1
t

∫ t

0

py(s)
r2

ds +
β

t

∫ t

0
dB2(s).

Thereupon, in view of Lemma 2 in [27]

lim
t→+∞

inf
1
t

∫ t

0
y(s)ds ≥

r2

(
c − β2

2

)
p

.

In the same way, combining (3.4) and Lemma 2 of [28], we can obtain

lim
t→+∞

1
t

∫ t

0

py(s)
r2 + x(s)

ds = c −
β2

2
.

According to the condition (H5), there is
k

r1 + x2 ≤
p

r2 + x
, then combining (3.3) to get

log x(t)
t

=
log x(0)

t
+

(
a −

α2

2

)
−

b
t

∫ t

0
x(s)ds −

1
t

∫ t

0

ky(s)
r1 + x2(s)

ds +
α

t

∫ t

0
dB1(s)

≥
log x(0)

t
+

(
a −

α2

2

)
−

b
t

∫ t

0
x(s)ds −

1
t

∫ t

0

py(s)
r2 + x(s)

ds +
α

t

∫ t

0
dB1(s).

Similarly, we get

lim
t→+∞

inf
1
t

∫ t

0
x(s)ds ≥

a − α2

2 −
(
c − β2

2

)
b

.

As a result, both the prey x(t) and the predator y(t) are persistent in mean. �
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3.3. Ergodic stationary distribution

We can testify the stability of the deterministic system by analyzing the local and global stability of
the equilibrium points. However, there are no equilibrium points in the stochastic system, so we can not
use the equilibrium points theory to certify the stability. Therefore, we utilize the stationary distribution
to depict the stochastic weak stability. And ergodicity means that the system is persistent [25]. Under
some conditions, we prove that the stochastic system (1.4) has an ergodic stationary distribution, which
will be given in the following.

First, we define a parameter:

λ=

(
a −

α2

2

)
−

(
c −

β2

2

)
−

p
r2
,

then

Theorem 3.3. If the parameters of the system (1.4) satisfy c − β2 > 0, λ > 0 and condition (H5), then
system (1.4) has unique ergodic stationary distribution.

Proof. For the sake of proving Theorem 3.3, we simply need to confirm the two conditions in Lemma
2.1 [29]. At first, the diffusion matrix of system (1.4) is

A =

(
α2 x2 0

0 β2 y2

)
.

We think that U is a bounded domain, and it is apparent that there exists

M = min
(x,y)∈U⊂R2

+

{
α2 x2, β2 y2

}
> 0,

such that

2∑
i, j=1

ai jξiξ j =α2 x2 ξ1
2 + β2 y2 ξ2

2 ≥ M ‖ ξ ‖2 for all (x, y) ∈ U, ξ = (ξ1, ξ2) ∈ R2.

Then the first condition holds, and next we verify the second condition.
Define the C2-function V(x, y) : R2

+ → R+

V(x, y) = x − 1 − log x +
1
y

+ log y.

Obviously, V(x, y) has a unique stationary point (1, 1). It is easy to calculate that (1, 1) is the minimum
point and the minimum value is V(1, 1) = 1. Define the Lyapunov function

Ṽ(x, y) = V(x, y) − V(1, 1) = V1(x, y) + V2(x, y) − 1,

where V1(x, y) = x − 1 − log x, V2(x, y) =
1
y

+ log y.

Utilizing Itô’s formula and condition (H5), we have

LV1(x, y) = (x − 1)
(
a − bx −

ky
r1 + x2

)
+

1
2
α2

= −b x2 +(a + b)x −
kxy

r1 + x2 +
ky

r1 + x2 − (a −
1
2
α2)

≤ −b x2 +(a + b)x −
kxy

r1 + x2 +
py

r2 + x
− (a −

1
2
α2).
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LV2(x, y) =

(
−

1
y2 +

1
y

)
· y

(
c −

py
r2 + x

)
+

1
2
β2 y2

(
2
y3 −

1
y2

)
= −

1
y

(c − β2) +
p

r2 + x
−

py
r2 + x

+ (c −
1
2
β2)

≤ −
1
y

(c − β2) −
py

r2 + x
+ (c −

1
2
β2) +

p
r2
.

Then

LṼ(x, y) ≤ −b x2 +(a + b)x −
kxy

r1 + x2 −
1
y

(c − β2) − λ.

We choose sufficiently small ε1, ε2 such that

0 < ε1 <
λ

2 (a + b),
(3.5)

0 < ε2 <
4b(c − β2)

4b + (a + b)2 , (3.6)

0 < ε1
2 <

b2

2b + (a + b)2 , (3.7)

0 < ε2 <
kε2

1

(r1ε
2
1 + 1)(a + b)

. (3.8)

And we consider bounded open set

Uε1,2 =

{
(x, y) ∈ R2

+|ε1 < x <
1
ε1
, ε2 < y <

1
ε2

}
.

Denote
U1 =

{
(x, y) ∈ R2

+|0 < x ≤ ε1

}
, U2 =

{
(x, y) ∈ R2

+|0 < y ≤ ε2

}
,

U3 =

{
(x, y) ∈ R2

+|x ≥
1
ε1

}
, U4 =

{
(x, y) ∈ R2

+|ε1 < x ≤
1
ε1
, y ≥

1
ε2

}
.

Evidently, Uc
ε1,2 = U1 ∪U2 ∪U3 ∪U4. Now we just need to demonstrate that LṼ(x, y) is negative for

any (x, y) ∈ Uc
ε1,2.

Case1. When (x, y) ∈ U1, in the light of (3.5), we can get

LṼ(x, y) ≤ −b x2 +(a + b)x −
kxy

r1 + x2 −
1
y

(c − β2) − λ

≤ (a + b)ε1 − λ

≤ −
λ

2
.
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Case2. When (x, y) ∈ U2, in consideration of (3.6), it is obvious that

LṼ(x, y) ≤ −b x2 +(a + b)x −
kxy

r1 + x2 −
1
y

(c − β2) − λ

≤ −
1
y

(c − β2) − b x2 +(a + b)x

≤ −
1
ε2

(c − β2) +
(a + b)2

4b
≤ −1.

Case3. When (x, y) ∈ U3, according to (3.7), we can see that

LṼ(x, y) ≤ −b x2 +(a + b)x −
kxy

r1 + x2 −
1
y

(c − β2) − λ

≤ −
b
2

x2 −
b
2

x2 +(a + b)x

≤ −
b

2 ε1
2 +

(a + b)2

2b
≤ −1.

Case4. When (x, y) ∈ U4, in view of (3.8) to have

LṼ(x, y) ≤ −b x2 +(a + b)x −
kxy

r1 + x2 −
1
y

(c − β2) − λ

≤ (a + b)x −
kxy

r1 + x2 − λ

≤ x
[
(a + b) −

k ε1
2

ε2(r1 ε1
2 +1)

]
− λ

≤ −λ.

Hence, LṼ(x, y) is negative for any (x, y) ∈ Uc
ε1,2, the second condition is proved. Apparently, we have

verified the conclusion of Theorem 3.3. �

4. Numerical simulations and conclusions

In this paper, a modified Leslie-Gower predation model is established, and three ecological issues
are considered. First, the functional response of predator to prey is a rational non-monotone function.
The second is that the predator is omnivore and will look for alternative food when the preferred food
is scarce. Third, the intrinsic growth rates of the populations are disturbed by white noise. Coupling
the environmental white noise into the differential equation for modeling is more consistent with the
survival environment of the population. By comparing the deterministic system with the corresponding
stochastic system, we obtain rich and interesting dynamic properties. To our knowledge, there are
few studies that consider the effects of Holling-type IV functional response, generalist predators and
environmental noise disturbance to model simultaneously.
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First of all, we testify that the deterministic system (1.3) is permanent. Then we prove the stability of
the positive equilibrium point E∗ by applying the Routh-Hurwitz criterion and constructing a suitable
Lyapunov function. Next, we use numerical simulations to illustrate the stability of E∗. We choose
parameters:

a = 4, b = 0.8, k = 0.7, r1 = 4, c = 0.2, p = 0.4, r2 = 1.

By calculating we can know that (H1) is satisfied, which means that the system (1.3) has the positive
equilibrium point E∗. Through further calculation, the condition (H3) and (H4) are also satisfied. Then
E∗ = (4.91, 2.95) is globally asymptotically stable. Figure 1 is obtained by numerical simulations,
which describes the trend of solution with the initial value (0.2, 0.1) (see Figure 1).

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

t

x(
t)

,y
(t

)

 deterministic system

 

 
x(t)
y(t)

Figure 1. Solution trajectories of the deterministic system (1.3) with the given initial value.

In addition, we research the dynamic behavior of the stochastic system (1.4), which takes into
account the influence of white noise. To start with, we prove the existence and uniqueness of global
positive solution. Secondly, we discover the conditions that make the population persistent in mean
or extinct in four cases. And we conclude that when the white noise intensity is small enough, the
population is persistent in mean. Nevertheless, when the intensity of white noise increases gradually,
the population will be threatened and tend to be extinct. Furthermore, it can be seen that when the white
noise of the stochastic system (1.4) is small, the population densities fluctuate around the deterministic
steady-state values of x∗ and y∗. Next, we apply numerical simulations to validate our conclusions.

In order to satisfy the conditions of Theorem 3.2, we take α = 3.4, β = 1.5; α = 0.05, β = 1;
α = 3.3, β = 0.04; α = 0.05, β = 0.05, respectively. Other parameters in model (1.4) have the
same values as Figure 1. Using Matlab to get the following images, which conform to our theoretical
results(see Figures 2–5).

On the other hand, there is a stationary distribution in system (1.4), which means that the two
populations tend to coexist for a long time and the system is weakly stable. Similarly, the other
parameters are the same as in Figure 1, we take α = 0.06, β = 0.04 to satisfy the conditions of
Theorem 3.3, and we can see from the images that the densities of the two populations are close to the
positive equilibrium point of x∗ and y∗ (see Figures 6–8).

As for the analysis of two systems, we can know that the difference between the stochastic and
deterministic systems is that the stochastic system will inevitably be disturbed by the environment. To
study the stochastic system is more in line with the characteristics of population environment
variability. By comparing the two systems with numerical simulations, we can clearly see that when
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Figure 2. Numerical simulation of the stochastic system (1.4) shows that prey and predator
are extinct.
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Figure 3. Numerical simulation of the stochastic system (1.4) shows that prey is persistent
in mean and predator is extinct.
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Figure 4. Numerical simulation of the stochastic system (1.4) shows that prey is extinct and
predator is persistent in mean.

the white noise intensity is small, the population is persistent and fluctuates around the equilibrium
state of the deterministic model. As the noise intensity increases, the population density oscillates and
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Figure 5. Numerical simulation of stochastic system (1.4) shows that the populations are
both persistent in mean and the density values fluctuate around the deterministic steady-state
values respectively.
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Figure 6. The path and density function distribution of prey x(t) with α = 0.06.
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Figure 7. The path and density function distribution of predator y(t) with β = 0.04.

may eventually lead to extinction. Therefore, the existence of white noise is not conducive to the
long-term survival of the population. From the point of view of pest management, white noise is a
favorable factor and can be used for biological control. Obviously, the study of environmental noise
disturbance is of great significance not only for integrated pest management but also for the
development and utilization of biological resources.
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Figure 8. Sample path distribution of solution of stochastic system (1.4) in phase space.
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