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Abstract: This paper is an extended and supplemented version of the paper "Recommendation Rules 

Mining for Reducing the Spread of COVID-19 Cases", presented by the authors at the 3rd International 

Conference on Informatics & Data-Driven Medicine in November 2020. The paper examines the 

impact of government restrictive measures on the spread and effects of COVID-19. The work is 

devoted to the improvement of recommendation rules based on novel ensemble of machine learning 

methods such as regression tree and clustering. The dynamics of migration between countries in 

clusters, and their relationship with the number of confirmed cases and the percentage of deaths caused 

by COVID-19, were studied on the example of Poland, Italy and Germany. It is shown that there is a 

clear relationship between the cluster number and the number of new cases of diseases and death. It 

has also been shown that different countries' policies to prevent the disease, in particular the timing of 

restrictive measures, correlate with the dynamics of the spread of COVID-19 and the consequences of 

the disease. For example, the results show a clear proactive tactic of restrictive measures by example 

of Germany, and catching up on the spread of the disease by example of Italy. A regression tree and 

guidelines about influence of features on the spreading of COVID-19 and mortality due to this 

infection have been constructed. The paper predicts the number of deaths due to COVID-19 on a 21-

day interval using the obtained guidelines on the example of Sweden. Such forecasting was carried out 

for two potential government action options: with existing precautionary actions and the same 

precautionary actions, if they had been taken 20 days earlier (following the example of Germany). The 

RMSE of the mortality forecast does not exceed 4.2, which shows a good prognostic ability of the 

developed model. At the same time, the simulation based on the strategy of anticipatory introduction 

of restrictions gives 2–6% lower values of the forecast of the number of new cases. Thus, the results 

of this study provide an opportunity to assess the impact of decisions about restrictive measures and 

predict, simulate the consequences of restrictions policy. 
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1. Introduction  

One of the largest epidemics in a hundred years is coronary disease COVID-19, caused by SARS-

CoV-2: A single-stranded RNA-containing strain of SARSr-CoV of the genus betacoronavirus, first 

genetically detected in 2019 in a sample of a patient with SARS pneumonia in Wuhan, China. 

According to the World Health Organization (WHO), the transmission of this virus from person to 

person happens by airborne droplets within the families of patients, which causes a fairly rapid spread 

of outbreaks. As of early 2021, the coronavirus COVID-19 is affecting 218 countries and territories 

around the world and 2 international conveyances [1]. Due to the rapid spread of cases, their wide 

territorial coverage and potentially serious consequences that threaten human life, the World Health 

Organization has declared the spread of COVID-19 a pandemic [2]. Thus, during the year of pandemic 

spread of the disease, more than 86 million cases of the disease were confirmed, which took lives of 

1,864,996 people worldwide as of January 5, 2021 [1]. The first year of the pandemic passed without 

any specific treatment for the disease [3], and the main measures to reduce the spread of the epidemic 

were restrictive measures by governments to limit human contact and thus slow down the spread of 

this virus infection. Despite the start of COVID-19 vaccination, which began in various countries in 

the last days of 2020, severe restrictive measures and lockdowns are still widely used around the world, 

including most EU countries, due to the increase in new infections and the spread of new strains of the 

virus. However, despite a year of active efforts and measures to slow the spread of the epidemic, we 

still do not have a reliable answer to the question of what restrictive measures are needed to effectively 

reduce the spread of infection, what should be the scope and timing of these restrictions. Some 

measures that seemed to be effective in the first half of 2020 were found to be insufficient in the autumn 

of the same year and unable to effectively stop the epidemic (for example, the experience of Sweden).  

In addition to medical issues, such as: which populations are most at risk, what is an effective 

treatment protocol, creating an effective and safe vaccine etc., there are a number of socially oriented 

questions, such as: how long will the epidemic last, what restrictive measures are most effective, what 

will be the dynamics of the disease, and how many people it will affect etc. [4]. The latter are 

particularly important for governments and health systems, as they enable them to plan restrictive 

measures with minimal harm to the economy and well-being of citizens, to plan and prepare health 

system to provide timely and effective care to those who are ill and thus reduce the number of victims 

of the pandemic. Therefore, governments and WHO face the difficult task of finding a fine line between 

preserving the economic and social life of a society and the life and health of each member of that 

society. And the numerous protests against restrictive measures that occur periodically in various parts 

of the world, despite the significant spending of governments to support sectors of the economy 

affected by the epidemic, are an example of this.  

In addition to medical and biological research, modern information technology and algorithms 

can make a significant contribution to the fight against the epidemic by analyzing, modeling and 

predicting the spread of disease. Methods and tools of Artificial Intelligence  [5], Machine 

Learning [6,7], and Big Data [8,9] can significantly accelerate progress in these areas (see, e.g., [5–9]). 

In addition, AI can make a significant contribution to the development of vaccines and specific drugs 

against COVID-19, as well as to the development of various expert systems that will be suitable for 
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combating the epidemic and its consequences.  

As vaccination of the population is just beginning and the creation of effective collective 

immunity will take some time, quite a long time, at the moment "social distancing" and quarantine 

restrictions remain the only effective means of curbing the rate of infection. In such a situation, the 

role of modeling and predicting the COVID-19 spread, the maximum position and its duration is 

growing. The results of such modeling and predictions are the basis for sound governmental decisions 

concerning appropriate measures and resources allocation, including pulmonary ventilation systems or 

dedicated hospitals. 

This article is an expanded and supplemented version of "Recommendation Rules Mining for 

Reducing the Spread of COVID-19 Cases", presented by the authors at the 3rd International 

Conference on Informatics & Data-Driven Medicine in November 2020, and published in CEUR 

Workshop Proceedings [10]. In [10] we built recommendation rules based on novel ensemble of 

machine learning methods such as regression tree and clustering. The aim of this work is to further 

improve the accuracy and predictive power of these production rules, to study them in Poland, Italy 

and Germany, to study the dynamics of movement between clusters, and their relation to number of 

confirmed cases and mortality rates caused by COVID-19. 

2. Related work 

The scale and consequences of the COVID-19 pandemic have led to a rapid increase in 

publications on both medical and biological aspects, as well as research on the spread, monitoring and 

control of the disease. A special service "Covid-19 Data Science" was created [11] which aims to report 

and balanced evaluation of research results, data sets, applications and models, and comments related 

to Covid-19 and its underlying virus, SARS-Cov-2. The volume of publications on this topic is so large 

that separate articles have appeared on the means of processing articles on the subject of the COVID-

19 pandemic. For example, A. Doanvo et al. [12] proposed a fast and scalable machine-based 

framework that automatically parses literature related to a new disease and can help identify research 

overlap between COVID-19 and other coronaviruses, research hotspots, and areas warranting 

exploration. Case study performed by the authors of [12] indicates that COVID-19 publications have 

focused on public health, clinical care, and testing for coronaviruses, as opposed to the more limited 

number focused on basic microbiology, including pathogenesis and transmission. 

The development of new effective models for predicting the number and dynamics of new 

COVID-19 infections [13–15], as well as epidemiological forecasting in general [16–18], is extremely 

important for the health care system, as it enables effective planning to eliminate or reduce possible 

epidemics. The main requirement for such models is the maximum possible accuracy and reliability of 

the forecast of epidemiological time series [15]. To meet these requirements, a number of AI-based 

models have been used for a number of years [19,20]. The methods used to solve the problem of 

constructing the COVID-19 prediction model have ranged from statistical autoregression like ARIMA 

to more robust machine learning methods [21–23]. 

A large group of articles is devoted to modeling and predicting the spread of coronavirus using 

various mathematical models and machine learning methods. Thus, in [24] an intelligent, adaptive 

analytical model of COVID-19 disease was built, and, based on deep learning, a data stream guided 

real-time incremental learning algorithm based on neural networks was proposed to estimate 

parameters of this model. Modeling of such a disease on such a scale is significantly complicated by 

the fact that data on the disease and its factors is constantly obtained and updated, and thus the 
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parameters of the model changeover time depending on external factors. The authors [24] developed 

a non-intrusive algorithm for adaptive incremental learning, which eliminates the need to re-learn or 

rebuild the model with each update of test dataset. This paper describes modeling of spread of the 

disease taking vaccination into account, which is based on Susceptible, Infected, Recovered, 

Vaccinated and Deceased states of individuals in a population going through an epidemic. A model 

validated on the basis of COVID-19 incidence in India [24] was used to study various epidemic control 

strategies. The authors analyzed different disease prevention strategies using a control theory approach. 

The authors considered three simple strategies to prevent the spread of the virus, including Herd 

Immunity, Complete Vaccination, and Complete Lockdown, as well as their proposed strategy 

Controlled Natural Immunization through risk based Population Compartmentalization. The authors 

of this study consider a strategy of controlled natural immunization through risk-based population 

compartmentalization an effective way to reduce the number of deaths in the risk group. This strategy 

involves isolating high-risk populations, while low-risk populations will develop immunity. It is 

believed that after the end of preventive isolation, the high-risk population will be surrounded by a 

sufficient number of immunized persons to prevent the spread of infection [24]. However, as we can 

see from the experience of Sweden, where the government introduced similar measures in the first half 

of 2020, such a strategy did not work. Another model, excluding vaccination (SIR - Susceptible, 

Infected, Recovered model), was considered in the article [25] for modeling the development of a 

pandemic in the first 100 days of the disease. E. Kaxiras, G. Neofotistos, and E. Angelaki consider a 

simple analytical model of the spread of infectious diseases, which is based on the numerical solution 

of the widely used SIR model. The model described in [25] contains three parameters: the position of 

the mid-point of the sigmoid representing the behavior of the susceptible population; the lag between 

the sigmoid that describes the recovered population and the sigmoid of the susceptible population; and 

the number of daily cases near the peak of the curve. The authors modified the original model and 

presented an approximate numerical solution of the differential equations of the model. In [25], they 

used the built model with their defined parameters to predict the total number of confirmed cases of 

infection in 50 countries during the first 100 days (until April 28, 2020), also they used it to predict the 

date of reaching the maximum number of infected. However, the proposed model could not describe 

precisely enough the time series for other countries contained in the database used by the authors, 

which in [25] is explained by the fact that either the data was too noisy or did not reach the maximum 

curve, and therefore this model was not able to provide a good fit. As will be shown later, in the main 

part of the article, our proposed approach based on machine learning methods does not have such 

shortcomings and satisfactorily describes the behavior of the spread of infection in different countries. 

Among the important limitations of the studied SIR-model, the authors [25] also include the 

impossibility of describing and predicting the mortality rate, which is explained by the need to take 

into account additional information such as capabilities of health care system of each country. Another 

limitation of such model is the prediction of only the lower limit of cases, which can potentially be 

eliminated by using nonlinear terms in the differential equations describing the model [26]. 

In [29] is devoted to predict of mortality of patients with severe COVID-19. In this work, using 

multivariate regression analysis, the predictors and factors influencing the mortality and clinical 

condition of patients with COVID-19, as well as the necessary conditions for the development of 

treatment algorithms for such patients were investigated. In this study, it was found that factors as the 

presence of any comorbid disease, elevated C-reactive protein levels, and the presence of dyspnea 

significantly increase mortality in moderate to severely ill Covid-19 patients. 
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Thus, Ribeiro et al. [21] consider different regression-based models like cubist, ridge, reference 

vector regressions, ARIMA along with random forest, and ensemble overlay training for one-, three-, 

and six-days prediction of cumulative value of COVID-19 cases in Brazil. They demonstrate that, in 

most cases, support vector regression and stack ensemble training perform better against the accepted 

criteria than the other models studied. In general, the models developed in [21] can generate accurate 

forecasts with an error of less than 6.90%. In [21], it was concluded that further improvement in the 

development of COVID-19 prediction models can be achieved by combining deep learning and 

ensemble learning accumulation, by using multi-objective optimization for tuning the hyperparameters 

of prediction models and adopting a set of features that allows to explain the dependencies of future 

COVID-19 cases. 

Artificial neural networks and neuro-like structures are successfully used in prediction problems, 

including multifactorial and time series prediction, the dynamics of COVID-19 propagation in 

particular. For example, in [27] a method of increasing the accuracy of model prediction by creating a 

non-iterative supervised learning predictor is presented. Such a predictor is based on the neural-like 

structure of the successful geometric transformations model and Ito decomposition. The use of this 

method to predict the cost of health insurance has allowed the authors [27] to significantly improve 

the accuracy of forecasting compared to other methods, including linear regression, multilayer 

perceptron or SVM. In [27] it was concluded that the developed method, due to the improved properties 

of generalization, can be successfully used in various subject areas to improve the accuracy of 

processing large amounts of data. While most publications are on modeling and predicting the spread 

of the coronavirus pandemic, not many articles explore hybrid methods. One such approach was used 

by Najmul Hasan in [28] to predict the COVID-19 epidemic using a hybrid model that combines 

empirical mode decomposition and artificial neural networks. This work used COVID-19 time series 

data for the period from January 22 to May 18, 2020. The first step of the study involved pre-processing 

and noise reduction of the input data using ensemble empirical mode decomposition, after which the 

resulting noiseless dataset was used to train an artificial neural network with one hidden layer. In [28], 

ANN configuration trained using the Levenberg-Marquartd algorithm with 20 hidden neurons was 

used. The obtained results were compared with the results obtained by the methods of traditional 

statistical analysis, such as regression analysis and moving average review with three trend categories 

(linear, exponential and polynomial). The author [31] shows a significant advantage of his approach 

compared to traditional statistical analysis, which once again emphasizes the importance and prospects 

of using AI methods and tools to analyze and predict the dynamics of complex processes, such as the 

spread of COVID-19. The results and forecasts obtained by such methods give governments and health 

care organizations an opportunity to take preventive measures by understanding the upcoming 

COVID-19 situation for better healthcare management. 

More complex multifactor COVID-19 prediction models are considered by K.C. Santosh in his 

article "COVID-19 Prediction Models and Unexploited Data" [29]. This paper argues that existing 

models based on both the widely used SEIR/SIR or curve-fitting epidemiological models and the 

machine-based models are unable to describe some key issues that have never been used before, such 

as hospital resources, the number of daily tests for coronavirus, demographic and social characteristics 

of certain areas, population density, population distribution by risk groups, etc. Santosh proposes to 

introduce time-dependent mathematical models with dynamic self-adjusting parameters. One of the 

most common approaches to modeling and predicting the spread of the COVID-19 pandemic is to use 

a variety of time series forecasting techniques ranging from classical ARMA/ARIMA models to 
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machine learning techniques from simple regression models to deep learning technologies [30]. 

Sengupta et al. conducted data analysis on pandemic data at the global level, and then used the 

simulation results to analyze the situation in India. The focus of their study was to predict the position 

and duration of the maximum incidence. At the same time, their model took into account demographic 

data, such as gender, geographical location of the region, age, etc. Time series forecasting techniques 

were used for modeling and forecasting, which included linear and polynomial regression, SVM, and 

LSTM (Long short-term memory). Using the k-means method in [30], the data of confirmed cases of 

COVID-19 were clustered by individual countries and three clusters were identified: the first with a 

high mortality rate and a low recovery rate; the second with a low mortality rate and a high recovery 

rate; and a third with average levels of both mortality rate and recovery rate. According to Sengupta et 

al., classical forecasting methods such as ARIMA, Facebook Prophet forecasting model and 

polynomial regression show better results compared to models based on machine and deep learning 

methods. In [30], it is argued that temporal data on the spread of coronavirus infection in India are best 

described by a Sigmoid model, which makes it possible to predict the peak incidence. 

Basu and Campbell [13] propose a model based on Long Short-Term Memory, which was trained 

on cumulative number of COVID-19 cases and deaths separately. They train the developed model 

using the dataset containing number of confirmed COVID-19 cases during the period of more than 

four months. The parameters of the proposed model can be adjusted in such a way as to provide the 

required forecasting accuracy. In the article [13] using the developed LSTM-model, a quantitative 

assessment and analysis of the impact of measures taken by various US counties on the spread of the 

disease has been carried out. 

Hu et al. [16] built and investigated a machine learning model based on composite autoencoders 

to describe the spread of coronavirus in China in April 2020 based on data from previous periods. They 

clustered cities and provinces based on the characteristics obtained from the developed auto-coding 

model. Similar LSTM-based models have been used to study patient-related statistics [17], as well as 

to identify trends in the spread of the epidemic in China [18]. 

The study by S. Tuli et al. [15] is based on an improved machine learning model for analyzing 

and predicting the spread of the COVID-19 epidemic in different countries. The authors of [15] have 

developed and studied the Robust Weibull model with iterative weighting. They conclude that the 

developed Weibull model is statistically better than the Gaussian baseline model for prediction of the 

COVID-19 outbreak. It was shown [15] that simple Gaussian model results in an overly optimistic 

COVID-19 spreading scenario. The developed model was deployed on a cloud computing 

platform using the FogBus framework for more accurate and realistic forecasting of the 

epidemic's growth dynamics. 

3. Materials and methods 

3.1. Dataset description 

In this study we have used data from the Oxford COVID-19 Government Response Tracker as 

well as European Centre for Disease Prevention and Control (ECDC) Covid-19 Cases [31]. Dataset 

WPP2019_TotalPopulationBySex was taken from [32]. It contains information on population by year 

and population density. All data is filtered for 2020. 

The Oxford COVID-19 Government Response Tracker (OxCGRT) dataset provides information 



2795 

Mathematical Biosciences and Engineering  Volume 18, Issue 3, 2789–2812. 

on which governments took action, what action they did, and when they took it. The OxCGRT 

systematically gathers information on a range of common policy responses by a given government and 

determines the extent to which the government is implementing these measures. The respective scores 

are combined into a set of policy indicators. 

The second dataset contains new public data on the geography of COVID-19 cases worldwide 

from European Centre for Disease Prevention and Control. Each line or record contains the number of 

new cases per day, by country or region. These data have been reduced to the number of cases per 

10,000 habitants using the United Nations population dataset [32]. Unfortunately, available datasets 

did not contain information about number of tests taken, only the number of new cases per day. The 

mortality rate was used as the relative value. Datasets were grouped by country name, and the number 

of confirmed cases was normalized by dividing the population by country. Dates were changed to days 

from the beginning of the disease, and the analysis in all countries began on the same day, when the 

normalized number of confirmed cases became higher than 0.001. The part of characteristics obtained 

from these datasets are shown in Table 1. This table presents the list of restrictions. Totally dataset 

consists of 38 features. 

Table 1. Variables and their meaning used as attributes in the study. 

Variable Meaning 

c1 School closing 

c2 Workplace closing 

c3 Cancel public events 

c4 Restrictions on gatherings 

c5 Close public transport 

c6 Stay at home requirements 

c7 Restrictions on internal movement 

c8 International travel controls 

e1 Income support 

h1 Public information campaigns 

h2 Testing policy 

h3 Contact tracing 

For the performed analysis we have merged the mentioned datasets and considered data from 

January 01, to May 31 for building the models, while the data from June 01 to August 31 have been 

used for verification of the forecasting based on the developed recommendation rules. 

3.2. Data preprocessing 

Dataset consists of attributes with different nature. Because obtained dataset contains categorical 

and numerical variables at the stage of preprocessing one hot encoding is applied to categorical 

variables. The noise data and outliers are presented too. That is why at the first stage the following 

steps are required: feature selection, empty data analysis, data normalization and scaling. 

Feature selection is made based on theory of information. The joint mutual information between 

each feature and target attribute ConfirmedCases is calculated as: 
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𝐽𝐼(𝑓𝑖) = ∑ (𝐼(𝑓𝑖; 𝑐) + 𝐼(𝑓𝑖; 𝑐 ∨ 𝑓𝑗))

𝑓𝑗∈𝑆

, 

where c is target class, I(f,c) is mutual information, 𝑓𝑗 is already selected feature, 𝑓𝑖 is processed feature. 

The Cross‐Validated Committees Filter (CVCF) based on information gain and decision tree 

algorithm was used for feature selection. CVCF is implemented in CRAN package in RStudio. The 

authors of CVCF place special emphasis on using ensembles of decision trees [33]. The main steps of 

the algorithm are the following: (1) split the training dataset using an nf-fold cross validation scheme, 

(2) for each of these nf parts, a learning algorithm is trained on the other n-1 parts, resulting in n 

different classifiers. Here, C4.5 is used as the learning algorithm, (3) these n resulting classifiers are 

then used to find the most common attributes in trees` roots. 

The list of attributes after features selection consists of all restrictions (Table 1), country_name, 

confirmed_cases, confirmed_death, e1_income_support, h1_public_information_campaigns, 

h2_testing_policy, h3_contact_tracing. As result, 19 from 38 features were selected. 

The next step is empty data analysis. The dataset consists of 66,998 rows, 26,003 of them have 

empty values in selected attributes. Due to small quantity of rows with empty data these rows were 

eliminated. In addition, binning was made as well. 

Although various nonlinear models such as artificial neural networks or SVMs have recently been 

widely used in various subject areas, many questions remain about their use with noisy or incomplete 

data (see e.g. [34,35]). One of common methods of overcoming noisy data is the use of decomposition 

methods that improve the accuracy of neural network prediction by creating clear input signals [35,36]. 

Among the effective methods of fighting missing data is the original approach described in [34]. Izonin 

et al. [34] proposed to use an ensemble of neural networks to solve the problem of missing data, in 

which the first network predicted the required value, and the second improved the error of the first 

neural network. Improving the quality of missing data in this work was achieved due to the additional 

use of an extended-input SGTM neural-like structure to form a polynomial response surface of the 

predicting value. 

The authors propose to use Multivariate imputation by chained equations (MICE) algorithm for 

missing data imputation (package Mice in RStudio) [37]. This is sequential regression multiple 

imputation technic. MICE works well on missing at random data. But it is possible to use this method 

for not random data imputation. 

The results of MICE are given on Figure 1. Totally 89 rows were omitted the rest of missed data 

was imputed. 

It is desirable to bring all input variables to a single range and normalize (the maximum absolute 

value of input variables should not exceed one). Otherwise, errors due to variables varying over a wide 

range will be more influential than errors due to variables varying over a narrow range. By ensuring 

that each feature changes within the same range, we ensure that each has an equal effect. Therefore, 

the input variables, as a rule, are scaled so that the variables change in the range of the function, as a 

rule, [0,1] or [−1,1]. The Softmax scaling is used. The distribution of dataset for each feature is shown 

in the Figure 2. 
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Figure 1. The results of MICE. 

 

(a) 
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(b) 

Figure 2. Data distribution before (a) and after (b) preprocessing. 

4. Results and discussion 

In the first stage of our study, we clustered the data and built a regression decision tree [10]. K-

means method was used for clustering. The gap-statistics allows to find the appropriative number of 

clusters. Cluster centroids allow to find “average” object in each group and to create the regularization 

rules. The cluster # 2 and #3 shows countries under restriction, cluster #1 consists of countries without 

almost any restriction (see Table 2, Table 3, and Table 4) [10]. 

Table 2. Feature weights for the three clusters obtained. 

Cluster School closing Workplace closing Cancel public events Close public transport 

1 0.04368254 0.02120635 0.07822222 0.005587302 

2 2.89865433 2.26230025 1.94790791 1.109703532 

3 1.88113534 1.02194531 1.30058844 0.256905504 

Table 3. Feature weights for the three clusters obtained cd. 

Cluster Stay at home req. Restrictions on internal movement International travel controls 

1 0.0351746 0.01853968 1.137778 

2 1.7232443 1.68355761 3.438709 

3 0.5112496 0.50931118 2.850190 
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Table 4. Feature weights for the three clusters obtained cd. 

Cluster Income support Public information campaigns Testing policy Contact tracing 

1 0.02933333 0.7869206 0.6651429 0.6673016 

2 1.00667578 1.9615749 1.5702271 1.3380467 

3 1.17223953 1.9540325 1.8985808 1.6339218 

The clusters obtained differ by the most distinct recommendations, which can be summarized as 

follows [10]: 

• Cluster #1: control international travels, 

• Cluster #2: recommended to close schools, recommended to close workplace recommended 

to stay at home, Restrictions on internal movement, International travel controls? 

• Cluster #3: income support, testing policy, International travel controls, recommended to 

stay at home and cancel public events. 

Given above conclusions are formed on the statistical analysis of each restriction in separated 

cluster. For example, Stay_at_home restriction is frequently appeared in Cluster 2 (Table 3). 

Silhouette refers to a method of interpretation and validation of consistency within clusters of 

data. The Silhouette parameters of the clusters are given below (Figure 3). 

  cluster size ave.sil.width 

1       1 1400          0.70 

2       2 2897          0.54 

3       3 3071          0.62 

 

Figure 3. Silhouette plot. 

To build the recommendation rules, the regression decision tree was developed in [10]. Three 

circumstances are key here: 

1. the rules make it possible to implement sequential dichotomous data segmentation, 

2. two objects are considered similar if they appear in the same segment of the partition, 
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3. at each step of the partition, the amount of information about the variable under investigation 

(response) increases. 

The main feature of the algorithm is its 𝑘-arc structure. Branching on a chosen trait x splits 

training objects on 𝑘 subsamples, where 𝑘 is the number of different characteristic values. 

Without loss of generality, we assume that the feature 𝑥 has values from {0, 1, …, 𝑘-1}, 𝑘 ≥ 2. In 

this case, when constructing of the decision tree, from the vertex 𝑥 there are 𝑘 arcs labeled with 

numbers from {0, 1, …, 𝑘-1}.  

Let 𝜎 be the label of one of the arcs leaving the vertex 𝑥, 𝜎 ∈ {0, 1, …, 𝑘-1}. To form a new 

current subset of objects and a new current set of features, those objects from 𝑇̌ are deleted for which 

the value of feature 𝑥 is not equal to 𝜎, and also feature 𝑥 itself is removed from the set of features. 

Let 𝑣 be a hanging vertex generated by a branch of a tree with the inner vertices 𝑥𝑗1,…, 𝑥𝑗𝑟 and 

let the arc outgoing from the vertex 𝑥𝑗𝑖, 𝑖 ∈ {1,…, 𝑟}, be labeled 𝜎𝑖. Further let 𝑇 (𝑣) is the current set 

of objects that hit the vertex 𝑣. The vertex 𝑣 is associated with a pair (𝐵, 𝑤 (𝑣)), where 𝑤 (𝑣) is equal 

to the mean value of the target variable over all objects from 𝑇 (𝑣), and B is an elementary conjunction 

of the form 𝑥𝑗1
𝜎1… 𝑥𝑗𝑟

𝜎𝑟. If the vertex 𝑣 is not pendant, then we assign to it the conjunction  

𝐵 = 𝑥𝑗1
𝜎1… 𝑥𝑗𝑟

𝜎𝑟 ... 

Truth interval of elementary conjunction B denote by 𝑁𝐵. Let 𝑆 be a recognizable object. For 

each hanging vertex (𝐵, 𝑤 (𝑣)), a check is performed that the description of the test object belongs to 

the truth interval 𝑁𝐵. If the description 𝑆 belongs to 𝑁𝐵, then the object 𝑆 is associated with the value 

of the target variable 𝑤 (𝑣). Object 𝑆 is assigned the value of the target variable 

𝑊 =
∑ 𝑤(𝑣𝑖) ∗ 𝐼𝐵𝑖

𝑙
𝑖=1

∑ 𝐼𝐵𝑖

𝑙
𝑖=1

, 

where 

𝐼𝐵𝑖
= {

1, 𝑖𝑓𝑆 ∈ 𝑁𝐵𝑖
,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

The influence of such clustering on COVID-19 spreading, peak position and duration as well as 

mortality rate will be the subject of our further study. The same country can be joined to different 

clusters in different time slots. So, the clustering by country will not be so unambiguous. That is why 

time series for separated country can be interesting and will be the subject of the further study. Besides, 

the influence of such clustering on COVID-19 spreading, peak position and duration as well as 

mortality rate will also be the subject of our further study. 

As further research actually deals with time series that reflect the dynamics of confirmed cases of 

COVID-19 for different countries and the dynamics of changes in the membership of certain countries 

in clusters, common methods were used to analyze time series. At this stage, forecasting was performed 

for individual clusters. The histogram of the frequencies of confirmed cases of COVID-19 per 1 million 

populations for different clusters is shown in Figure 4, and the distribution of mortality values for 

different clusters – in Figure 5 respectively. 
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(a) 

 

(b) 

 

(c) 

Figure 4. Histogram of frequencies of confirmed cases of COVID-19 by clusters: (a) the 

first cluster; (b) the second one; (c) the third. 

In the analysis of Figures 4 and 5, it should be kept in mind that the total amount of data 



2802 

Mathematical Biosciences and Engineering  Volume 18, Issue 3, 2789–2812. 

corresponds to the number of days, not the number of countries, and countries could migrate from one 

cluster to another during the history of observations. 

 

(a) 

 

(b) 

 

(c) 

Figure 5. Histogram of COVID-19 mortality rates by clusters: (a) the first cluster; (b) the 

second one; (c) the third. 
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The median values for each cluster were 0.393, 0.267, and 0.114 new daily confirmed cases of 

infection per 1M population, respectively, and 0.00861, 0.00714, and 0.00306 daily deaths due to 

COVID-19 per 1M population. Thus, for countries belonging to the third cluster, the spread of the 

epidemic is much slower than for the first and second clusters, although the reduction in mortality rate 

from the first cluster to the third is smaller than the reduction in the number of newly confirmed cases 

of COVID-19 (2.8 times vs. 3.4 times) and such behavior requires further research. From the analysis 

of Figure 3, we can distinguish the second cluster in terms of the distribution of values of new cases 

of COVID-19. Although the median daily diurnal infection is lower than for the first cluster, more than 

80% of new diurnal cases are in the range of up to 3 per 1 million populations, while for the first and 

third clusters this figure is 0.4 new diurnal cases per cluster. 1 million populations. That is, in the case 

of the second cluster, the variability of this variable is higher, which makes it possible to consider this 

cluster as a transitional stage between the first and second, which are probably quite stable. The analysis 

of Figure 5 does not give such a clear relationship: for all clusters, 90% of the values are within 0.13 deaths 

per 1 million populations, with, however, significantly different median values (see above). 

All countries were divided into 2 categories: countries that were mostly in the same cluster all the 

time, and countries whose clusters changed over time. From the group of countries that were in 

different clusters during the study, 3 countries were randomly selected (Germany, Italy, Poland) similar 

in demographic, geographical and social characteristics, but different in terms of epidemic 

development and investigated the impact of government measures (see Table 1) on change of the 

cluster of the country (Figures 6–8, respectively), which corresponds to the change in the dynamics 

and consequences of the incidence of COVID-19 (see Figures 4 and 5). 

From the analysis of Figures 4, 5 it can be concluded that there is a clear relationship between the 

cluster number and the number of new cases of morbidity and death. There are also different countries' 

policies to prevent the disease, which have different effects on the spread of COVID-19 (Fig. 6–8). For 

example, in Germany, proactive tactics are pronounced, while in Italy – catching up on the nature of 

the spread of the disease. The next step in the study is to predict the number of new cases of COVID-

19 on the example of Sweden (the country not studied at the previous step). Such forecasting was 

carried out for two potential options for government action: with existing preventive actions and the 

same preventive actions, if they were taken 20 days earlier (following the example of Germany). Thus, 

we get the answer to two questions:  

(i) whether our model has prognostic power, if the prognosis corresponds to the real picture of 

the disease;  

(ii) simulating whether the incidence could have been reduced if the same measures had been 

introduced earlier.  

If both questions are answered in the affirmative, the model and conclusions of this work can be 

used by different governments as one method of making informed decisions about imposing certain 

restrictions in order to prevent the spread of the COVID-19 pandemic and reduce the severity of 

the disease. 
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(a) 

 

(b) 

 

(c) 

Figure 6. Dynamics of cluster change with respect to different features for the case of 

Germany: (a) features c1–c5 and cluster number; (b) features c6–c8 and cluster number; 

(c) confirmed number of diseases and mortality rate. 
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(a) 

 

(b) 

 

(c) 

Figure 7. Dynamics of cluster change in relation to different features for the case of Poland: 

(a) features c1–c5 and cluster number; (b) features c6–c8 and cluster number; (c) 

confirmed number of diseases and mortality rate. 
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(a) 

 

(b) 

 

(c) 

Figure 8. Dynamics of cluster change with respect to different features for the case of Italy: 

(a) features c1–c5 and cluster number; (b) features c6–c8 and cluster number; (c) 

confirmed number of diseases and mortality rate. 

To build a forecast model, we construct a regression tree. Incidence data for the period from 

January 1 to October 31, 2020 were used to construct the tree, while data for November and December 

2020 were used to check the quality of the forecast. Table 5 shows the importance of variables for 

random forest prediction. %IncMSE is the most robust and informative measure. It is the increase in 

MSE of predictions (estimated with out-of-bag-CV) as a result of variable j being permuted (values 
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randomly shuffled). IncNodePurity relates to the loss function which by best splits are chosen. The 

loss function is MSE for regression and gini-impurity for classification. More useful variables achieve 

higher increases in node purities, that is to find a split which has a high inter node 'variance' and a 

small intra node 'variance'. IncNodePurity is biased and should only be used if the extra computation 

time of calculating %IncMSE is unacceptable. 

Table 5. Degree of importance of features for random forest method. 

Feature %IncMSE IncNodePurity 

date 1762329 60371343113 

c1_school_closing 20312295 112539124311 

c2_workplace_closing 22704695 155417997013 

c3_cancel_public_events 17357035 84284697645 

c4_restrictions_on_gatherings 21327188 133060453250 

c5_close_public_transport 19265937 114212676197 

c6_stay_at_home_requirements 19246615 100860861469 

c7_restrictions_on_internal_movement 22388811 95209240436 

c8_international_travel_controls 30728123 152711818057 

e1_income_support 31968524 195651691579 

h1_public_information_campaigns 3670697 19353642670 

h2_testing_policy 30246687 155123828287 

h3_contact_tracing 16762839 91517681970 

 

The constructed rules have the following form, and the resulting regression tree is shown in Figure 9. 

1) root 41602 2.144700e+12  4344.2440   

   2) e1_income_support< 0.5 18045 3.451650e+11  1577.5170   

     4) c2_workplace_closing< 0.5 9754 4.310477e+10   504.8472 * 

     5) c2_workplace_closing>=0.5 8291 2.776335e+11  2839.4650 * 

   3) e1_income_support>=0.5 23557 1.555594e+12  6463.5960   

     6) c8_international_travel_controls>=3.5 8874 4.392391e+11  4550.0060   

      12) c5_close_public_transport< 0.5 3428 8.620474e+10  2583.1110 * 

      13) c5_close_public_transport>=0.5 5446 3.314248e+11  5788.0730   

        26) h2_testing_policy< 1.5 2573 7.956870e+10  3627.6140 * 

        27) h2_testing_policy>=1.5 2873 2.290908e+11  7722.9360 * 

     7) c8_international_travel_controls< 3.5 14683 1.064221e+12  7620.1170   

      14) c2_workplace_closing< 0.5 2049 5.259635e+10  3436.5260 * 

      15) c2_workplace_closing>=0.5 12634 9.699460e+11  8298.6180   

        30) e1_income_support< 1.5 3462 1.935803e+11  5760.5320 * 

        31) e1_income_support>=1.5 9172 7.456460e+11  9256.6270   

          62) h2_testing_policy< 1.5 3278 2.321877e+11  7107.6480 * 

          63) h2_testing_policy>=1.5 5894 4.899009e+11 10451.8000 * 
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Figure 9. The resulting regression tree for predicting the incidence of COVID-19 

depending on government restrictive measures. 

The number of new cases due to COVID-19 was predicted for an interval of 21 days. To verify 

the prognosis, data on new cases from March 1, 2020 to March 21, 2020 were used. Table 6 shows the 

actual data projected taking into account the current strategy of imposing restrictions, as well as a 

simulation for the case of anticipatory restrictive measures. 

We used Root Mean Square Error (RMSE) implemented in RStudion 

(https://www.geeksforgeeks.org/root-mean-square-error-in-r-programming/). RMSE of the new cases 

forecast in Sweden for 21 consecutive days from March 1 to March 21, 2020, made on the basis of 

production rules obtained from the constructed regression tree. The larger the RMSE, the larger the 

difference between the predicted and observed values, which means the worse a regression model fits 

the data. Conversely, the smaller the RMSE, the better a model is able to fit the data. RMSE is 

calculated for renormalised confirmed cases. It means the actual value range is thousands. As can be 

seen from Table 6, the biggest absolute difference between real data and predicted data for 16-03-20 

is 17 or relative error is 0.0006. RMSE is equal 4.2.  

At the same time, the simulation based on the strategy of anticipating the introduction of 

restrictions gives the value of the new cases forecast less than 2% (forecast for 7 days) to 6% (forecast 

for 21 days). Thus, the results of our clustering of data, the study of the dynamics of transition between 

clusters, and its impact on the spread and consequences of the COVID-19 pandemic, as well as a 

forecast model based on production rules based on the regression tree, allow us to assess the impact 

of decisions on restrictive measures and to predict and simulate the consequences of a policy of 

imposing restrictions. 

 

e1_income_support < 1

c2_workplace_closing < 1 c8_international_travel_controls >= 4

c5_close_public_transport < 1

h2_testing_policy < 2

c2_workplace_closing < 1

e1_income_support < 2

h2_testing_policy < 2
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100%
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43%
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20%
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13%

3628
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35%

3437
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30%

5761
8%

9257
22%
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10e+3
14%
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Table 6. Forecast and actual number of new cases due to COVID-19 for Sweden in the 

period from March 1 to March 21, 2020 

Date Real data Forecast for the 

current strategy of 

imposing restrictions 

Simulation for the case 

of anticipatory 

restrictive measures  

Deviation of 

simulation from 

real data,%  

01-03-20 21603 21612 21603 0 

02-03-20 22135 22142 22135 0 

03-03-20 22434 22438 22210 1 

04-03-20 22695 22697 22468 1 

05-03-20 23172 23178 22940 1 

06-03-20 23829 23832 23591 1 

07-03-20 24574 24579 24083 2 

08-03-20 25358 25355 24851 2 

09-03-20 26058 26049 25537 2 

10-03-20 26567 26568 26036 2 

11-03-20 26846 26852 26309 2 

12-03-20 27301 27316 26482 3 

13-03-20 28055 28061 27213 3 

14-03-20 28753 28742 27890 3 

15-03-20 29410 29421 28234 4 

16-03-20 30098 30081 28894 4 

17-03-20 30456 30448 28933 5 

18-03-20 30715 30714 28872 6 

19-03-20 31145 31139 29276 6 

20-03-20 31811 31819 29902 6 

21-03-20 32619 32625 30662 6 

5. Conclusions and future work 

This work continues research [10] aimed at building models for the spread of COVID-19 

depending on restrictive measures taken by governments around the world, and identifying signs that 

have high prognostic power to predict pandemic behavior and its consequences depending on 

government action. In the work on the basis of data clustering, three clusters have been identified, 

which differ in restrictive measures and, accordingly, in the dynamics of morbidity and mortality, in 

the scale of each country. At this stage of the study, factors such as country size, population 

heterogeneity, heterogeneity of social, demographic or geographical characteristics within one country 

and between different countries were not taken into account. The influence of these factors will be the 

subject of further research. In addition, the rationing of the number of new cases per day on the number 

of tests conducted in each country, in the presence of such information, will increase the reliability of 

modeling and accuracy of the forecast.  

Data clustering showed a different distribution of variables between clusters, as well as a change 

in a country's membership in a particular cluster over time. Therefore, further research was conducted 

for each cluster separately, and the dynamics of migration between countries between clusters 

depending on changes in restrictive measures and the dynamics of the epidemic in each country were 
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studied. All countries were divided into 2 categories: countries that were mostly in the same cluster all 

the time, and countries whose clusters changed over time. From the group of countries that were in 

different clusters during the study, 3 countries (Germany, Italy, Poland) were selected similar in 

demographic, geographical and social characteristics, but different in terms of epidemic development 

and investigated the impact of government measures on cluster change. The paper shows that there is 

a clear relationship between the cluster number and the number of new cases of morbidity and death. 

There are also different countries' policies to prevent the disease, which have different effects on the 

spread of COVID-19. For example, in Germany, proactive tactics are pronounced, while in Italy – 

catching up on the nature of the spread of the disease. 

A regression tree and guidelines for the effect of symptoms on the prevalence of COVID-19 

morbidity and mortality rates due to this infection were constructed. The paper predicts the number of 

deaths due to COVID-19 on the example of Italy. Such forecasting was carried out for two potential 

options for government action: with existing preventive actions and the same preventive actions, if 

they were taken 20 days earlier (following the example of Germany). Predictions of the number of new 

deaths in Sweden due to COVID-19 were made for an interval of 35 days. To verify the prognosis, 

data on morbidity from March 1, 2020 to March 21, 2020 were used. The RMSE of the mortality 

forecast does not exceed the value of 4.2, which shows a good prognostic ability of the developed 

model. At the same time, the simulation based on the strategy of anticipatory introduction of 

restrictions gives 2–6% lower values of the forecast of the number of new cases. Thus, the results of 

our clustering of data, the study of the dynamics of transition between clusters, and its impact on the 

spread and consequences of the COVID-19 pandemic, as well as a forecast model based on production 

rules based on the regression tree, allow us to assess the impact of decisions on restrictive measures 

and to predict and simulate the consequences of a policy of imposing restrictions. 

The limitations of the study are the following: 

• It is impossible to change the scenario automatically based on restrictions. For example, we 

have modeled the ConfirmedCases number (Table 6) based on the set of restrictions changes 

for manually chosen countries (Figures 6 – 8). However, the result of modelling depends on 

the list of chosen countries. The automatic changes can be done, for example, based on multi-

agent system based on mobile cellular automata [38]; 

• The modelling of confirmed cases and confirmed death should be provided for separated 

cluster more detailed. As it is shown in [39], the quality of classifier model is different for 

different clusters. 
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