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Abstract: Functional differential equations of neutral type are a class of differential equations in which
the derivative of the unknown functions depends on the history of the function and its derivative as well.
Due to this nature the explicit solutions of these equations are not easy to compute and sometime even
not possible. Therefore, one must use some numerical technique to find an approximate solution to
these equations. In this paper, we used a spectral collocation method which is based on Bernstein
polynomials to find the approximate solution. The disadvantage of using Bernstein polynomials is that
they are not orthogonal and therefore one cannot use the properties of orthogonal polynomials for the
efficient evaluation of differential equations. In order to avoid this issue and to fully use the properties
of orthogonal polynomials, a change of basis transformation from Bernstein to Legendre polynomials
is used. An error analysis in infinity norm is provided, followed by several numerical examples to
justify the efficiency and accuracy of the proposed scheme.

Keywords: Bernstein collocation method; functional differential equation; convergence analysis;
numerical examples

1. Introduction

Delay differential equations (DDEs) are used numerously in many applications of engineering
sciences and technology. They are used to describe the propagation of transport phenomena in
dynamical systems, especially those dynamical systems which are nonlinear in nature. As in DDEs
the unknown functions also depend on the history, therefore it is natural to use DDEs in the
mathematical modeling of some biological processes (cell growth etc.) and economical system
(evaluation of market, investment policy etc.). Functional differential equation also known as
pantograph type delay differential equation is an important class of DDEs arises in many application,
for example, immunology, physiology, electrodynamics, communication and neural network where
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signal transmission is carried by time interval (nonzero) between the initial and delivery time of a
signal or message, where such systems are often described by functional spaces in mathematical
framework. The delay term in these models is related to some hidden processes and therefore one
must use a high order numerical technique to capture these hidden processes. A comprehensive list of
applications of DDEs can be found in [12, 22]. Consider the DDEs of the form{

u′(t) = α(t)u(t) + β(x)u(rt) + γ(x)u′(rt), t ∈ I := [0, T]
u(0) = u0.

(1.1)

where α(t), β(t) and γ(t) are smooth functions on I := [0, T ] and r ∈ (0, 1) is a fixed constant known
as proportional delay. Equation (1.1), which is a special type DDEs called the general pantograph
type DDE with neutral term. Due to the transcendental nature of Eq (1.1) most of the author’s used
approximate methods to solve it numerically. In the start of twenty’s, the researcher uses the application
of collocation method and continuous Runge-Kutta (CRK) method [12, 15]. The CRK method does
not achieve the required accuracy due the insufficient information on the right hand side of Eq (1.1),
while using the collocation method with piecewise polynomials having degree n ≥ 1 with meshes to be
uniform does not achieve the classical superconvergence rate of O(h2n)-; for n ≥ 2 the order (optimal)
is only n + 2 [13,14]. Thus, it was natural to switch to some methods to avoid these difficulties and get
the exponential order of convergence with less computational efforts [10, 11]. To this end, the use of
orthogonal polynomials and their properties are more useful to achieve the required accuracy. The idea
of rational polynomial approximation was introduced in [24], while the Legendre collocation methods
with detail convergence analysis results was used for the variety of DDEs and stochastic DDE including
the pantograph type in [8,9,25–28]. Similarly the Tau method based on Chebyshev approximation and
their operational matrix is used in [23]. The main aim of this work is to use Bernstein polynomial
to find the approximate solution of Eq (1.1). The disadvantage of using Bernstein polynomial is that
these polynomials are not orthogonal in nature. For this reason the change of basis function from
Bernstein to Legendre polynomial will be used with the help of some matrix transformation [4–6]. The
Bernstein approximation method is a powerful numerical technique used by a number of authors for
the numerical approximation of different type of differential equations [17–20, 29–31].

The rest of the paper is organized as: section 2 of the paper consist of preliminaries, followed by
Bernstein collocation method in section 3. Section 4 describe the Bernstein-Legendre basis
transformation. The error analysis is presented in section 5. Numerical examples are given in section
6, followed by conclusion in section 7.

2. Preliminaries

First we will introduce some basic of Bernstein polynomials and their properties. For any t̄ ∈ [0, 1],
Bernstein polynomials are define as [3].

B̄n̄
ī (t̄) =

(
n̄
ī

)
t̄(1 − t̄)n̄−ī, ī = 0, ..., n̄, where

(
n̄
ī

)
=

n̄!
ī!(n̄ − ī)!

, (2.1)

satisfying the following 3-term recurrence relation

B̄n̄
ī (t̄) = B̄n̄−1

ī (t̄) − t̄B̄n̄−1
ī (t̄) + t̄B̄n̄−1

ī−1 (t̄). (2.2)
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First few terms of Bernstein polynomials are given by

B̄0
1 = 1 − t̄, B̄1

1 = t̄, B̄0
2 = 1 − t̄2, B̄1

2 = 2t̄(1 − t̄), B̄2
2 = t̄2,

B̄0
3 = (1 − t̄)3, B̄1

3 = 3t̄(1 − t̄)2, B̄2
3 = 3t̄2(1 − t̄), B̄3

3 = t̄3.

Bernstein polynomials also satisfying the following properties.
i.

∑n̄
ī=0 B̄n̄

ī
(t̄) ≡ 1, (Unitary).

ii. B̄n̄
ī
(t̄) ≥ 0, t̄ ∈ [0, 1] (non negative).

iii. B̄n̄
ī
(t̄) = B̄n̄

n̄−ī
(1 − t̄),(symmetric).

iv. B̄n̄
ī
(t̄), has maximum value at t̄ = ī

n̄ (uni-modality).

There product and integral is given

B̄n̄
ī (t̄)B̄m̄

j̄ (t̄) =

(
n̄
ī

)(
m̄
j̄

)
(

n̄+m̄
ī+ j̄

) (
n̄ + m̄
ī + j̄

)
,

∫ 1

0
B̄n̄

ī (t̄)dt̄ =
1

n̄ + 1
.

Bernstein polynomial form a complete basis over the interval [a, b]. Any unknown function u(t)
which is define on [a, b] can be approximated with Bernstein polynomials having n degree basis
function as

u(t) ≡
n̄∑

ī=0

C̄iB̄n̄
ī (t̄) = C̄T B̄(t̄), (2.3)

where C̄ and B̄(t̄) are (n̄ + 1) × 1 given as

C̄ = [c̄0, c̄1, c̄2, ..., c̄n̄]T ,

B̄(t̄) = [B̄n̄
0̄, B̄

n̄
1̄, B̄

n̄
2̄, ..., B̄

n̄
n̄].

Since we are interested in the Legendre form of Bernstein polynomials. The Legendre polynomials
form orthonormal basis on [−1, 1], while Bernstein polynomials are define over [0, 1]. In order to use
the orthogonality properties of Legendre polynomials with very sophisticated geometric properties of
Bernstein polynomials, the recurrence relation of Legendre polynomials L̄(t̄) on t̄ ∈ [0, 1] is given by

L̄n̄(t̄) =
2n̄ − 1

n̄
(2t̄ − 1)L̄n̄−1(t̄) −

n̄ − 2
n̄

L̄n̄−2(t̄).

The first few Legendre polynomials on [0, 1] are given by

L0(t̄) = 1, L̄1(t̄) =
√

3(2t̄ − 1), L̄2(t̄) =
√

5(6t̄2 − 6t̄ + 1),
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L̄3(t̄) =
√

7(20t̄3 − 30t̄2 + 12t̄ − 1).

The orthonormal properties of the shifted Legendre polynomial is given by∫ τ f

0
L̄ j̄(t̄)Lk̄(t̄) =

{ τ f

2k̄+1 , if j̄ = k̄,
0, if j̄ , k̄.

3. Bernstein-Legendre basis transformation

As we know that for non-negative bases polynomials orthogonality is not possible. To avoid this and
in order to fully use the properties of orthogonal polynomials with the geometric properties of Bernstein
basis, we will use matrices transformation between Bernstein and Legendre polynomials [1, 2].

Consider P̄n̄(t̄), a polynomial of degree n̄ can be expressed in the degree n̄ Bernstein and Legendre
basis on t̄ ∈ [0, 1] in the following form:

P̄n̄(t̄) =

n̄∑
j̄=0

c̄ j̄B̄n̄
j̄(t̄) =

n̄∑
k̄=0

l̄k̄L̄k̄(t̄). (3.1)

The linear transformation that maps the Bernstein coefficients c̄0̄, c̄1̄, ..., c̄n̄ into the Legendre coefficient
l̄0̄, l̄1̄, ..., l̄n̄ is given by Eqs (5) and (7) respectively.

c̄ j̄ =

n̄∑
j=0

M̄n̄( j̄, k̄)l̄k̄, j̄ = 0, 1, ..., n̄, (3.2)

l̄k̄ =

n̄∑
k̄=0

M̄−1
n̄ ( j̄, k̄)c̄ j̄, k̄ = 0, 1, ..., n̄, (3.3)

where

M̄ =
1(
n̄
k̄

) min( j̄,k̄)∑
ī=max(0̄, j̄+k̄−n̄)

(−1)k̄+ī

(
j̄
ī

)(
k̄
ī

)(
n̄ − k̄
j̄ − ī

)
,

and

M̄−1 =
2 j̄ + 1

n̄ + j̄ + k̄

(
n̄
k̄

) j̄∑
ī=0

(−1) j̄+ī

(
j̄
ī

)(
j̄
ī

)
(

n̄− j̄
j̄−ī

) ,
As we are interested in the Bernstein form of Legendre polynomial, therefore the the Legendre

polynomial in Bernstein form are given by

L̄n̄(t̄) =

n̄∑
ī=0

(−1)n̄+ī

(
n̄
ī

)
B̄n̄

ī (t̄), (3.4)

where the first few Legendre polynomial in Bernstein form are given by:

L̄0(t̄) = B0
0(t̄), L̄1(t̄) = −B1

0(t̄) + B1
1(t̄), L̄2(t̄) = B2

0(t̄) − 2B2
1(t̄) + B2

2(t̄).

L̄3(t̄) = −B3
0(t̄) + 3B3

1(t̄) − 3B3
2(t̄) + B3

3(t̄).
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4. Bernstein collocation method

In order to fully use the properties of orthogonal polynomials, we will apply spectral method to the
integrated form of Eq (1.1). For the reason integrating Eq (1.1) from [0, t], we get:

u(t) = u0 +

∫ t

0
α(s)u(s)ds +

∫ t

0
β(s)u(rs)ds +

∫ t

0
γ(s)u′(rs)ds. (4.1)

Let Eq (4.1) holds at t j, where t j = t0 + kh are the collocation points with t0 = a, h = b − a/n̄, k =

0, 1, 2, ..., n̄ − 1, we get

u(t j) = u0 +

∫ t j

0
α(s)u(s)ds +

∫ t j

0
β(s)u(rs)ds

+

∫ t j

0
γ(s)u′(rs)ds,

(4.2)

or

u(t j) = u0 + γ(t j)u(rt j) − γ(0)u(0) +

∫ t j

0
α(s)u(s)ds

+

∫ t j

0
β(s)u(rs)ds +

∫ t j

0
γ(s)u′(rs)ds,

(4.3)

Using the linear transformation
s = s′t j/τ f , 0 ≤ t j ≤ τ f ,

we get

u(t j) = u0 + γ(t j)u(rt j) − γ(0)u(0) + t j

∫ 1

0
α(s′)u(s′)ds′

+ rt j

∫ 1

0
β(s′)u(rs′)ds′ + t j

∫ 1

0
γ(s′)u′(rs′)ds′.

(4.4)

Using Eq (4) in Eq (11), we get

C̄T B̄′(t̄) = C̄T B̄(0) + γ(t j)C̄T B̄(t̄)(rt j) − γ(0)C̄T B̄(0) + t j

∫ 1

0
α(s′)C̄T B̄(t̄)(s′)ds′

+ rt j

∫ 1

0
β(s′)C̄T B̄(t̄)(rs′)ds′ + t j

∫ 1

0
γ(s′)C̄T B̄′(t̄)(rs′)ds′.

(4.5)

Thus together with the initial condition we get a linear system of 2n̄ + 2 equations. As we are more
interested in the Legendre form of Bernstein polynomial, therefore using the (N + 1)-point Gauss-
Legendre points relative to the Legendre weight gives

u(t j) = u0 + t j

N∑
k=0

α(s′)u(s′)ωk + rt j

N∑
k=0

β(s′)u(rs′)ωk + γ(t j)u(rt j) − u(0)γ(0) − t j

N∑
k=0

γ(s′)u′(rs′)ωk. (4.6)
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Let Ui ≈ u(t j) and assume that U ∈ PN is of the form

U(t) =

N∑
j=0

U jF j(t), (4.7)

where F j(t) is Lagrange interpolation polynomials associated with Legendre-Gauss points {t j}
N
j=0. The

numerical approximation for solving (1.1) is then given by

U j = u0(1 − γ(0))/r + t j

N∑
k=0

α(s′)U(s′)ωk + rt j

N∑
k=0

β(s′)U(rs′)ωk − t j

N∑
k=0

γ(s′)U′(rs′)ωk. (4.8)

Let U = [U0, · · · ,UN]T and FN = [u0(1 − γ(0)), · · · , uN(1 − γ(0))]T , we can obtain a matrix form:

U + AU = FN , (4.9)

To compute F (s) in efficient way, we express it in terms of the Bernstein form of the Legendre
functions given in Eq (5).

5. Error analysis

Theorem. If u j̄(t̄), j = 1, 2, ...n̄ denotes the exact solution to the neutral functional differential
equation of pantograph type (1.1), while U j̄,m̄(t̄) denotes its approximate solution, then the error
between the exact and approximate solution converge exponentially that is∥∥∥u j̄(t̄) − U j̄,m̄(t̄)

∥∥∥ −→ 0, m̄ −→ ∞.

Proof. Let U j̄,m̄(t̄) =
∑m̄

p̄=0 c̄ p̄
j̄
B̄m̄

p̄ (t̄), where Bm̄
p̄ (t̄) is the m degree Bernstein polynomial, denote the

approximate solution to equation and u j̄(t̄), j = 1, 2, ...n̄ represent the exact solution. Assume that

u j̄(t̄) = lim
m−→∞

U j̄,m̄(t̄),

holds. Let

em̄(t̄) =

n̄∑
ī=0

eī,m̄(x̄), (5.1)

where em̄(x̄) denotes the difference between the exact and approximate solution. From Eq (11), we
have

em̄(t̄) ≤
n̄∑

i=0

eī,m̄(t̄) ≤
n̄∑

i=0

∥∥∥u j̄(t̄) − U j̄,m̄(t̄)
∥∥∥ . (5.2)

Since all the coefficient in (1.1) are smooth function and therefore are all bounded, hence ‖em̄(t̄)‖ −→
0, as m̄ −→ ∞.
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6. Numerical examples

Example 6.1. Consider the the following constructed example [16]{
u′(t) = αu(t) + βu(rt) + cos(t) − αsin(t) − βsin(rt), t ∈ I := [0, T ]
u(0) = 0.

(6.1)

The error between numerical solution and exact solution for α = −1, β = 0.5, r = 0.5 and T = 5 for
different N is shown in Table 1.

Table 1. Example 6.1: the point-wise error in L∞ norm.

N Error N Error N Error
6 1.174e−001 12 6.204e−006 17 9.730e−011
7 3.635e−002 13 4.092e−007 18 8.243e−012
9 1.752e−003 15 1.103e−008 19 6.651e−012

10 2.291e−004 16 1.075e−009 20 5.508e−013

Example 6.2. Choose α(t) = sin(t), β(t) = cos(rt), γ(t) = − sin(rx) in (1.1). Figure 1 indicates the
error behavior between approximate and exact solution for r = 0.05 and T = 5. The comparison was
made with the Legendre spectral method presented in [8]. We found that both the method has a very
good agreement with each other.
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E
rr

or

Figure 1. Example 6.2. The error behavior in L∞ norm.
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Example 6.3. Consider the nonlinear equation of the form:

u′(t) = αu(t) + βu(rt)(1 − u(rt)).

The error behavior for α = 0.25, β = 1, r = 0.5 and T = 1, relative to N is shown in Figure 2.

4 6 8 10 12 14 16 18 20
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

N

E
rr

or

Figure 2. Example 6.3. The error behavior in L∞ norm.

Example 6.4. Consider the following initial value problem [7].{
u′(t) = −u(t) + αy(rt) + u′(rt) + cos(t) − cos(rt) + sin(t), t ∈ I := [0, T ]
u(0) = 0

The maximum point wise error for β = 0, r = 0.5 and T = 2 for different N is given in Table 2.

Table 2. Example 6.4: the point-wise error in L∞ norm.

N Error N Error N Error
8 6.800e−004 16 2.817e−011 24 2.665e−014

10 1.916e−005 18 2.317e−012 26 3.442e−014
12 2.198e−007 20 3.162e−013 28 3.442e−014
14 3.522e−009 22 1.998e−013 30 3.096e−014

Example 6.5. Consider the the following example{
u′(t) = αu(t) + βu(rt), t ∈ I := [0, T ]
u(0) = 1.

(6.2)
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The error between numerical solution and exact solution for α = 0.5, β = 0.5, r = 0.5 and T = 3,
for different values of N is shown in Table 3. We compare the result with the Bernstein series solution
method and found a very good agreement with it [29].

Table 3. Example 6.5: the point-wise error in L∞ norm.

N Error N Error N Error
6 1.023e−002 12 5.345e−007 17 8.971e−013
7 2.130e−003 13 3.021e−009 18 7.209e−013
9 1.567e−004 15 2.376e−010 19 3.312e−015

10 3.121e−006 16 3.218e−011 20 4.273e−016

7. Conclusions

A new method based on the Bernstein polynomials is introduced for the approximate solution of
neutral functional differential equation of pantograph type with proportional delay. For better efficiency
of the proposed scheme, a transformation from Bernstein to Legendre polynomial is used, which allow
us to take the advantage of orthogonality of Legendre polynomials which is not possible in case of
Bernstein polynomial directly. An error analysis is provided and a number of numerical experiments
were performed to confirm the theoretical justification. The numerical as well as theoretical result
shows that the method has a spectral accuracy. It is observed from our numerical experiments that
while increasing the number of collocation points that is N one lose the spectral accuracy because
of the fact that using Lagrange interpolating polynomials which is bounded by Lebesgue constant
grows exponentially while increasing N. This is also because of the oscillating nature of orthogonal
polynomials. In our proposed scheme one does not need to increase the number of collocation points
as we achieve a spectral accuracy after a few collocations points.
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