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Abstract: The use of different types of Clinical Decision Support Systems (CDSS) makes possible the 
improvement of the quality of the therapeutic and diagnostic efficiency in health field. Those systems, 
properly implemented, are able to simulate human expert clinician reasoning in order to suggest 
decisions on treatment of patients. In this paper, we exploit fuzzy inference machines to improve the 
quality of the day-by-day clinical care of type-2 diabetic patients of Anti-Diabetes Centre (CAD) of 
the Local Health Authority ASL Naples 1 (Naples, Italy). All the designed functionalities were 
developed thanks to the experience on the field, through different phases (data collection and 
adjustment, Fuzzy Inference System development and its validation on real cases) executed by an 
interdisciplinary research team comprising doctors, clinicians and IT engineers. The proposed 
approach also allows the remote monitoring of patients’ clinical conditions and, hence, can help to 
reduce hospitalizations. 
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1. Introduction 

The healthcare sector is currently facing significant economic and organizational problems due 
to the continuous increase of patients with chronic diseases: indeed, treatment targets in patients with 
chronicity require continuity of care aimed at improving their clinical status as they cannot be aimed 
at healing. This affects the health expenditure so strongly that in Italy chronic disease accounts for 
approximately 80% of the health care spending. In this contest, diabetic disease represents a great 
concern. Diabetes is one of the main pathologies causing death and at the same time implies a great 
incidence in national health expenditure, especially because of the stringent need for patient monitoring. 
Moreover, these diseases more easily result in comorbidity and for this reason more attention needs to 
be paid to their monitoring. In Italy, diabetes affects more than 3.5 million people, about 5.5% of the 
general population. Current epidemiological data show that 1 person out of 3 affected by diabetes is 
older than 65 [1]. Therefore, the aim of health systems is to ensure continuity of medical services 
reducing their economic impact. This problem has led to the search for alternative models to the 
traditional patients care approach. Telemedicine represents a new way of providing health care services, 
through the distribution of health-related services and information via electronic information and 
telecommunication technologies. In particular, telemonitoring services using wearable sensors exploit 
the potential of the Internet of Things (IoT) to ensure an effective long-term medical assistance because 
they allow to extract physiological information of patients to assist the doctor in the decision-making 
process and to manage the disease remotely [2].  

1.1. State of the art 

In literature, different decision-making support tools can be found, and most of them were based 
on IT programmes and algorithms to analyse and elaborate biomedical data and signals [3]. The clinical 
parameters detected by the telemonitoring platforms must be processed to obtain meaningful and 
useful results for doctors and for the patients himself. The processing phase requires the introduction 
of algorithms that allow real-time processing of clinical parameters; in this way it is possible to detect 
pathologies and constantly monitor patients in chronic conditions, reducing the risk of serious damage 
deriving from non-timely healthcare, and to act promptly in case of critical issues [4]. CDSS, equipped 
with classification techniques or methodologies like Neural Network, Naïve Bayes, Support Vector 
Machine, have shown their ability in helping the diagnosis of pathologies. A problem that arises in the 
management of patients is extracting all the risk factors and building a treatment plan based on overall 
conditions of patients. To deal with uncertainty in health monitoring, it is necessary to refer to a 
methodology that allows automatically to take vital parameters and to calculate the risk value relating 
to the health condition to trigger if necessary, an alarm state [5]. A Fuzzy Inference System (FIS), 
obtained by combining the potential of Fuzzy Logic (FL) and Expert Systems, gives the possibility of 
patients’ health conditions monitoring by modelling the uncertainty and ambiguity that characterize 
clinical data and by reproducing cognitive process of experts through inferential techniques [6,7]. In 
the state-of-art, many researchers apply classification algorithms and FIS to support care pathway 
planning starting from the evaluation of their physiological parameters, as shown in Table 1. 
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Table 1. Key features of the state-of-the-art studies. 

Study Research Goals Classification Algorithms FIS 

[8] Detection of Diabetes Mellitus to decrease the 

death rates 

 SVM − 

[9] Comparative study between algorithms to detect 

diabetes 

 SVM 

 Random Forest 

 Decision Tree 

− 

[10] Early detection of chronic diseases related to 

kidney using clinical data 

 K-Nearest Neighbour  

 SVM 

 Decision Tree 

 Logistic Regression 

− 

[11] Detection of normal and abnormal regions in liver 

cancer 

 Neural network classifier 

 Multinomial multivariate 

        Bayesian classifier 

− 

[12] Clinical care of β thalassemia patients of the Rare 

Red Blood Cell Disease Unit 

- 2 inputs

[13] Follow up of the transplanted patients due to renal 

pathology 

- 2 inputs

[14] Determination of coronary heart disease risk of 

patients 

- 4 inputs

[15] 
Classification of the conditions of ambulatory 

clinical parameters of patients and sending of 

alerts according to the pre-diagnosis 

- 
5 inputs

Our system 
Classification of type-2 diabetic patients and 

monitoring of their physiological parameters to 

detect a critical condition 

 Random Forest Classifier 

 Multilayer Perceptron 

        Classifier (Neural Network) 

 Naïve Bayes  

 SVM 

5 inputs

CDSS, equipped with classification techniques or methodologies like Neural Network, Naïve 
Bayes, Support Vector Machine, have shown their ability in helping the diagnosis of diabetes and their 
type [16–19]. Among the different knowledge-based approaches, fuzzy-based CDSSs can be an 
effective diagnostic support for identifying these diseases and suggesting the actions to be followed 
depending on the disease severity [20,21]. However, commonly these systems require specifics 
pathological tests for acquiring determined clinical parameters. 

Differently from other studies, here we propose a complete CDSS, based on both FIS and 
classification algorithms, that recognizes subjects with type-2 diabetes between healthy and 
pathological ones with a high accuracy and, for the diabetic patients, can assess and monitor the health 
status by leveraging physiological parameters that can be acquired at home by commercial medical 
devices during daily care routines. The main advantage is that these parameters are easy to recover and 
allow a complete characterization of the clinical picture of the pathological subject before a clinical 
deterioration occurs. In so doing, the proposed approach allows the remote monitoring of patients’ 
outcomes and clinical conditions and the system impacts on the containment of health expenditure 
thanks to the reduction of hospitalizations. Furthermore, note that the system knowledgebase is built 
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in agreement with information provided by medical researchers, thus obtaining efficient inference rules 
according to the medical standards. 

1.2. Fuzzy Inference System 

A Fuzzy Inference System (FIS) is an intelligent system that allows to reproduce the ability of 
the human mind to approximate vague data, to extract from them useful information and to produce 
crisp output [22]. Its potential can be applied to numerous domains and particularly to the medical field 
to model the high complexity and uncertainty that characterizes medical processes [23,24]. Starting 
from the definition of the system knowledge-base, built through the help of doctors and clinical experts, 
a FIS gives the possibility to transfer human and expert knowledge into intelligent and automatic 
models using linguistic terms [25]. Fuzzy sets are used to treat uncertainty and to represent knowledge 
through rules since the Fuzzy Logic allows the interpretation of data with predefined linguistic 
variables according to appropriate IF-THEN rules written as: 

 IF situation THEN conclusion  

where the situation represents the antecedent or the premise consisting of fuzzy terms connected by 
fuzzy operators, while the output is called consequent or conclusion [26]. Fuzzy logic defines the 
inferential mechanisms needed for reaching the output value related to the clinical status of type-2 
diabetic patients starting from their physiological parameters and constitutes the inferential engine of 
the Fuzzy Inference System (FIS). 

2. Methods 

This section provides the main concepts on which is based the processing algorithm created to 
identify the level of risk related to the health status of patients. To perform the data processing Colab 
platform, a Cloud computing environment that allows to use Python as a programming language, is 
used to create a script that automatically detects significant patterns in the patients’ dataset and to make 
predictions on the future trend of clinical parameters. With respect to the diagnosis of type-2 diabetic 
patients, the capabilities of four different classification algorithms are exploited: a Random Forest 
Classifier, a Neural Network based on a Multilayer Perceptron Classifier, a Naïve Bayes Network and 
a Support Vector Machine (SVM). The choice of these algorithms was mainly driven by the intention 
of increasing the code quality and optimizing the performances of the learning operations on the dataset 
provided. Indeed, the classifiers used are all in the MLlib library, a machine-learning library created 
by Apache Software Foundation. The available data mining algorithms that allow realizing the 
multiclassification and a tuning operation in the parameters of the classifiers and that have vastly 
different designs are selected. The developed FIS system takes advantage from the Mamdani-type FIS, 
proposed by Professor Ebrahim Mamdani in 1975, which represents the method currently most used 
for the Fuzzy Systems design due to its simple structure [27]. As the implementation of the data mining 
architecture, Fuzzy Inference System takes advantage from the Colab platform and Python language. 
The Data Science libraries and tools Numpy, SciKit-Fuzzy and MatPlotLib are imported and installed 
to perform the algorithm. The clinical variables exploited for the implementation of the FIS are the 
Systolic Blood Pressure (SBP), Heart Rate (HR), Temperature (T), Oxygen Saturation (SPO2) and 
Blood Sugar (BS), since, according to previous medical knowledge, they are the most significant for 
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determining the current health status of a generic diabetic patient [28]. Once implemented, the FIS 
must be validated on medical data related to real clinical condition of patients for testing the 
effectiveness of its real-life use. Indeed, the final use can also be tele-monitoring in home health care, 
where the FIS receives, as real-time inputs, the values of vital parameters coming from wearable 
sensors applied to the patient. Hence, to this final aim it is crucial that predictions and identification of 
the health risk level are always reliable and consistent with the actual user condition. 

2.1. Type-2 diabetic patients’ classifier 

To obtain a classification, the information regarding some features of the objects in question are 
used, and compared, in a special multidimensional space, with those of a training set. A formalization 
of the classification problem can be the following: starting from a series of training data {(x1, y), (x2, 
y), ..., (xn, y)} we must produce a classifier h: X→Y that maps new elements x ∈ X on the labels y ∈ 
Y. In this work four classifiers are used to identify subjects with diabetes: Random Forest, Multilayer 
Perceptron, Naïve Bayes and SVM. To test the goodness of the classification model and the precision 
value achieved, the dataset is randomly divided into two parts, respectively collecting 80% of the total 
data in trainingData, and in the testData the remaining 20%. The classifier training phase is performed 
on the trainingData set, while the test phase is on the testData set. Each classifier categorizes the 
incoming tuple according to the model learned during the training phase. The accuracy value achieved 
by each classifier could be influenced by the specific distribution of the dataset between trainingData 
and testData. The value recorded could be due to luck and therefore not representative of the model's 
level of goodness. To confirm that the accuracy value is not sporadic, but that it is the value of accuracy 
achieved by the classifier, a ten-fold cross-validation is performed.  

2.1.1. Dataset preparation 

In this work, the statistical sample is selected from the data in the paper medical records stored at 
the Anti-Diabetes Centre (CAD) of the Local Health Authority ASL Naples 1, District 25 from the 
year 2004 to 2019. The collected data do not include sensitive, identification and personal data, to 
comply with the provisions of the Legislative Decree on Privacy 196/2003 [29]. 

The total number of records collected amounts to 1523, all belonging to type-2 diabetes patients 
(updated to 10/21/2019). The physiological parameters taken into account are as follows: temperature, 
blood sugar, systolic blood pressure, oxygen saturation and heart rate. 

Below a table listing dataset characteristics is reported in Table 2. 
Note that, to ensure that data were ready for their correct processing, sometimes it has been needed 

to cope with the absence of heart rate measurement within some of the diabetes medical records. 
However, during the data collection phase it was possible to attribute this lack mainly due to the 
alternative acquisition of electrocardiographic reports by the medical staff; for this reason, when the 
latter were regular and the clinicians confirmed a perfectly normal cardiovascular system for the 
subjects, a heart rate value belonging to the range of normal values, between 53 and 100 bpm, was 
randomly assigned considering the uniform distribution of our training data that were in a normal range. 
This dataset has been properly preprocessed and optimized, for performing the training phase of the 
three classification algorithms. Specifically, to allow the classifier to distinguish between diabetic and 
healthy patients, it was necessary to add artificially generated healthy patients’ data to the dataset. Data 
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of healthy patients have been produced automatically by simply ensuring that the values generated are 
inside of intervals delineated by specific thresholds provided by domain experts. 

Table 2. Dataset characteristics. 

Disease Type-2 Diabetes 

#patients 1523 

#male 744 

#female 779 

up to 30 y/o 4 

between 30 and 40 y/o 28 

between 40 and 50 y/o 86 

between 50 and 60 y/o 283 

between 60 and 70 y/o 637 

between 70 and 80 y/o 382 

between 80 and 90 y/o 103 

#patients without heart rate value 188 

Using this approach, with the help of Matlab scripts, new synthetic data representative of the new 
class attribute value ‘Healthy’ were generated. The new tuples are obtained by ensuring that the new 
randomly generated values are within a specific range and follow a well-defined distribution (the value 
of the standard deviation of each feature is a priori defined in the script). Since the new data are 
randomly generated, the classification models may be too biased towards the new “artificial” class. 
For this reason, the classifiers would have a very low accuracy. To avoid this kind of problem the 
number of new tuples of the “healthy” class is slightly less than the number of tuples of the other class. 
(1337 healthy versus 1523 diabetics). 

The fuzzy sets of input/output variables have been defined with the help of the physicians for the 
correct labelling of the ranges relating to the parameters; the fuzzification of the inputs has been 
achieved by using triangular and trapezoidal membership functions defined in accordance with 
threshold values provided by medical researchers and clinicians.  

2.1.2. MLlib model selection 

MLlib’s tooling is used to optimize hyperparameters in algorithms and pipelines. MLlib supports 
model selection using data to find the best model or parameters for a given task. The tools require an 
Estimator, the algorithm or pipeline to tune, a set of ParamMaps, a “parameter grid” to search over, 
and an Evaluator, a metric to measure the performance of the model. At a high level, these tools split 
the input data into separate training and test dataset, they iterate through the set of ParamMaps for each 
pair, fit the Estimator using those parameters and get the fitted model. Finally, they evaluate the 
model’s performance using the Evaluator and select the model produced by the best-performing set of 
parameters. First, we create a single (training, test) dataset pair, split the dataset into two parts using a 
train ratio parameter and implement the classifier. According to the specific features of each of the 
classifiers, careful tuning of their parameters is carried out and the goodness of the achieved model is 
evaluated. Each of the algorithms will have specific parameters to set based on its characteristics. Then, 
the CrossValidator tool is exploited to split the dataset into a set of 10 folds, which are used as separate 



2660 

 
Mathematical Biosciences and Engineering  Volume 18, Issue 3, 2654–2674. 

training and test datasets (10 equal sized partitions of data at 10 instances of learning, using 9 of them 
for training and 1 for testing). To evaluate a particular ParamMap, CrossValidator computes the 
average evaluation metric for the models produced by fitting the Estimator on the 10 different (training, 
test) dataset pairs. To help construct the parameter grid, we use the ParamGridBuilder utility. After 
identifying the best ParamMap, CrossValidator finally re-fits the Estimator using the best ParamMap 
and the entire dataset. Figure 1 indicates the code section that implements the training and the accuracy 
test phases for the Random Forest classifier. The same operations are performed also for the other 
classification algorithms listed above. 

 

Figure 1. Random Forest Classifier training and test. 

2.1.3. Voting technique 

Each of the three classifiers can discriminate a specific pathology with a higher level of accuracy 
than the remaining two classes. So, once the three classifiers get the predictions in output, these are 
used by a voter to identify the majority class to be attributed to the tuple. The voter uses an ensemble 
technique based on majority policy to achieve better performances. This technique requires that, once 
the predictions from the four classifiers are obtained, they are used by a voter to identify the majority 
class to be attributed to the tuple. Indeed, voting makes a prediction corresponding to that which 
receives more than half of the votes, assigning to each tuple the value expected by at least three of the 
classifiers. If classifiers have different values, the voter chooses the prediction provided by the Random 
Forest Classifier because it is usually characterized by greater precision [30]. 
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2.2. FIS implementation 

The goal of the FIS is to predict the different grades of severity related to current clinical picture 
of the patients and, hence, synthesize them on a coloured graph for the ease of representation. The 
design of the FIS for the monitoring of the health status of diabetic patients can be summarized into 3 
main stages: fuzzification, inference and defuzzification. All the designed clinical linguistic variables, 
membership functions and rules have been included into a Mamdani FIS, according to [31–34]. 
Mamdani linguistic model is built on Fuzzy IF-THEN rules where both the preceding and consequent 
sentences contain linguistic variables and, therefore, it is an intuitive model often used in CDSS thanks 
to its ability to implement human knowledge and human experience in the system, as done in this work 
where the knowledge-base is determined from the expertise of medical doctors and patients’ 
information [35]. 

Following, the Mamdani framework and the basic knowledge implemented into the system are 
described with reference to a multi-inputs and single-output decision model, as shown in Figure 2. 

 

Figure 2. Mamdani FIS process. 

To perform inference, the first step is to “evaluate the antecedent”, which involves fuzzifying the 
inputs and applying any necessary fuzzy operators to each rule. Given the information input u = 
{u1, ...,un}, the strength level or firing level αi of the rule Ri is calculated in terms of the degrees of 
membership µAij. If the antecedent clauses (the if part) are related by AND then: 

 [αi = min(µAi,1 (u1), ..., µAi,n (un))] (1) 

Else if the antecedent clauses are related by OR then: 

 [αi = max(µAi,1(u1), …, µAi,n (un))] (2) 

Indeed, the strength level is then used to shape the output fuzzy set that represents the consequent 
part of the rule [36]. The second step is the so-called “implication,” or, in other words, applying the 
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result of the antecedent to the consequent. The operator of implication for the rule Ri is defined as the 
shaping of the “consequent” (the output fuzzy set), based on the “antecedent”. The input of the 
implication process is a single number given by the “antecedent”, and the output is a fuzzy set: 

 [µBi(y) = min(αi(u), µBi(y))] (3) 

where y is the variable that represents the support value of output the membership function µBi(·).  
Now, to unify the outputs of all the rules, we need to aggregate the corresponding output fuzzy 

set into one single composite set. The inputs of the aggregation process are represented by the clipped 
fuzzy sets obtained by the implication process. The aggregation method exploited in our application is 
the max(·) one.  

Finally, the defuzzification process has been performed starting from the output fuzzy set 
resulting from the aggregation process. The operations of defuzzification are computed as the centre 
of gravity (COG) of the strength levels: 

 ሾܩܱܥሺݕሻ ൌ
∑ ௬ஜಳ೔ሺ௬ሻ
೘
೔సభ

∑ ஜಳ೔ሺ௬ሻ
೘
೔సభ

] (4) 

2.2.1. Identification of the fuzzy sets 

Before their design, there is the need of a preliminary phase for the correct definition of the ranges 
into which the inputs variables values must be divided and the choice of the fuzzy sets to be used. in 
our work, this phase involved the intervention of the clinical experts of the Anti-Diabetes Centre (CAD) 
for the correct labelling of sets. It is necessary to specify that the therapeutic diagnostic path of a 
diabetic patient involves the participation of various professionals, from the general practitioner to the 
dietician; in our case, a diabetologist (8 years of experience), a general practitioner (3 years of 
experience) and a nurse (10 years of experience) of the Anti-Diabetes Centre help us in this preliminary 
phase. Each fuzzy set has been hence identified by a level and a score indicating the degree of 
physiological parameter impairment that the set describes. The ranges of each input and their 
corresponding fuzzy set are recorded in the following Table 3. 

2.2.2. Fuzzification of inputs and output 

Fuzzification follows the preliminary design phase and aims characterizing the inputs and 
determining the degree to which each of them belongs to a particular fuzzy set through membership 
functions definition. Input fuzzification has been here achieved by using trapezoidal membership 
functions in accordance with threshold values provided by clinician knowledge and medical standards 
(see the Membership Functions in Figure 3). 

With respect to the output variable Risk Group (RG), which refers to the degree of illness of 
patients, 15 fuzzy sets have been defined whose membership functions are selected as triangular (see 
Figure 4). The built fuzzy sets are reported in Table 4.  

Herein, the Normal fuzzy set (NRM) refers to a normal health status, the Low Risk Group fuzzy 
sets (LRG1-LRG4) indicate an intermediate alarm level and the High Risk Group fuzzy sets (HRG5-
HRG14) are associated with a dangerous situation. The Risk Groups are inspired by a scoring scale 
validated and used in hospitals, the Early Warning Score (EWS) [37]. EWS scale requires that clinical 
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instability of the patient is calculated from the sum of the scores attributed to each parameter according 
to the value they assume. Thus, considering the scores defined by the input fuzzy sets, the output can 
take all values between 0 and 14. 

Table 3. Inputs fuzzy sets. 

Input Ranges Fuzzy Sets 

Systolic Blood Pressure 

 (SBP) 

< 75 Low3 

70–85 Low2 

80–100 Low1 

95–160 Normal0 

> 150 High2 

Oxygen Saturation 

(SPO2) 

< 85 Low3 

83–90 Low2 

87–95 Low1 

> 93 Normal0 

Heart Rate 

(HR) 

< 50 Low2 

45–60 Low1 

53–100 Normal0 

95–115 High1 

105–130 High2 

> 125 High3 

Temperature 

(T) 

< 36.5 Low2 

36–38.5 Normal0 

> 38 High2 

Blood Sugar 

(BS) 

< 66 Low3 

63–72 Low2 

60–110 Normal0 

106–150 High2 

> 140 High3 

 

Figure 3. Inputs membership functions. 
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Table 4. Risk group fuzzy sets. 

Output Range Fuzzy Sets 

Risk Group 

0 < RG < 0.5 

0.5 < RG < 1.5 

1.5 < RG < 2.5 

2.5 < RG < 3.5 

3.5 < RG < 4.5 

4.5 < RG < 5.5 

5.5 < RG < 6.5 

6.5 < RG < 7.5 

7.5 < RG < 8.5 

8.5 < RG < 9.5 

9.5 < RG < 10.5 

10.5 < RG < 11.5 

11.5 < RG < 12.5 

12.5 < RG < 13.5 

13.5 < RG < 14.5 

NRM 

LRG1 

LRG2 

LRG3 

LRG4 

HRG5 

HRG6 

HRG7 

HRG8 

HRG9 

HRG10 

HRG11 

HRG12 

HRG13 

HRG14 

 

Figure 4. Output membership function. 

2.2.3. Design of Fuzzy rules and defuzzification 

Starting from the membership functions, 1800 rules have been derived to cover all possible inputs 
combinations. Note that, the number of rules can be obtained from the following formula [27]: 

 [ܰ ൌ ݔ	ଶ݌	ݔ	ଵ݌ …  ௡] (5)݌	ݔ

where N is the total number of possible rules, n is the number of linguistic variables and pn is the 
number of linguistic terms for each linguistic variable. 

A sample of the rules is shown in Figure 5. 
Through the final defuzzification process, the combined fuzzy set from aggregation process will 

output a single scalar quantity (i.e., the diabetic patient’s Risk Group). Depending on the numerical 
value assumed by the system output, an alert message displays the necessity of cares or physical 
examinations according to the clinical priority of the monitored diabetic patient depending from his/her 
Risk Group. 
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Figure 5. A sample of implemented rules. 

3. Results 

3.1. Performance of the type-2 diabetic patients’ classifier 

Following the processing implemented through the classification algorithms, accuracy precision, 
recall and F1 values are obtained for each of the classifiers. These values are shown below: 

Table 5. Evaluation metrics of the classifiers. 

Algorithm Accuracy Precision Recall F1 

Random Forest 0,91364 0,92648 0,91364 0,91375 

Multilayer Perceptron 0,85492 0,90042 0,87219 0,85171 

Naïve Bayes 0,81865 0,82758 0,81865 0,81900 

SVM 0,82728 0,82961 0,82728 0,82765 

In this work, more attention is given to the accuracy value to compare performances pre- and 
post-cross-validation. 
1) Random forest:  

The model has an accuracy of 91.36%. To verify that the obtained accuracy value is not due to 
randomness and therefore not representative of the model's level of goodness, an approach with ten-
fold cross-validation is considered. The new architecture reaches an accuracy of 92.57%. 
2) Multilayer perceptron: 

For this algorithm it was necessary to set the maximum number of iterations, the number and size 
of the intermediate and output layers to stack the input data in matrices to speed up the calculation. 
This model reports an accuracy of 85.49%. After cross-validation, it shows an accuracy of 88.43%. 
3) Naïve Bayes: 
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The accuracy of the model reaches 81.86%. Following the 10-fold cross-validation, on the other 
hand, it is lower and equal to 81.00%. 
4) SVM: 

For this algorithm, the accuracy is 82.73%. The cross-validation allows to reach an accuracy of 
86.7%. Table 6 summarizes for each of the classifiers the accuracy values achieved with both the 
random case and the ten-fold cross-validation. 

Table 6. Summary table of classifiers accuracy. 

Algorithm Accuracy Accuracy post cross-validation 

Random Forest 0,91364 0,92573 

Multilayer Perceptron 0,85492 0,88428 

Naïve Bayes 0,81865 0,81002 

SVM 0,82728 0,86701 

Specifically results summarized disclose that the classification algorithm that obtains the highest 
precision value is the Random Forest. Indeed, this algorithm achieves an accuracy of about 93%, unlike 
the other classification models that achieve lower performance. To obtain better performance from the 
data analysis, the ensemble learning technique was finally applied. An illustrative example of the 
results obtained applying the voting procedure are shown in Figure 6.  

 

Figure 6. Example of the voting procedure. 

To evaluate the performances of the voter, the total value of accuracy reached is calculated and 
compared with the other methods. The voter system achieves an accuracy value of 93.501%. The 
overall architecture allows to obtain a better predictive model with higher accuracy levels than those 
obtained using single classification algorithms. The voting technique, therefore, allows to preserve the 
ability to correctly classify specific pathologies observed for each of the four classifiers, improving the 
total accuracy of the architecture. 

3.2. FIS validation on four case studies 

Here some illustrative results on the automatic evaluation of the Risk Group are presented for 4 
given patients, among the 1523 accesses detected at the Anti-Diabetes Centre, in order to provide a 
usage example on the field. Hence, considering real physiological parameters values obtained from 
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database of data collected at the CAD as inputs of the system, it has been possible to compare FIS 
results with the real diabetic patients' health status; indeed, system output is a representative level of 
patients’ clinical picture, whose actual condition are documented by the CAD medical records. The 
considered parameters characterize the 4 exemplar patients, or case study, that, at the time of the 
follow-up visit at the CAD, have presented the following different conditions: 
1) Normal clinical picture; 
2) Slightly compromised clinical picture; 
3) Hyperglycaemic crisis clinical picture; 
4) Compromised clinical picture. 

3.2.1. Case study 1 

As the first case, it has been considered a diabetic patient who presents the following normal vital 
parameters at the follow-up visit: 
 Systolic Blood Pressure (SBP) = 140 mmHg; 
 Heart Rate (HR) = 90 b/m; 
 Oxygen Saturation (SPO2) = 98%; 
 Temperature (T) = 37°C; 
 Blood sugar (BS) = 95 mg/dl. 

 

Figure 7. Example of data entry via the Colab platform. 

 

Figure 8. Results display for Case study 1. 

Healthy patient. Risk Group: 0.194444444442 
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The analysis ends with the display of a message that correctly predicts the severity of patient's 
health status and the risk level obtained from defuzzification. Indeed, results in Figure 8 disclose that 
there is no risk for the patient (in fact the message "Healthy patient" is displayed) and the identified 
Risk Group is 0.19. Note that the FIS allows to make the output of the system easier to be interpreted 
by both the patient and the clinician, since the output membership function graph is also displayed on 
the screen and the result of the defuzzification process is clearly highlighted on the display. 

This result coincides with the diagnosis made by the clinician for the patient and documented in 
the diabetes medical record. 

3.2.2. Case study 2 

As a second case, a diabetic patient with normal blood sugar and the remaining parameters slightly 
outside the normal range is presented. Indeed, we have that the systolic blood pressure is slightly low 
and the heart rate is slightly above the norm: 
 Systolic Blood Pressure (SBP) = 90 mmHg; 
 Heart Rate (HR) = 100 b/m; 
 Oxygen Saturation (SPO2) = 98%; 
 Temperature (T) = 37 °C; 
 Blood Sugar (BS) = 75 mg/dl. 

Even then, results in Figure 9, correctly assess that the risk is very low (a simple check-up is 
suggested in the output FIS message) displaying a Risk Group 2, in accordance with the real condition 
of the patient. 

 

Figure 9. Results display for Case study 2. 

3.2.3. Case study 3 

As a third exemplar case, we have a diabetic patient, who is at the check-up in a condition of 
hyperglycaemia. Chronic hyperglycaemia, which persists even under fasting conditions, is commonly 
caused by diabetes mellitus; in prediabetic states it can occur as intermittent hyperglycaemia. As 

Low Risk Level, check-up suggested. Risk Group: 2.0 
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documented in the CAD medical record, the health status of the diabetic patient under examination is 
not worrying and the vital parameters are normal except for blood sugar, which instead reaches a peak 
of 300 mg/dl: 
 Systolic Blood Pressure (SBP) = 130 mmHg; 
 Heart Rate (HR) = 54 b/m; 
 Oxygen Saturation (SPO2) = 98%; 
 Temperature (T) = 37 °C; 
 Blood Sugar (BS) = 300 mg/dl. 

Being the analysis of a single episode, it is not possible to discriminate whether it is chronic or 
intermittent hyperglycaemia, but certainly, in the perspective of the periodic use of the FIS by a chronic 
patient, the identification of an adequate alarm state can be decisive for timely intervention. For this 
reason, it is interesting to understand the actual response of the system solicited by a clinical picture in 
which there is a single extremely high input. As shown in Figure 10, the level of risk identified is at 
the limit between low and high degree of alert; indeed, the identified Risk Group is 4. 

 

Figure 10. Results display for Case study 3. 

The answer of the FIS has been validated also for this case study, comparing it with the “true” 
answer provided by the clinicians. The discussion with the medical experts confirms that the output of 
our system is once again consistent with the patient's actual state of health, to which a check-up visit 
is in any case correctly suggested. 

3.2.4. Case study 4 

As the last example, the case of a compromised clinical picture has been considered. Both the 
systolic blood pressure and blood sugar values are in fact altered: 
 Systolic Blood Pressure (SBP) = 200 mmHg; 
 Heart Rate (HR) = 106 b/m; 
 Oxygen Saturation (SPO2) = 98%; 

Low Risk Level, check-up suggested. Risk Group: 4 
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 Temperature (T) = 37 °C; 
 Blood Sugar (BS) = 181 mg/dl. 

Therefore, according to the documented health status, the patient is exposed to a significant risk. 
As shown in Figure 11, the FIS returns a medium-high risk level; the identified Risk Group is 6.16 and 
a control visit is deemed necessary. 

 

Figure 11. Results display for Case study 4. 

Again, we have that the prediction made by the FIS is consistent with patient’s condition, 
confirming the excellent functioning of the FIS. Indeed, the computed Risk Group is at an intermediate 
level of the risk level scale which includes 15 different groups and so the HRG6 consistently identifies 
an overall situation of intermediate severity. 

4. Discussion and conclusions 

This paper proposes a CDSS for the identification of type-2 diabetic patients and for the 
determination of the risk level related to their health status, to early detect an alarm condition and 
prevent a critical situation. In particular, the use of classification techniques makes the system firstly 
able to recognize the type of user, distinguishing between pathological and non-pathological one. The 
choice of multiclass classifiers was dictated by the future possibility of expanding the sample of data 
with parameters from type 1 diabetes patients; this would allow us to instruct classifiers to distinguish 
between healthy, type 1 or type 2 diabetic users. After the recognition phase, the system will be able 
to determine the user’s profile, in this paper characterized by the type-2 diabetes pathology, and to 
define his health state through a Fuzzy Inference System.   

The mapping process of the inputs into the output is governed by appropriate inference rules: to 
include all the possibilities among the inputs, 1800 rules are developed, mathematically formulated to 
allow the conversion of the fuzzy system output into a single value, attributed to the health condition 
of the patients. 

Four assessments shown in Results are generalizable and applicable to the entire CAD dataset; in 
this way medical and clinical conclusions can be easily presented for each patient. The FIS thus 

Medium-high, check-up required. Risk Group: 6.159663865546219 
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obtained shows a marked ability to identify diabetic patients in critical conditions, consistently the 
information learned from CAD medical records; for these reasons it represents an efficient support 
system for clinical decisions, capable of strengthening staff skills in interpreting vital parameters of 
the patient. With the gradual development of health care systems exploiting Artificial Intelligence 
potential, the CDSSs should play a central role in reducing medical errors and in improving the quality 
of health care and the efficiency of the health care delivery system. 
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Appendix 

The essential definitions to describe the theoretical principles of a FIS are presented below. A 
linguistic variable is a variable whose values are words or sentences of a language, natural or 
artificial, exploited to ease a gradual transition between the two states of binary logic and to express 
in the most natural way the measurements’ vagueness, which is not possible by using crisp variables. 
Hence, it holds: 
Definition 1. Linguistic variable. A linguistic variable can be characterized by a quintuple (L, F(L), 
U, R, M) in which L is the name of the variable; F(L) is the term-set of L, that is the collection of its 
linguistic values; U is a universe of discourse; R is a syntactic rule that generates the terms in F(L); M 
is a semantic rule which associates to each linguistic value X its meaning, M(X), where M(X) denotes 
a fuzzy subset of U. 
Definition 2. Fuzzy variable. A fuzzy variable is characterized by a triple (L, U, F(L; u)), in which L 
is the name of the variable; U is a universe of discourse (finite or infinite set); u is a generic name for 
the elements of U; and F(L; u) is a fuzzy subset of U which represents a fuzzy restriction on the values 
of u imposed by L. F(L; u) will be referred to as the restriction on u or the restriction imposed by L. 
The assignment equation for L has the form: 

 x = u ∶ F(L)  

and represents an assignment of a value u to x subject to the restriction F(L). 
In the universe of discourse U, a fuzzy set F(L; u) is characterized by a membership function (MF) 

µ(F) that assigns a membership value to elements u, within a predefined range of U, as follows: F = 
{(u, µF) | u ∈ U and µF : U → [0, 1]}. Therefore, a membership function is a distribution that maps 
every single point of the input space (i.e. the universe of speech, which represents the set of the 
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linguistic variables) in a membership value between 0 and 1. The membership functions related to the 
various linguistic variables are composed in order to constitute a rule. Indeed, fuzzy sets are used to 
treat uncertainty and to represent knowledge through rules since the Fuzzy Logic allows the 
interpretation of data on the basis of predefined linguistic variables according to appropriate IF-THEN 
rules written as: 

 IF situation THEN conclusion  

where the situation represents the antecedent or the premise consisting of fuzzy terms connected by 
fuzzy operators, while the output is called consequent or conclusion. 
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