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Abstract: The balance between exploration and exploitation is critical to the performance of a 
Meta-heuristic optimization method. At different stages, a proper tradeoff between exploration and 
exploitation can drive the search process towards better performance. This paper develops a 
multi-objective grasshopper optimization algorithm (MOGOA) with a new proposed framework 
called the Multi-group and Co-evolution Framework which can archive a fine balance between 
exploration and exploitation. For the purpose, a grouping mechanism and a co-evolution mechanism 
are designed and integrated into the framework for ameliorating the convergence and the diversity of 
multi-objective optimization solutions and keeping the exploration and exploitation of swarm 
intelligence algorithm in balance. The grouping mechanism is employed to improve the diversity of 
search agents for increasing coverage of search space. The co-evolution mechanism is used to 
improve the convergence to the true Pareto optimal front by the interaction of search agents. 
Quantitative and qualitative outcomes prove that the framework prominently ameliorate the 
convergence accuracy and convergence speed of MOGOA. The performance of the presented 
algorithm has been benchmarked by several standard test functions, such as CEC2009, ZDT and 
DTLZ. The diversity and convergence of the obtained multi-objective optimization solutions are 
quantitatively and qualitatively compared with the original MOGOA by using two performance 
indicators (GD and IGD). The results on test suits show that the diversity and convergence of the 
obtained solutions are significantly improved. On several test functions, some statistical indicators 
are more than doubled. The validity of the results has been verified by the Wilcoxon rank-sum test. 
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1. Introduction  

Many complex problems in real life are composed of conflicting and influential objectives, they 
need to be optimized simultaneously as much as possible in given constraints, that is, multi-objective 
optimization. These problems are very complex, difficult, but also very important. Multi-objective 
optimization is common and significant in actual life, and it is widely used in production and 
engineering design [1], job scheduling [2], management and decision-making [3], etc. In the 
multi-objective optimization problem, each objective restricts each other, it is impossible to have a 
solution that can make all the objectives achieve the optimal performance. Therefore, for the 
multi-objective optimization problem, the optimal solution is usually a set of non-inferior solutions, 
namely Pareto optimal solution set [4]. Therefore, the main tasks of multi-objective optimization are 
as follows: 1) Finding a set of solutions as close as possible to the Pareto front; 2) Finding a set of 
solutions as different as possible [4,5]. 

Meta-heuristic methods have powerful global search capabilities, which design iterative 
equations by simulating the behavioral characteristics of biological groups or the development and 
structural characteristics of physical things. Therefore, they are more appropriate for settling 
complex multi-objective optimization problems [6]. At present, a large number of Meta-heuristic 
methods have been proposed and improved to solve multi-objective optimization problems, such as, 
monarch butterfly optimization (MBO) which simplifies and simulates the migration process of 
monarch butterfly [7], slime mould algorithm (SMA) which is proposed based on the oscillation 
mode of slime mould in nature [8], Moth search algorithm (MSA) [9] which is a new kind of 
metaheuristic algorithm inspired by the phototaxis and Lévy flights of the moths, Harris hawks 
optimization (HHO) which simulates the predatory behavior of Harris hawk [10].  

Meta-heuristic methods include two contradictory processes: exploration and exploitation, 
which need to establish a balance between them [11,12]. When exploitation is enhanced, 
randomization of the search is increased, which is helpful to avert falling into the local optimal 
solution in the process of optimization and improve the convergence accuracy. Conversely, when 
exploration is enhanced, local search capability of the meta-heuristic algorithm is more powerful, 
and the convergence speed is faster, but the approach is easier to fall into local optimum, especially 
the diversity of the obtained solutions becomes worse [13,14]. Meta-heuristic methods are 
population-based search and optimization methods whose efficacy mainly depends on a fine balance 
between exploration and exploitation [15]. Therefore, the balance between exploration and 
exploitation has been widely studied in meta-heuristic optimization algorithms [15–20]. 

The meta-heuristic optimization algorithms should be equipped with special control parameters 
to adjust exploration and exploitation in different stages of optimization. The control parameters 
should be designed and adjusted according to the specific optimization problems. Generally, there 
are two ways to design the control parameters. One is the constant control strategy [21], that is, to 
keep the control parameters unchanged in the whole iterative search process. Another way is to 
dynamically adjust the value of control parameters in the iterative search process to achieve the 
balance between exploration and exploitation [22]. The first way is simple and easy to implement, 
but it is very difficult to clearly identify the exploration and exploitation phases. It is generally 
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considered that the strategy of more exploration in the early phase and more exploitation in the later 
phase is usually employed in the whole search process，such as linear control strategy [1,14], and 
nonlinear control strategy [22,23]. Therefore, the method of dynamically adjusting the value of control 
parameters is widely employed in meta-heuristic optimization algorithms. As discussed in [24], a 
proper balance between exploration and exploitation may drive the search process towards better 
performance. The balance between exploration and exploitation is critical to the performance of a 
meta-heuristic optimization method. However, a scheme of adjusting control parameters that 
performs better in problem A might not work effectively in problem B. How to balance the 
relationship between exploration and exploitation in complex optimization problems has become the 
goal of meta-heuristic algorithms design or improvement, which is still an open question. For this 
problem, the solution in this paper is that different values of the same parameters can be employed to 
different subpopulations of a meta-heuristic optimization method at the same time to ensure that a 
suitable value of parameters can be employed for the specific optimization problem. 

As one of the dominant modern meta-heuristic optimization algorithms, grasshopper 
optimization algorithm (GOA) has been successfully applied to various optimization problems in 
several fields. The good performance of GOA has been proved in [1]. It has one control parameter, 
which balances between exploration and exploitation. Therefore, its advantages are over the other 
optimization algorithms, including ease of implementation, speed in searching, and ease of 
modifying algorithm components [25]. However, it suffers from slow convergence and is prone to 
getting stuck in local optima [25,26]. To resolve the issues above, a multi-group and co-evolution 
framework was proposed to improve GOA and apply to multi-objective optimization problems, 
which draws on the idea of co-evolution strategy in [24]. In order to achieve population diversity and 
evolutionary adaptability, each subpopulation of GOA is assigned a different parameter	 c, including 
linear adaptation, cosine adaption, arc adaption, etc. At the same time, the subpopulation is 
dynamically updated in the optimization process. 

The main contributions of this research are as follows:  
1) A multi-group and co-evolution framework is proposed to archive a fine balance between 

exploration and exploitation of swarm intelligence algorithm 
2) Multi-objective grasshopper optimization algorithm base on the multi-group and 

co-evolution framework is developed to improve the convergence and diversity of optimal solutions. 
3) Detailed experiments are designed on several benchmark functions to demonstrate the 

effectiveness of the proposed methods. 
The rest of this paper is organized as follows. Section 2 introduces the related work about 

multi-objective optimization problems. Section 3 describes the definition of the multi-objective 
optimization problem to be solved in this paper. In Section 4, the multi-group and co-evolution 
framework, and the multi-objective grasshopper optimization algorithm based on this framework are 
illustrated in detail. Section 5 includes presentation and analysis of outcomes on test functions. 
Finally, Section 6 concludes the main work of this paper and suggests the next step of research work. 

2. Related works 

Multi-objective optimization problems do not have a globally unique optimal solution, but to 
discover a cluster of optimal solutions. Therefore, the key to solving multi-objective optimization 
problems is to find a set of non-inferior solutions in the solution space, that is, the Pareto front. The 
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approaches for settling multi-objective optimization problems can be divided into 5 categories [5]: 
decomposition methods [27,28], interactive methods [29,30], fuzzy methods [31,32], decision aid 
methods [33,34], and methods using meta-heuristics [35,36]. 

The meta-heuristic is an iterative generation progress that combines different heuristic 
algorithms to explore the search space. These algorithms are applied to settle complex optimization 
problems where traditional heuristics and optimization methods are not capable of being effective 
and efficient [37]. Constructing a dynamic balance mechanism between diversification and 
intensification is a key step. Diversification can explore the broader search space, while 
intensification is an in-depth exploitation of specific areas by using the accumulated experience in 
the previous search process. Meta-heuristic methods can quickly explore the areas containing 
high-quality solutions in the search space, meanwhile, they do not waste time to exploit areas that 
have been exploit before or can not find high-quality solutions. There are three meta-heuristic 
strategies: a dominance-based approach, an indicator-based alternative, and an adaptive proposal that 
incorporates both multi-objective strategies (dynamically allocating more resources to the most 
successful strategy during the execution) [38]. Meta-heuristic methods have widespread applications. 
The Non-dominated Sorting Genetic Algorithm (NSGA-II) is applied to settle the multi-objective 
optimization problem of telecommunication network, and then use the Choquet integral measure 
based on utility function to make the final choice [39]. A meta-heuristic method for RNA inverse 
folding problem is designed by Tian et al. [40], in which RNA inverse folding problem is defined as 
a multi-objective optimization problem, and the similarity between the target structure and the 
predicted structure is employed as a constraint. In [41], a novel flexible job shop scheduling problem 
based on linear programming model is built to schedule the spool fabrication activities. Then priority 
dispatching rules based heuristic scheduling approach is utilized to settle the problem. In [42], an 
extended Multi-row facility layout problem (MRFLP) has been studied, and the genetic algorithm is 
applied to resolve the optimization problem. 

Recently, many meta-heuristic nature-inspired algorithms are proposed. They are 
nature-inspired and population-based optimization algorithms, which have been developing and 
adapting in varying ways, such as learner performance based behavior algorithm (LPB) [43], 
Dragonfly Algorithm (DA) [44], cat swarm optimization (CSO) [45], Backtracking search 
optimization algorithm (BSA) [46], Donkey and Smuggler Optimization Algorithm (DSO) [47], 
Fitness Dependent Optimizer (FDO) [48] and IFDO [49], Particle Swarm Optimization 
Algorithm(PSO) [50], Firefly Algorithm (FA) [51], Grasshopper Optimization Algorithm (GOA) [1], 
and several hybrid algorithm of different nature-inspired algorithms including A hybrid of Shuffled 
Frog Leaping Algorithm and Genetic Algorithm (SFGA) [52], WOAGWO [53] hybridizing Whale 
optimization algorithm (WOA) [54] with Grey wolf optimization (GWO) [55], and a many-objective 
multi-agent coordination optimization algorithm (MOMCO) [56] hybridizing with EA.  

Swarm intelligence is an important meta-heuristic optimization method, which has been widely 
used in different fields as a very important optimization technology. Swarm intelligence optimization 
algorithm is a combination of randomness and some rules to solve the optimization problem, through 
the simulation of natural phenomena. This kind of algorithm has a general optimization process: 
firstly, the population is initialized randomly, and then the search direction of every individual in the 
population is guided according to the rules. Then when termination conditions are met (such as, the 
maximum number of iterations is reached), the algorithm stops, and the final solution is the global 
optimal solution. Therefore, the composition of their computational complexity is similar, which is 
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composed of three main parts: population initialization, population individual updating and fitness 
calculation. Generally, it is closely related to the number of iterations M, the size of the population N, 
the dimension of the decision space D, the complexity of updating function f1(x) of the individual 
and the complexity of the fitness function f2(x). Therefore, the computational complexity of swarm 
intelligence can be presented as , where the big 
oh notation is used to show the computation complexity.  is computational complexity of 
population initializing,  is the computational complexity of population 
updating, and  is the computational complexity of fitness calculation. Such as 
the computational complexity of PSO [50] is 	 	 , 
which takes	 ; the computational complexity of WOA [54] and GOA [1] is also takes 

 respectively. 

Table 1. Literature review of adjustment methods of parameter  in GOA. 

Reference Control 

strategy 

Method 

[1,14,57,58,60–63] LCS 
 

[64] NCS 

2

[64] NCS 
 

[59] NCS 
	

2
| |  

where 	 and  are the values generated from a wide variety of different chaotic maps in 

the t-th iteration. 

[65] NCS 1 1  
 where the values of w vary between 0 and 1, if w is greater than 0.5, exploration is more 

important, but if w is less than 0.5, exploitation is more important [65].

[66] NCS 

1 ⁄ ,	 	 	

	 	 ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

where,  and  determine the maximum/minimum value of all agents fitness when 

AGOA do a search operation, 	 determines the average fitness,  denotes the average 

fitness of the three parents in selection operation. δ,  and  notify the constant value in 

between 0 to 1[66].

∗ Formal	 notations	 used	 in	 this	 paper:	 c is a decreasing coefficient to shrink the comfort zone, repulsion zone, and attraction 

zone, which maintains the balance between exploration and exploitation of GOA;  and  indicate the current iteration and total 

number of iterations respectively;  and  represent the maximum and minimum values of parameter ; N is the number of 

grasshoppers; ub  and lb  are the upper and lower boundary of the D-dimensional search space separately; x  represents the 

position of the i-th grasshopper. 

Among these swarm intelligence algorithms, GOA has been proved to have good performance 
in literature [1]. Therefore, there is a lot of literature on GOA based improvements and related 
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applications. A comprehensive survey of the GOA is summarized in [25], which analyzes several 
modified versions of GOA and its applications in different fields in detail. For the purpose of 
ameliorating the optimization performance, GOA_jDE [57] which combines GOA and jDE [58] is 
proposed. GOA_jDE can greatly improve the convergence efficiency, convergence speed and 
calculation precision on the benchmark test in [57]. The chaos theory is also introduced into the 
optimization process of GOA, which employs chaotic maps to keep the exploration and exploitation 
progress balance of GOA and accelerate its global convergence speed [59]. A multi-objective 
grasshopper optimization algorithm for robot path planning in static environments was proposed to 
optimize several indexes such as cost, distance, energy or time [60]. 

In these GOA based optimization methods, the control parameter c is a significant parameter to 
maintain a balance between exploration and exploitation. The adjustment of parameter c can be 
divided into linear control strategy (LCS) and nonlinear control strategy (NCS), according to the 
classification method in [22]. In the original GOA, the linear control strategy is adopted for the 
control parameter c, which linearly decreases from the maximum value to the minimum value with 
the increase of the number of iterations. LSC transits linearly from the exploration phase to the 
exploitation phase. However, in order to balance exploration and exploitation more reasonably, some 
nonlinear control strategies (NCS) are proposed, such as cosine adaption, arc adaption, etc. A 
comprehensive table of adjustment methods of parameter c in GOA is presented in Table 1. 

In the optimization process of meta-heuristic methods, how to find a fine balance between 
exploration and development is critical. Each specific balance control strategy has a good 
performance in a certain kind of optimization problems, but how to select the appropriate balance 
control strategy for specific complex optimization problem is very difficult, and it needs a very deep 
understanding of the optimization problem. In order to solve the above issues, a framework is 
designed in this paper, which integrates a variety of balance control strategies to achieve adaptive 
selection of the appropriate balance and improve the optimization effect. 

3. Multi-objective optimization problem description 

The ordinary form of multi-objective optimization problem definition is as follows [4]: 

: , , … ,  (1) 

where x 	 x , x , … , x  is a point in the D-dimensional decision space (search space)，	 f
f , f , … , f  is an objective space with M optimization objectives. 

The solutions of multi-objective optimization problems are usually a group of non-inferior 
solutions called Pareto optimal solutions. The Pareto front is the boundary defined by the set of all 
point mapped from Pareto optimal solutions. Equations (2) and (3) define the set of Pareto optimal 
solutions  and Pareto front  separately [4]: 

∗: ∀ ∈ 1,2, … , , : ∗ ∃ ∈ 1,2, … , : ∗  (2) 

∗ : ∗ ∈ (3) 

In multi-objective optimization problems, the sub-objective functions may be uncorrelated or 
conflicting. It is not possible to have a certain solution that can make all the sub-objectives achieve 
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optimal performance. Therefore, the primary task of all multi-objective optimization algorithms is to 
seek out as many Pareto optimal solutions as possible [5]. The proposed method of this paper has two 
objects: 1) finding a set of solutions  which converge to the Pareto front  as close as possible, 
as shown in Eq (4); 2) finding a group of solutions as diverse as possible, as shown in Eq (5). 

 (4)  

(5) 

In this paper, the multi-group and co-evolution framework of swarm intelligence algorithm is 
designed to further achieve these two objects. By grouping the entire population into different 
subpopulations, the proposed framework increases the diversity of population and the randomness of 
search, to meet the requirements of Eq (5). In the iterative process, the co-evolution mechanism 
between subpopulations is established to ameliorate the convergence speed and accuracy of swarm 
intelligence algorithm, satisfying the requirements of Eq (4) as much as possible. The solution space 
of multi-objective optimization problem is transformed into the search space of the swarm 
intelligence algorithm, and the metrics of  is also transformed into the search conditions and 
evolution criterions of the swarm intelligence algorithm. So, in the multi-objective optimization 
problems, the convergence speed refers to the number of iterations t needed to find several 
solutions satisfying Eq (4). The convergence accuracy is determined by  in Eq (4), the smaller  
is, the higher the convergence accuracy is. The diversity of Pareto optimal solutions is determined by 
Eq (5). Each solution should keep a certain difference or distance. In the experiment, this paper does 
not directly and independently determine the parameters  and , but indirectly chooses the 
multi-objective optimal solutions according to the overall performance of their convergence and 
diversity on the real Pareto front. 

4. MOGOA based on the multi-group and co-evolution framework 

Firstly, the multi-group and co-evolution framework of swarm intelligence algorithm is presented 
in Section 4.1, including the design of the grouping strategy of the population, the co-evolution strategy 
among subpopulations, and the selection strategy of key parameters. In Section 4.2, we first briefly 
introduce GOA, and then illustrate how to integrate GOA into the framework in detail. MOGOA 
based on the multi-group and co-evolution framework is described in Section 4.3. 

4.1. The multi-group and co-evolution framework 

The multi-group and co-evolution framework is an optimization mechanism of swarm 
intelligence algorithm. It can keep the exploration and exploitation balance in the search process and 
ameliorate the speed and accuracy of convergence by building variety of subpopulations and 
establishing information interaction mode between subpopulations. As shown in Figure 1, the 
multi-group and co-evolution framework of a swarm intelligence algorithm is divided into two key 
components: the grouping mechanism and the co-evolution mechanism. The grouping mechanism 
includes two steps: population division and parameter setting. The co-evolution mechanism includes 
two steps also: communication and feedback between subpopulations. 
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Figure 1. Multi-group co-evolution framework of swarm intelligence algorithm. 

4.1.1. Grouping mechanism 

When the optimization objective is determined, the swarm intelligence algorithm will select 
and determine the population size, control variables and other key parameters of the population to 
search the optimization space. Depending on the parameter change mechanism in the search 
process, the exploration and exploitation of the swarm intelligence algorithm are constantly 
compromised. A commonly used method is: in the incipient stage of search, the exploration is more 
important which make the search agent cover more search space; and then the exploitation is 
gradually emphasized with the iterative process of the algorithm, the optimal solution is searched 
in the local space [4]. After the population is determined, the search agents start to work according 
to the established search strategies in the whole search iteration process. Therefore, all search 
agents in the population and their search strategies lack difference. For the purpose of increasing 
the difference and diversity of search agents, this paper proposes a grouping mechanism, which 
divides the entire population into different subpopulations. Each subpopulation can be set different 
key parameters and search strategies. 

The entire population can be divided into different subpopulations in different ways. According 
to the size of subpopulation, there are average divisions, random divisions and so on; the setting of 
the initial parameters and search strategy of each subpopulation can also be achieved by random or 
fixed assignment. Based on GOA, this paper focuses on the research and implementation of two 
grouping mechanisms: fixed and random assignment of parameters under the condition of average 
population division. 

4.1.2. Co-evolution mechanism 

Different subpopulations have different optimization paths, and different search agents also 
produce different search information in each subpopulation. The proposed co-evolution mechanism 
is used to determine the interaction pattern of this information, including those within and between 
subpopulations. After different subpopulations have completed the search in parallel, they can 
share the information of the optimal solution and the worst solution found in the current iteration, 
and constantly adjust the search strategy. Meanwhile, the performance of different subpopulations 
is feed back to the grouping mechanism, and then the size and some key parameters of 
subpopulations are updated according to the feed information to further improve the efficiency of 
the swarm intelligence algorithm. 
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4.2. GOA based on the multi-group and co-evolution framework 

The idea of grasshopper optimization algorithm is briefly described firstly, then the 
implementation of GOA with the grouping and co-evolution mechanism is described in detail, and 
the pseudo code of GOA based on the multi-group and co-evolution framework is also given.  

4.2.1. Grasshopper optimization algorithm 

Following is presenting the mathematical model employed to simulate the swarming behavior 
of grasshoppers [1]:  

∗ ∗ ∗  (6) 

where  represents the position of the i-th grasshopper, Si signifies social interaction, 	 defines 
the gravity force on the i-th grasshopper,  shows the wind advection. random numbers ,  
and  selected from [0,1] are used to provide random behaviors. 

Si is an important component of the model [1], as follows: 

 (7) 

where  represents the distance between i-th and j-th grasshopper, N is the number of 
grasshoppers.  

In Eq (7), the function  signifies the social forces [1], as follows: 

 (8)  

where f defines the intensity of attraction and l indicates the attractive length scale. 
 is calculated as follows [1]: 

∗  (9)  

where g is a constant which is used to adjust the effect of gravity and  is a unity vector towards 
the center of earth. 

 is calculated as follows [1]: 

∗  (10) 

where u is a constant which is used to adjust the effect of drift and  is a unity vector determining 
the direction of wind. 

So, Eq (6) can be rewritten as follows [1]: 

	 	 | | ∗ ∗  (11) 

To solve optimization problems,  is omitted and  is replaced by optimization target as 
the wind direction in Grasshopper Optimization Algorithm (GOA) [1]. The above model is 
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adjusted as follows: 

	 	
2

| |  (12) 

where  and  are the upper and lower boundary of the D-dimensional search space separately. 
 is the optimal solution of the objective function in the current iteration as the wind direction.  

is a key parameter in GOA, which is proportional to the amount of iterations. The parameter  helps 
to balance the value of repulsion/gravitation between grasshoppers dynamically [1]. 

If the parameter  decreases too fast in the inchoate stage of GOA, it will make an insufficient 
exploration. Conversely, if the parameter  decreases too slowly in the later stage of GOA, the 
exploitation of GOA will be insufficient. For the purpose of keeping the exploration and exploitation 
balance of GOA, this paper ingrates GOA into the multi-group and co-evolution framework to 
effectively balance local and global search ability of GOA. 

4.2.2. Grouping algorithm 

Grouping algorithm for GOA includes two key parameters setting: subpopulation number and 
the parameter c of GOA. 
• The initial subpopulation number and size 

There are several ways to divide population of GOA into different groups, such as average 
division, dynamic division and random division. This paper adopts the average division method, which 
facilitates the comparison of the final results during the iterative update process, such as Eq (13). The 
number and the size of subpopulation are related to the specific optimization problem. 

, , … ,  (13) 

where the whole population S are divided into ns subpopulations, each of which have the same size.  
• Settings of the parameter  of GOA 

In this paper, three forms are selected to set the parameter	  of GOA [10,57], as follows: 

	  (14) 

2
 (15) 

 (16) 

where c1, c2 and c3 are three different forms of parameter c, c1 is a linear adaptation form of LCS, c2 
is a cosine adaption form of NCS, c3 is an arc adaption form of NCS;  means the maximum, 

 means the minimum, m is the current iteration number, M is the maximum iteration number, in 
this paper,  and  are set to 1 and 0.00001, respectively. 

We use a fixed assignment strategy and an equal probability random assignment strategy to 
allocate different parameter c  to each subpopulation in this paper.  
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The fixed assignment strategy adopts the following methods:  

, ∈ , , … ,  (17) 

where 	 	  presents the i-th subpopulation,  is the form of parameter  of the i-th 
subpopulation, n is the number of parameters ,  is one of n different forms of parameter . 

Before the search process starting, each subpopulation  fixedly chooses a corresponding 
parameter  which remains unchanged in the whole optimization process. 

The random assignment strategy adopts the following methods: 

, 1, , ∈ , , … ,  (18) 

where r is a random integer between 1 and n, n is the number of parameters c that can be chosen. 
In each iteration, every subpopulation can choose a different form of parameter c with equal 

probability according to the calculated random number in Eq (18). The Grouping algorithm not only 
enhances the diversity of GOA’s population, but also avoids GOA from falling into a local optimum. 
The multiplicity of population also increases the adaptability of the algorithm to solve optimization 
problems with different characteristics. 

Algorithm1. GOA-MC 

——————Initialization operation—————— 

1.Initialize the grasshopper population  

——————Grouping operation—————— 

2. Divide the entire population into ns subpopulations	 S , , … ,  
3.Calculatethe initial fitness of each subpopulations 

4.[TargetFitness, TargetPosition] = Select the initial optimal solution and the corresponding optimal position in all subpopulations 

——————Co-evolutionary operation—————— 

5. while (m< Max number of iterations) 

6.    update the evolution direction of entire population by TargetPosition  

7.    for each subpopulation Si 

8.      Select parameter c using Eq. (16) for subpopulation Si 

9.      Update the position of current grasshopper by the Eq. (12) 

10.      Calculate the current fitness based on object function and current grasshopper position 

11.   end for 

12.   Update [TargetFitness, TargetPosition] if there is a better solution in entire population 

13.   m=m+1 

14. end while 

15. Return：The final optimal solution [TargetFitness, TargetPosition] 

Figure 2. The pseudo code of GOA-MC. 

4.2.3. Co-evolutionary algorithm 

The co-evolutionary algorithm builds connections between the different subpopulations, 
realizes the information interaction between subpopulations, and then adjusts the evolution 
direction of GOA. Before running the next iteration, we compare the advantages and disadvantages 
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of the optimal solution obtained from each subpopulation in the current iteration, in order that 
update the optimal solution of the entire population. The optimal solution is assigned to each 
subpopulation as the new evolution direction of GOA. Therefore, after each iteration, all 
subpopulations determine a new evolution direction again based on the results of the previous 
information interaction. In the frequent iterative process, subpopulations constantly exchange 
information to achieve the purpose of co-evolution. The co-evolutionary algorithm increases the 
probability that the population converges to the optimal solution. The optimal solution obtained is 
more intensification in each independent running. 

4.2.4. GOA based on multi-group and co-evolution 

The pseudo code of GOA based on the multi-group and co-evolution framework (GOA-MC) is 
shown in Figure 2. According to grouping algorithm, the group operation first divides the entire 
population into ns subpopulations. In the co-evolutionary operation, the evolution direction of 
entire population is updated according to the optimal solutions of all subpopulations in each iteration. 
Then using Eq (12) update the position of all grasshoppers according to the direction of evolution. In 
each iteration, the parameter c of subpopulations can change using Eq (18). The update of positions 
of grasshoppers runs until the termination condition is met. Finally, the optimal fitness and position 
of the objective function are given. 

4.3. MOGOA based on the multi-group and co-evolution framework 

Results of the experiment in Section 5.1 verify that there is a remarkable enhancement in 
convergence speed and accuracy of GOA-MC algorithm compared to the initial GOA algorithm. 
Therefore, a MOGOA-MC method is proposed which integrate MOGOA [29] into the multi-group 
and co-evolution framework, as shown in Figure 3. Using the same structure as MOGOA, this paper 
also constructs an external archive to keep optimal solutions from all subpopulations in each iteration 
and chooses the first n best performing optimal solutions as the final Pareto solution set in lines 5–6. 
Using the idea of co-evolutionary operation in algorithm 1, the evolutionary direction of all 
subpopulations is updated in line 7. 

The final results of the multi-objective optimization problem are a group of solutions, which can 
not be directly compared with each other to get one optimal solution. So, we construct an external 
archive to store the optimal solution set, then compare and update the archives of all subpopulations 
together to obtain a global optimal solution set by adopting the elitist scheme in line 6. When the 
total amount of optimization solutions searched is greater than the size defined by the external 
archive, the average distance between each solution and all other solutions is figured using Eq (19), 
and the distances are sorted. The top n solutions with the largest average distance are selected and 
kept in the archive. Each new solution obtained from the next iteration needs to be compared with 
the average distance of other solutions in the archive, so as to constantly update the archive. 

A_dist x ∑ dist x x    (19) 

where _  refers to the average distance between optimal solution  and all other 
solutions, K is the size of the external archive. 
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This method of selecting the optimal solutions has a disadvantage: in the process of archive 
updating, it can not guarantee that the final selected optimization solutions are those with the largest 
average distance among all searched optimal solutions. In other words, among all the optimal 
solutions obtained, the solutions with larger average distance may be deleted in the update process. 
This disadvantage can be improved by increasing the size of external archive, but the increase of 
capacity will increase the cost of optimal solutions ranking. The size of external archive is related to 
the specific optimization objectives, and a balance needs to be made between the cost of computation 
and the diversity of optimal solutions. 

Algorithm 2. MOGOA-MC 

1.Initialize and Divide the grasshopper population  by initialization and grouping operation of Algorithm 1 (line1-4) 

2.  Initialize the external archive 

3.while (m< Max number of iterations) 

4.    Calculate fitness based on current grasshopper position 

5.    Update the external archive using the optimal solutions obtained from all subpopulations 

6.    Compare he optimal solutions in the archive and keep the top n best using Eq. (17)  

7.    Update the evolutionary direction of all subpopulations by Co-evolutionary operation of Algorithm 1 (line7-11) 

8.    m=m+1 

9.  end while 

10. Return：Pareto solution set 

Figure 3. The pseudo code of MOGOA-MC. 

5. Results on test functions 

This section first benchmark the performance of the proposed GOA-MC algorithm to verify the 
effectiveness of the multi-group and co-evolution framework in Section 5.1. Then in Section 5.2, 
several standard multi-objects test functions with different characteristics are applied to verify the 
performance of MOGOA-MC algorithm. The details of test functions employed in this work are 
presented in Tables A1–A6 of the Appendix. For the purpose of verifying the outcomes, GOA [1] and 
MOGOA [14] which have very good performance in the literatures of optimization problems are 
employed to compare with GOA-MC and MOGOA-MC respectively. All the experiments were 
carried out in this PC Configuration: System, Windows 10; CPU, 3.00 GHz; RAM, 16.00 GB; 
Language, Matlab 2016. 

5.1. Quantitative results and discussion of GOA-MC 

For the purpose of verifying the improvement of convergence accuracy, convergence speed 
and search ability by the multi-group and co-evolution framework, a series of test functions [1,67] 
with different characteristics are applied, where test functions F1–F7 are unimodal benchmark 
functions, F9–F13 are multimodal benchmark functions, and F14–F19 are composite benchmark 
functions.  Then the sensitivity analysis of the main parameters is carried out to verify the 
effectiveness of this framework. 
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5.1.1. Discussion of computational results 

We compared and analyzed the performance of GOA with three different forms of parameter c 
and the GOA-MC with two different strategies. GOA-1, GOA-2, and GOA-3 are the original 
grasshopper optimization algorithm without using the multi-group and co-evolution framework. 
GOA-1, GOA-2, and GOA-3 respectively use the linear self-adaptive, cosine self-adaptive, and arc 
self-adaptive parameter c in Eqs (14)–(16). GOA-F and GOA-R are based on the multi-group and 
co-evolution framework respectively using fixed and randomly assigned parameter c in Eqs (14)–(16). 
For the sake of fairness, the main control parameters used in these algorithms refer to the parameter 
settings in [1] and [14], which are displayed in Table 2. Except for the number of subpopulations, 
other parameter settings are the same. 

Table 2. Initial values for the control parameters of algorithms. 

Algorithm Parameter Value 

GOA-1 

GOA-2 

GOA-3 

size of population 

number of subpopulations 

number of iterations 

cmax, cmin 

120 

1 

300 

1, 0.00001 

GOA-F 

GOA-R 

size of population 

number of subpopulations 

number of iterations 

cmax, cmin 

120 

3 

300 

1, 0.00001 

Each test function runs 20 times independently for generating the statistical results in Table 3 
and Figure 4. The average convergence curve of F1–F19 are presented in Figure 4. The steeper the 
curve descends, the faster the convergence rate will be. The closer the curve is to the x-axis, the 
better the convergence accuracy is. Compared with GOA-1, GOA-2 and GOA-3, GOA-F and 
GOA-R have significant performance improvement for most benchmark test functions. The way 
regulating the balance mechanism of exploration and exploitation is different by different forms of 
parameter c, such as LCS or NCS. In the GOA-F and GOA-R, subpopulations with different forms 
of parameter c search the optimal value at the same time. Therefore, in the process of searching the 
optimal value, a variety of balance mechanisms are used, then the search information exchange 
among subpopulations is completed through the co-evolution mechanism, which improves the 
ability of GOA to find the optimal value quickly and accurately. These results in Table 3 also prove 
that the optimization capability of GOA can be effectively improved by the multi-group and 
co-evolution framework. 

For unimodal benchmark test functions F1–F7 which have only one global optimum, the 
outcomes in Table 3 and Figure 4 prove that the multi-group and co-evolution framework 
significantly improves convergence accuracy and speed of GOA. On the multimodal benchmark 
functions F8–F13 with several local optimal solutions, except for F9, GOA-F and GOA-R 
outperform others. The results of F8–F13 in Figure 4 also show the superiority of the multi-group 
and co-evolution framework in convergence speed. Due to the existence of local optimal solutions, 
the optimization algorithm needs to further balance exploration and exploitation and jumps out of 
local optimum through exploration. Therefore, the comprehensive performance in the multimodal 
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benchmark functions shows that the grouping mechanism of the framework can further improve the 
exploration capacity of the algorithm, and the co-evolution mechanism simultaneously ensures the 
exploitation ability. 

Table 3. Results of benchmark test functions. 

 GOA-1 GOA-2 GOA-3 GOA-F GOA-R 

AV. STD. AV. STD. AV. STD. AV. STD. AV. STD. 

F1 2.1065 × 

10−8 

6.8522 × 

10−16 

2.2761 × 

10−13 

9.6419 × 

10−26 

4.2179 × 

10−15 

4.8483 × 

10−29 

7.3512 × 

10−15 

2.1538 × 

10−28 

4.5877 × 

10−16 

5.3536 × 

10−31 

F2 0.3737 0.2482 0.5282 0.8587 0.7809 1.1635 0.0116 6.4328 × 

10−4 

0.03344 0.0032 

F3 2.1711 × 

10−7 

8.7347 × 

10−14 

9.3245 × 

10−12 

2.7784 × 

10−22 

2.3598 × 

10−14 

6.8114 × 

10−28 

3.0693 × 

10−11 

7.9237 × 

10−22 

1.8549 × 

10−14 

2.1420 × 

10−28 

F4 8.5561 × 

10−5 

1.2551 × 

10−9 

1.2373 × 

10−7 

1.2896 × 

10−15 

3.5723× 

10−8 

6.3449 × 

10−16 

1.2469 × 

10−6 

9.0957 × 

10−13 

2.583 × 

10−8 

2.0412 × 

10−16 

F5 7.6481 135.3689 30.3799 3.5077 × 

103 

2.923 8.5927 0.47497 0.1125 1.9511 4.1055 

F6 2.9434 × 

10−8 

2.1365 × 

10−16 

2.3324 × 

10−14 

2.3266 × 

10−28 

2.9358 × 

10−15 

7.4365 × 

10−30 

5.721 × 

10−12 

4.7247 × 

10−23 

1.2923 × 

10−15 

3.7892 × 

10−31 

F7 0.0120 2.4379 × 

10−4 

0.0083 4.6566 × 

10−5 

0.0216 0.0014 0.0003 4.0160 × 

10−8 

0.0011 8.4289 × 

10−7 

F8 −1905.827

7 

1.7892 × 

104 

−1663.675 6.1265 × 

10−4 

−1651.529

9 

8.2914 × 

103 

−1822.201 4.6223 × 

103 

−1928.493

9 

2.5448 × 

104 

F9 7.2976 19.5902 4.544 10.9820 5.966 31.0130 6.4971 67.4180 5.4234 27.8018 

F10 1.1123 0.7640 0.80252 1.0805 0.6585 0.7227 8.5829 × 

10−7 

6.6770 × 

10−13 

0.32926 0.4818 

F11 0.18848 0.0069 0.16064 0.0111 0.21093 0.0183 0.10766 0.0035 0.16875 0.0120 

F12 6.4353 × 

10−5 

2.0701 × 

10−8 

1.2925 × 

10−8 

7.9405 × 

10−16 

6.0977 × 

10−10 

1.7061 × 

10−18 

6.8682 × 

10−9 

2.3364× 

10−16 

2.2574 × 

10−12 

1.3613 × 

10−23 

F13 0.0044 3.6223 × 

10−5 

6.9124 × 

10−10 

2.0558 × 

10−18 

1.7435 × 

10−10 

1.5146 × 

10−19 

3.7631 × 

10−9 

6.8730 × 

10−17 

1.3716 × 

10−12 

8.7490 × 

10−24 

F14 0.998 7.0566 × 

10−31  

0.998 4.9304 × 

10−32 

0.998 2.4652 × 

10−32 

0.998 2.4652 × 

10−32 

0.998 2.4652 × 

10−32 

F15 0.016592 7.1283 × 

10−5 

0.0052 7.1981 × 

10−5 

0.0049 7.4909 × 

10−5 

0.0007 5.1379 × 

10−8 

0.0012 4.2462 × 

10−7 

F16 −1.0316 1.8413 × 

10−24 

−1.0316 0 −1.0316 2.4652 × 

10−32 

−1.0316 1.2326 × 

10−32 

−1.0316 3.6978 × 

10−32 

F17 0.3979 1.0239 × 

10−15 

0.3979 1.9615 × 

10−24 

0.3979 2.9031 × 

10−29 

0.3979 6.2699 × 

10−28 

0.3979 0 

F18 3 8.1748 × 

10−21 

3 4.4275 × 

10−29 

3 4.4866× 

10−30 

3 7.6470 × 

10−29 

3 1.0354 × 

10−29 

F19 −3.8628 7.7236 × 

10−6 

−3.8628 5.4281 × 

10−12 

−3.8628 3.7091 × 

10−12 

−3.8628 2.0292 × 

10−15 

−3.8628 5.3004 × 

10−15 

*Notes: AV.: Average fitness value; STD.: Standard Deviation of fitness values obtained from 20 times independently running 
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Figure 4. Average convergence curve of F1–F19. 
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Composite benchmark functions are more complex than other general multimodal benchmark 
functions. According to the composite benchmark functions F14–F19 in Table 3, it can be observed 
that all the algorithms have generated the same best results. In the process of calculation, we found 
an interesting phenomenon: all five algorithms will converge to the same optimal value after a 
certain amount of iterations, even if we adjust the parameters in Table 2 by a large margin. But in 
the convergence speed, they are still quite different. As can be observed from Figure 4, GOA-F and 
GOA-R have faster convergence speed than GOA-1, GOA-2 and GOA-3 on F14-F19. Because 
each subpopulation has different form of parameter c, GOA-F and GOA-R can simultaneously 
strengthen the ability of exploration and exploitation in different stages of the optimization process 
to accelerate convergence. 

5.1.2. Sensitivity analysis 

In this section, the sensitivity analysis of main parameters is discussed in detail. The size of 
subpopulation and the number of groups are two main parameters affecting the performance of the 
multi-group and co-evolution framework. The impact on convergence accuracy and speed of 
proposed approach is examined by a series of experiments on test functions F1–F19. Table 4 presents 
the settings of the main parameters for sensitivity analysis. The size of the subpopulation has 5 
different scales. The number of groups has 10 levels. Therefore, on each test function, 50 different 
groups of experiments of GOA-R are run 10 times independently to conduct a comprehensive 
sensitivity analysis.  

Table 4. The settings of the relevant parameters for sensitivity analysis. 

Parameters Parameters range 

Size of subpopulation Five population sizes are set: 10,40,70,90 and 130 

Number of groups Ten different number of groups are set: 1–10 

The results can be observed in Figure 5 in detail. The x-axis means the population size, and the 
numbers 1–5 indicate the population size of 10, 40, 70, 100 and 130 respectively. The y-axis means 
the number of subpopulations. The z-axis represents the average of the optimal values obtained by 
each group after 10 independently runs. It should be noted that the results are normalized between 0 
and 1 for facilitating the sensitivity analysis. The optimization results will not be significantly 
improved with the increasing number and size of subpopulations, but sometimes gets worse, such as 
the results of F2, F5, F8, F11, F15 and F19 in Figure 5. Similar results are also found on other test 
functions. The search agent of GOA appears to attract each other frequently on the unimodal test 
functions and have high repulsion rate between each other when settling multi-modal and composite 
test functions [1]. Therefore, when the size of subpopulation increases, the high repulsion rate will 
have negative influence on the convergence. Moreover, when the size of population continues to 
increase, this influence will gradually offset the performance improvement brought by the 
multi-group and co-evolution framework. 

As shown in Figure 6, with the increase in the population size and the number of subpopulations, 
the running time increases as well on test function F1. The similar results are also found on other test 
functions. The increase of the number of subpopulations increases the amount of information 
interaction between subpopulations, and the increase of population size enhances the amount of 
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information interaction within subpopulations.  
It can be seen from the above analysis that excessive grouping and large population size can not 

improve the convergence accuracy, but will significantly increase the running time. A practicable 
suggestion is that the size of subpopulation should be controlled between 40 and 100, and the 
number of groups should be controlled between 3 and 5. 

   

     

Figure 5. Sensitivity analysis on the population size and the number of subpopulations. 

 

Figure 6. The running time change with the population size and the number of 
subpopulations. 

5.2. Quantitative results and discussion of MOGOA-MC 

In this section, several standard multi-objective tests functions with different features are 
applied to verify the performance of the presented approach in multi-objective optimization. These 
standard test functions are used in many literatures on multi-objective optimization: ZDT [68], 
DTLZ [69], and CEC2009 [70]. 
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For the purpose of intuitively assess the performance of MOGOA-MC in convergence, accuracy, 
and diversity of optimal solutions, two performance indicators are employed: generation distance 
(GD) and inverse generation distance (IGD) [14]. IGD metric calculates the Euclidean distance 
between the obtained Pareto optimal solution and the true Pareto optimal solution in the reference set, 
which can measure the convergence and diversity of the algorithm. 

The smaller the value of IGD is, the better the overall performance of the algorithm is. 

, ∗ ∑ ∈ ,∈ ∗

| ∗|
  (20) 

where P is the Pareto optimal solution acquired by the algorithm, P* is a group of uniformly 
distributed reference points sampled from the true Pareto optimal solutions, and dist (x, y) refer to the 
Euclidean distance.  

As a convergence evaluation indicator, GD metric measures the closeness between the obtained 
Pareto optimal solutions and the true Pareto optimal solutions. The closer GD is to 0, the better the 
convergence is. 

, ∗
∑ ∈ ∗ ,∈

| |
 (21) 

where the definitions of P, P*, and dist (x, y) are the same as those in IGD. 
Similar to GOA-MC, for the purpose of verifying the advantage of the multi-group and 

co-evolution framework in settling multi-objective optimization problems, we designed a 
comparative experiment between the MOGOA combined with the multi-group and co-evolution 
framework (MOGOA-MC) and the original MOGOA. The original MOGOA separately adopts three 
different forms of parameter c, which are MOGOA-1 using the parameter c in Eq (14), MOGOA-2 
using the parameter c in Eq (15) and MOGOA-3 using the parameter c in Eq (16). MOGOA-MC 
separately adopts two different assignment strategies of parameter c, which are MOGOA-F and 
MOGOA-R. MOGOA-F adopts fixed assignment strategy to assign a fixed parameter c to each 
subpopulation from Eq (17). MOGOA-R using random assignment strategy to randomly assign a 
parameter c for each subpopulation from Eq (18). Other parameters are set uniformly as follows: the 
amount of population is set to 120, the maximum numbers of iterations is set to 100, the number of 
subpopulations is 3,  and  are set to 1 and 0.00001 respectively. 

5.2.1. Results on ZDT and DTLZ 

The quantitative results on ZDT and DTLZ are presented in Tables 5–7. All algorithms are run 
independently 20 times. The average, standard deviation, best, and worst values of IGD are presented 
in Table 5, and the values of GD are presented in Table 6. The obtained Pareto fronts are qualitatively 
illustrated in Figures 7 and 8. 

Each benchmark test function has its own characteristics,  and different settings of key 
parameters will have an impact on the performance of algorithms. Such as, on ZDT1, ZDT2 and 
ZDT4, MOGOA-2 utilizing the parameter c with cosine adaption form of NCS have better 
performance than MOGOA-1 and MOGOA-3; On ZDT3 which has a nonconvex and discontinuous 
Pareto front, MOGOA-1 utilizing the parameter c with line adaption form of LCS have better 
performance than MOGOA-2 and MOGOA-3. However, in practical application, it is very difficult 
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to choose the appropriate parameter settings when the optimization problem is not well understood. 
Therefore, in this paper, in order to solve the problem of parameter selection and setting, a variety of 
different settings of one key parameter are comprehensively applied in the optimization search 
process. The effectiveness of the proposed method is also proved by the results in Table 5. Such as, 
IGD values of MOGOA-F and MOGOA-R are significantly better than MOGOA-1, MOGOA-2 and 
MOGOA-3 on ZDT1, ZDT3 and ZDT4. On ZDT2, compared with the best algorithm MOGOA-2, 
MOGOA-F and MOGOA-R also show strong competitiveness.  

Table 5. Statistical results for IGD on ZDT1, ZDT2, ZDT3, ZDT4. 

IGD AV. STD. Worst Best AV. STD. Worst Best 

 ZDT1 ZDT2 

MOGOA-1 0.008110 4.7486 × 10−5 0.01781 0.001834 0.02181 9.1174 × 10−5 0.03179 0.004372 

MOGOA-2 0.007148 2.4368 × 10−6 0.02056 0.002063 0.005184 4.7499 × 10−5 0.006806 0.003169 

MOGOA-3 0.008415 3.4927 × 10−5 0.01019 0.002604 0.01787 5.7181 × 10−5 0.02821 0.003130 

MOGOA-F 0.001804 3.0666 × 10−7 0.003185 0.001253 0.005893 8.6611 × 10−7 0.02075 0.001781 

MOGOA-R 0.001596 3.5401 × 10−8 0.002075 0.001159 0.005196 7.8079 × 10−7 0.01625 0.001880 

 ZDT3 ZDT4 

MOGOA-1 0.007790 2.3325 × 10−5 0.01105 0.003316 0.08460 0.0026 0.1368 0.03810 

MOGOA-2 0.01659 1.6409 × 10−5 0.03471 0.004913 0.1329 0.0024 0.2114 0.02060 

MOGOA-3 0.02568 1.2805 × 10−6 0.04807 0.009530 0.1198 0.0048 0.1887 0.03327 

MOGOA-F 0.004040 2.6464 × 10−7 0.008719 0.002587 0.06507 0.0020 0.1041 0.03486 

MOGOA-R 0.003725 5.6783 × 10−6 0.004526 0.002669 0.06345 0.0006 0.1062 0.02554 

*Notes: AV.: Average IGD value; STD.: Standard Deviation of IGD obtained from 20 times independently running; Best: the best 

values of IGD; Worst: the worst values of IGD 

Table 6. Statistical results for GD on ZDT1, ZDT2, ZDT3, ZDT4. 

GD Average STD. Worst Best Average STD. Worst Best 

 ZDT1 ZDT2 

MOGOA-1 0.01670 2.6674 × 10−5 0.02259 0.01021 0.03076 6.7313 × 10−5 0.04413 0.02325

MOGOA-2 0.03256 9.7455 × 10−5 0.05450 0.01714 0.03358 7.2653 × 10−5 0.04381 0.01948

MOGOA-3 0.02952 2.2262 × 10−5 0.04720 0.01451 0.02260 3.3174 × 10−4 0.03280 0.01217

MOGOA-F 0.01138 1.9063 × 10−5 0.01340 0.007802 0.01892 5.8046 × 10−5 0.02858 0.01394

MOGOA-R 0.01207 6.6201 × 10−6 0.01498 0.009695 0.01933 1.2821 × 10−5 0.02801 0.01195

 ZDT3 ZDT4 

MOGOA-1 0.01762 8.0160 × 10−5 0.03189 0.008943 0.5279 0.0408 0.8772 0.3554 

MOGOA-2 0.01432 1.4615 × 10−4 0.01124 0.01872 0.6291 0.0367 0.8792 0.4846 

MOGOA-3 0.02113 1.3262 × 10−5 0.03587 0.009765 0.5735 0.0095 0.9137 0.3339 

MOGOA-F 0.009671 2.6231 × 10−6 0.01316 0.007496 0.2822 0.0101 0.3790 0.1958 

MOGOA-R 0.008808 4.8387 × 10−6 0.01167 0.005164 0.2960 0.0058 0.3931 0.1758 

*Notes: AV.: Average GD value, STD.: Standard Deviation of GD obtained from 20 times independently running; Best: the best 

values of GD; Worst: the worst values of GD 
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Through the co-evolution mechanism, the optimization information can be exchanged between 
subpopulations, so that all search individuals can converge to the true Pareto front as soon as 
possible. Therefore, the global optimization solutions can be found faster and more accurately. The 
conclusions can be drawn from the values of GD in Table 6, MOGOA-F and MOGOA-R have 
significantly better performance than others.   

Practical optimization problems usually involve more than two objectives. The more objectives 
there are, the more complex the optimization problem is, so it is difficult to get its Pareto front and to 
visualize it. In order to verify the effectiveness of the method in the multi-objective optimization 
problem with more than two objectives, we benchmark it on DTLZ1. DTLZ1 has three objectives 
that need to be optimized at the same time, and its Pareto front is a hyperplane. The quantitative 
results in Table 7 also show the good IGD and GD performance of MOGOA-F and MOGOA-R on 
DTLZ1. Although the performance improvement is not as good as ZDT series test functions, the 
effect is still significant.  

Table 7. Statistical results for IGD and GD on DTLZ1. 

DTLZ1 IGD GD 

 AV. STD. Worst Best AV. STD. Worst Best 

MOGOA-1 1.5255 0.0059 1.6343 1.4330 8.7203 0.1935 9.1334 8.0797 

MOGOA-2 1.4481 0.0096 1.5687 1.3351 10.7424 4.4340 14.1027 8.7297 

MOGOA-3 1.4337 0.0171 1.5761 1.2453 10.2828 1.0573 10.2828 8.1977 

MOGOA-F 1.2910 0.0022 1.3548 1.2312 7.1866 0.0513 7.5682 7.0019 

MOGOA-R 1.3062 4.7446 × 10−4 1.3297 1.2826 7.1640 0.0064 7.2661 7.0701 

*Notes: AV.: Average IGD or GD value; STD.: Standard Deviation of IGD or GD values obtained from 20 times independently 

running; Best: the best values of IGD or GD; Worst: the worst values of IGD or GD 

The quantitative results in Tables 5–7 verify the superiority of the algorithms with the 
multi-group and co-evolution framework and prove that the framework can significantly improve the 
diversity and convergence of Pareto optimal solutions. The qualitative distribution presentation of 
best Pareto optimal fronts in Figures 7 and 8 also supports this conclusion. In our method, different 
subpopulations have different settings of key parameters, and the optimization mechanism of search 
individuals is also different. Therefore, more diverse optimization solutions can be found, and the 
distribution of optimization schemes is more uniform. The Pareto optimal fronts obtained from 
MOGOA-F and MOGOA-R are more equally distributed in the true Pareto optimal fronts than that 
of MOGOA-1, which also prove that the multi-group and co-evolution framework improves the 
diversity of Pareto optimal solutions. 

5.2.2. Results on CEC2009 test functions 

In this section, the CEC2009 test functions are applied to further confirm the performance of the 
proposed methods. UF1–UF7 test functions are bi-objective, UF8–UF10 test functions are 
tri-objective. The results on CEC2009 test functions are presented in Tables 8 and 9. 

The conclusions on CEC2009 test functions are consistent with those of ZDT series  test 
functions and DTLZ test functions. The multi-group mechanism in the multi-group and co-evolution 
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framework gives more differences to the search individuals, which can help to search more diverse 
optimization solutions; the co-evolution mechanism makes the subpopulations with better 
performance can transmit information to the whole population, so as to speed up the convergence 
speed and improve the search efficiency and convergence accuracy. 

  MOGOA-1 MOGOA-F MOGOA-R 

ZDT1 

     

ZDT2 

     

ZDT3 

     

ZDT4 

     

Figure 7. Pareto optimal front on ZDT. 

Figure 8. Pareto optimal front on DTLZ1. 
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Table 8. Statistical results for IGD on UF1 to UF10. 

IGD AV. STD. Worst Best Average STD. Worst Best 

 UF1 UF2 

MOGOA-1 0.1151 6.554 × 10−4 01597 0.0880 0.0594 6.612 × 10−5 0.0729 0.0468 

MOGOA-2 0.0985 1.697 × 10−4 0.1337 0.0866 0.0645 9.783 × 10−5 0.0815 0.0463 

MOGOA-3 0.1133 9.301 × 10−5 0.1266 0.0997 0.0816 1.842 × 10−4 0.1105 0.0635 

MOGOA-F 0.0844 1.136 × 10−5 0.0901 0.0800 0.0439 1.496 × 10−5 0.0506 0.0377 

MOGOA-R 0.0865 1.866 × 10−5 0.0942 0.0795 0.0433 2.161 × 10−5 0.0537 0.0371 

 UF3 UF4 

MOGOA-1 0.4206 0.0062 0.5074 0.3117 0.1464 1.478 × 10−4 0.1617 0.1212 

MOGOA-2 0.4534 0.0123 0.6390 0.3373 0.1695 1.623 × 10−3 0.2355 0.1511 

MOGOA-3 0.4240 0.0141 0.5824 0.2429 0.1196 1.118 × 10−4 0.1306 0.0974 

MOGOA-F 0.3937 0.0189 0.5836 0.1989 0.0979 4.529 × 10−5 0.1074 0.0867 

MOGOA-R 0.4129 0.0111 0.5460 0.2836 0.0952 1.134 × 10−5 0.0998 0.0903 

 UF5 UF6 

MOGOA-1 0.6389 0.0181 0.8746 0.4432 0.7147 0.0289 0.9301 0.4911 

MOGOA-2 0.7470 0.3465 2.3977 0.3523 0.6317 0.0342 0.9505 0.4775 

MOGOA-3 0.7433 0.0369 1.0504 0.4615 0.6590 0.0350 0.8884 0.4050 

MOGOA-F 0.6062 0.0152 0.7732 0.4153 0.5581 0.0245 0.8470 0.3660 

MOGOA-R 0.7570 0.0457 1.1485 0.4526 0.5351 0.0333 0.8000 0.2680 

 UF7 UF8 

MOGOA-1 0.0718 4.958 × 10−5 0.0856 0.0619 0.2415 4.804 × 10−4 0.2800 0.2142 

MOGOA-2 0.0935 7.649 × 10−4 0.1363 0.0595 0.2301 7.129 × 10−4 0.2697 0.1905 

MOGOA-3 0.0834 1.507 × 10−4 0.1066 0.0647 0.2622 8.372 × 10−4 0.3121 0.2193 

MOGOA-F 0.0652 3.215 × 10−5 0.0740 0.0584 0.1650 7.117 × 10−5 0.1785 0.1499 

MOGOA-R 0.0629 2.813 × 10−5 0.0745 0.0552 0.1770 2.142 × 10−4 0.2077 0.1601 

 UF9 UF10 

MOGOA-1 0.2485 2.385 × 10−3 0.3604 0.1980 0.3965 9.223 × 10−3 0.5928 0.2685 

MOGOA-2 0.2381 1.305 × 10−3 0.3325 0.2174 0.3935 8.569 × 10−3 0.5442 0.2206 

MOGOA-3 0.2874 1.112 × 10−3 0.3568 0.2414 0.6113 8.244 × 10−3 1.0740 0.3165 

MOGOA-F 0.1836 2.932 × 10−4 0.2122 0.1618 0.2583 6.211 × 10−4 0.2997 0.2171 

MOGOA-R 0.1824 3.376 × 10−4 0.2100 0.1515 0.2377 9.941 × 10−5 0.2552 0.2254 

*Notes: AV.: Average IGD value; STD.: Standard Deviation of IGD obtained from 20 times independently running; Best: the best 

values of IGD; Worst: the worst values of IGD 

The IGD values in Table 8 show that the performance of MOGOA-F and MOGOA-R are also 
better than that of MOGOA-1, MOGOA-2 and MOGOA-3 on the CEC2009 test suite. The GD 
values in Table 9 also verify that the proposed algorithms have better convergence than original 
MOGOA. However, on UF5, UF6 and UF10, although the proposed method is very competitive, it 
does not show the best performance. Since the Pareto fronts of UF5 and UF6 are discontinuous, and 
the metric of GD measures the average Euclidean distance from each solution obtained from 
algorithm to the solution on the nearest true Pareto front, the performance of the proposed methods 
on this kind of optimization problems are not significant. 
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In terms of overall performance, these outcomes in Tables 8 and 9 can affirm that the 
multi-group and co-evolution framework is able to ameliorate the diversity and the convergence of 
the Pareto optimal solutions.  

Table 9. Statistical results for GD on UF1 to UF10. 

GD Average STD. Worst Best Average STD. Worst Best 

 UF1 UF2 

MOGOA-1 0.0179 1.359 × 10−4 0.0439 0.0074 0.0194 5.765 × 10−4 0.0701 0.0035 

MOGOA-2 0.0126 4.841 × 10−5 0.0254 0.0064 0.0104 1.638 × 10−4 0.0465 0.0040 

MOGOA-3 0.0176 1.815 × 10−4 0.0516 0.0042 0.0174 2.290 × 10−4 0.0472 0.0049 

MOGOA-F 0.0081 1.557 × 10−5 0.0163 0.0031 0.0081 2.046 × 10−5 0.0149 0.0037 

MOGOA-R 0.0118 6.625 × 10−5 0.0317 0.0033 0.0080 6.252 × 10−5 0.0299 0.0038 

 UF3 UF4 

MOGOA-1 0.1126 0.0057 0.2702 0.0359 0.0184 2.052 × 10−5 0.0278 0.0124 

MOGOA-2 0.1066 0.0027 0.1804 0.0369 0.0236 9.309 × 10−5 0.0442 0.0131 

MOGOA-3 0.1126 0.0130 0.4048 0.0417 0.0131 2.589 × 10−6 0.0157 0.0103 

MOGOA-F 0.0603 0.0019 0.1375 0.0138 0.0144 8.153 × 10−6 0.0181 0.0105 

MOGOA-R 0.0657 0.0012 0.1187 0.0298 0.0130 1.071 × 10−6 0.0153 0.0119 

 UF5 UF6 

MOGOA-1 0.1698 0.0018 0.1701 2.046 × 10−4 0.1313 0.0112 0.3372 0.0087 

MOGOA-2 0.1545 0.0221 0.5399 0.0307 0.1056 0.0036 0.2272 0.0149 

MOGOA-3 0.1208 0.0088 0.2931 9.984 × 10−13 0.1786 0.0302 0.5893 0.0412 

MOGOA-F 0.1299 0.0058 0.3013 0.0198 0.1181 0.0226 0.2127 0.0226 

MOGOA-R 0.1270 0.0031 0.2334 0.0773 0.1225 0.0476 0.2446 0.0476 

 UF7 UF8 

MOGOA-1 0.0074 2.416 × 10−5 0.0169 0.0013 0.0434 3.596 × 10−4 0.0693 0.0153 

MOGOA-2 0.0083 3.660 × 10−5 0.0222 0.0019 0.0299 2.001 × 10−4 0.0571 0.0132 

MOGOA-3 0.0084 1.075 × 10−5 0.0144 0.0034 0.0389 3.710 × 10−4 0.0691 0.0121 

MOGOA-F 0.0051 6.742 × 10−6 0.0098 0.0023 0.0227 6.346 × 10−5 0.0354 0.0134 

MOGOA-R 0.0044 3.043 × 10−6 0.0082 0.0024 0.0289 5.846 × 10−4 0.0941 0.0115 

 UF9 UF10 

MOGOA-1 0.0459 4.682 × 10−4 0.0994 0.0245 0.2103 6.276 × 10−3 0.3394 0.1107 

MOGOA-2 0.0455 1.671 × 10−4 0.0643 0.0259 0.2502 1.831 × 10−3 0.5226 0.0447 

MOGOA-3 0.0612 1.127 × 10−3 0.1237 0.0162 0.2603 2.171 × 10−3 0.5838 0.0926 

MOGOA-F 0.0374 1.021 × 10−4 0.0523 0.0232 0.2697 3.392 × 10−3 0.3572 0.1663 

MOGOA-R 0.0424 2.216 × 10−4 0.0659 0.0166 0.2306 3.232 × 10−3 0.3497 0.1622 

*Notes: AV.: Average GD value; STD.: Standard Deviation of GD obtained from 20 times independently running; Best: the best 

values of GD; Worst: the worst values of GD 

The average, standard deviation, maximum, and minimum in the previous tables are obtained 
from the results of 20 independent runs. They reflect the average performance of the algorithm. To 
show that the outcomes were not acquired accidentally, the Wilcoxon rank-sum test is employed. The 
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p-values are the results of the Wilcoxon rank-sum test. When p-values are less than 0.05, it shows 
that rank sum rejects the null hypothesis of equal medians at the default 5% significance level. The 
higher the p value, the more competitive the algorithm is, even if it is not the best one. The p-values 
of the algorithm with the best average performance in each test function is “N/A”. Then the best 
performing algorithm is chosen to test with other algorithms in pairs. The p-values in Table 10 show 
that MOGOA-F and MOGOA-R based on the multi-group and co-evolution framework performs 
well on most of the test functions. The p-values between MOGOA-F and MOGOA-R are all greater 
than 0.05 on GD and IGD, which indicates that the two algorithms are highly competitive with each 
other. While MOGOA-1, MOGOA-2 or MOGOA-3 are not the algorithm with the best average 
performance, their p-values are less than 0.05 in most test functions, so they are not competitive. 

Table 10. P-values acquired from the rank sum test on UF1 to UF10. 

Test functions GD IGD 

 M-1 M-2 M-3 M-F M-R M-1 M-2 M-3 M-F M-R 

UF1 0.0073 0.1212 0.0211 N/A 0.3075 0.0001 0.0001 0.0001 N/A 0.3075

UF2 0.2730 0.4274 0.0257 0.9698 N/A 0.0001 0.0001 0.0001 0.6232 N/A 

UF3 0.0757 0.0376 0.1405 N/A 0.6232 0.6776 0.3447 0.6232 N/A 0.7337

UF4 0.0017 0.0001 0.5205 0.2730 N/A 0.0001 0.0001 0.0001 0.1212 N/A 

UF5 0.1620 0.9698 N/A 0.6776 0.7337 0.6232 0.7913 0.1212 N/A 0.1041

UF6 0.9097 N/A 0.4727 0.9097 0.6232 0.0452 0.3847 0.1859 0.9097 N/A 

UF7 0.0922 0.0708 0.0036 0.8501 N/A 0.0073 0.0058 0.0001 0.5205 N/A 

UF8 0.0140 0.0166 0.0241 N/A 0.8501 0.0001 0.0001 0.0001 N/A 0.0376

UF9 0.2725 0.1315 0.0257 N/A 0.3881 0.0008 0.0001 0.0001 0.9097 N/A 

UF10 N/A 0.4272 0.6232 0.1041 0.3075 0.0001 0.0028 0.0001 0.0211 N/A 

*Notes: M-1: MOGOA-1; M-2: MOGOA-2; M-3: MOGOA-3; M-F: MOGOA-F; M-R: MOGOA-R 

In general, the above experimental outcomes indicate that the improvement of the multi-group 
and co-evolution framework to the diversity and convergence of MOGOA is very significant. 
Although MOGOA has proved its superiority in reference [14], which are compared with other 
competitive multi-objective optimization algorithms, such as MOPSO, MOEA/D. The proposed 
methods are greatly effective for settling optimization problems with multiple objectives. This is 
mainly attributed to these two features of the framework: firstly, the grouping of subpopulations with 
different evolutionary mechanisms increases the diversity of search agents and strengthens the 
exploration capability of the optimization algorithm; secondly, the co-evolution mechanism between 
subpopulations ensures the convergence of the algorithm, and accelerates the convergence speed.  

6. Conclusions 

In this paper, a multi-group and co-evolution framework for meta-heuristic methods is proposed, 
which is employed to improve the performance of GOA. With the fast convergence and high 
accuracy, the promising performance of the framework is verified on the benchmark test functions. 
The sensitivity of the main parameters is analyzed to check the feasibility and validation of the 
proposed framework. For the multi-objective optimization problems, the proposed framework was 
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used to extend the MOGOA algorithm. To evaluate the performance improvement brought by the 
proposed framework, the numerical evaluations were also conducted by comparing with the original 
MOGOA on a series of test suits. GD and IGD were calculated to prove the advancement of diversity 
and accuracy of solutions by the proposed framework. Moreover, the Wilcoxon rank-sum tests were 
also conducted to show the statistically significant. It could be said that these improvements were 
due to the modifications in the difference and interaction of search agents, which led to more 
convenient exploration and more active exploitation. The proposed methods in this paper can find a 
fine balance between exploration and exploitation, which is particularly important in solving 
multimodal search space and large-scale optimization problems without deep understanding, such as 
feature selection and neural network training in machine learning, job-shop scheduling and control of 
power systems in engineering applications. Experimental results show the effectiveness of the 
proposed method, but there are still some limitations. Because of no free lunch theorem in the 
optimization domain, the proposed method needs further adjustment and modification to adapt to the 
actual specific problems, such as binary, dynamic, discrete, and others. Due to the existence of 
co-evolution among subpopulations, the proposed method spends more time than original algorithm 
in the optimization process. The multi-group and co-evolution framework is only applicable to the 
same kind of swarm intelligence algorithm at present. Therefore, for future research, it is suggested 
to further improve the multi-group and co-evolution framework for integrating various swarm 
intelligence algorithms. The settings of key parameters should also be quantitatively explained 
according to specific problems in this framework. It will be focused on the applications on more 
complex engineering problems. 
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Appendix 

Test functions utilized in this paper. 

Table A1. Unimodal benchmark functions. 

Function Dim Range minf  

∑
1=

2
1 =)(

n

i
ixxf  30 [–100,100] 0 

∏∑
1=1=

2 +=)(
n

i
i

n

i
i xxxf  30 [–10,10] 0 

∑ ∑
1=

2

1
3 )(=)(

i

i

i

j
jxxf  30 [–100,100] 0 

}≤≤1,max{=4 nixf i  30 [–100,100] 0 

∑
1

1=

222
1+5 ])1(+)(100[=)(

n

i
iii xxxxf  30 [–30,30] 0 

∑
1=

2
6 ])5.0+([=)(

n

i
ixxf  30 [–100,100] 0 

∑
1=

4
7 1,0[=)(

n

i
i randomixxf ） 30 [–128,128] 0 
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Table A2. Multimodal benchmark functions. 

Function Dim Range minf  

sin | |  30  [–500,500] 
–418.9829 × 

Dim 

10 cos 2 10  30  [–5.12,5.12]  0 

20 0.2
1 1

2 20  30  [–32,32]  0 

1
4000 √

1 30  [–600,600]  0 

10 1 1 10 1

, 10,100,4 , 10,100,4  

1
1

4
 

, , , 0  

30  [–50,50]  0 

0.1 3

1 1 3 1

1 1 2 , 10,100,4  

30  [–50,50]  0 
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Table A3. Composite benchmark functions. 

Function Dim Range minf
 

]100/5,...,100/5,100/5,100/5[=],...,,,[

]1,...,1,1,1[=],...,,,[

=,...,,,

)1(

10321

10321

10321

14

λλλλ

σσσσ

FunctionSphereffff

CFF ：

 

30 [–5,5] 0 

]100/5,...,100/5,100/5,100/5[=],...,,,[

]1,...,1,1,1[=],...,,,[

'=,...,,,

)2(
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15

λλλλ

σσσσ

FunctionsGriewankffff

CFF ：

 

30 [–5,5] 0 

]1,...,1,1,1[=],...,,,[
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'=,...,,,

)3(
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16

λλλλ

σσσσ

FunctionsGriewankffff

CFF ：

 

30 [–5,5] 0 

]100/5,100/5,100/5,100/5,5.0/5,5.0/5,1,1,32/5,32/5[=],...,,,[

]1,...,1,1,1[=],...,,,[

=,

'=,

'=,

'=,

'=,

)4(

10321

10321
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17

λλλλ

σσσσ

FunctionSphereff

FunctionsGriewankff

FunctionssWeierstrasff

FunctionsRastriginff

FunctionsAckleyff

CFf ：

 

30 [–5,5] 0 
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'=,

'=,

'=,

)5(
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30 [–5,5] 0 

100/5*1,100/5*9.0,32/5*8.0,32/5*7.0,100/5*6.0

]100/5*5.0,5.0/5*4.0,5.0/5*3.0,5/1*2.0,5/1*1.0[=],...,,,[

]1,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0[=],...,,,[
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Table A4. Multi-objective benchmark functions (ZDT & DTLZ1). 

Name Function 

ZDT1 

111 =)(min xxf

 
))/(-1(=)(min 12 gfgxf

 

∑
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1 )1-/(9+1=)(

m

i

mxxg

 

30,...,2,1=,1≤≤0.. ixts i  

ZDT2 

111 =)(min xxf

 
))/(1(=)(min 2

12 gfgxf

 

∑
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)1/(9+1=)(

m

i

i mxxg

 

30,...,2,1=,1≤≤0s.t. ixi  

ZDT3 

111 =)(min xxf

 
))10sin()/(/1(=)(min 1112 fgfgfgxf π

 

∑
2=

)1/(9+1=)(

m

i

i mxxg

 
30,...,2,1=,1≤≤0.. ixts i  

ZDT4 

111 =)(min xxf  

))/(1(=)(min 12 gfgxf  

∑
2=

))4cos(10(+)1(10+1=)(
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i

ii xπxnxg  

9,...,2=,5≤≤5-,1≤≤0.. s 1 ixxt i  
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30,...,2,1=,1≤≤0 ixi  
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Table A5. Bi-objective test problems (CEC2009). 

Name       Function 

UF1	 	 	 	 	 	 	 	
| |

∑ sin	 6 , 1 √ | |
∑ sin 6∈∈  

| 	 	 	 	 2 , | 	 	 	 	 2  

UF2	 	 	 	 	 	 	 	
| |

∑ ∈ , 	 	 1 √ | |
∑ ∈  

| 	 	 	 	 2 , | 	 	 	 	 2  

0.3 cos 24
4

0.6 cos 6 	 	 	 	 	 	 ∈

0.3 cos 24
4

0.6 sin	 6 	 	 	 	 	 	 ∈
 

UF3	 	 	 	 	 	 	 	
| |

4 ∑ ∈ 2∏ cos∈ 2  

2
| |

4
∈

2 cos
20

∈
2  

	 	 	 	 	 	 	 	 	 1,
. .

, 2,3, … , 	  

UF4	 	 	 	 	 	 	 	
| |

∑ ∈ , 	 	 1
| |

∑ ∈  

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1, sin	 6 ,

2,3, … , ,
| |

1 | | 

UF5	 	 	 	 	 	 	 |sin 2 |
| |

∑ , |sin 2 |
| |

∑  

	 	 	 	 	 	 	 	 1, sin	 6 ,	  

2,3,… , ,
| |

1 | | 

2 cos 4 1 

UF6	 	 	 	 	 	 	 max 0,2 sin 2
| |

4∑ ∈ 2∏ cos∈ 1  

	 	 	 	 	 	 	 1 max 0,2
1
2

sin 2
2
| |

4
∈

2 cos
20

∈
1  

	 	 	 	 	 	 	 	 1, 0, sin	 6 , 2,3, … ,  

UF7	 	 	 	 	 	 	 √ | |
∑ , 1 √ | |∈ ∑ ∈  

	 	 	 	 	 	 1, 0, sin 6 , 2,3, … ,  
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Table A6. Tri-objective test problems (CEC2009). 

Name       Function 

UF8	 	 	 	 	 	 	 	 	 cos 0.5 cos 0.5
| |

∑ 2 sin 2∈  

cos 0.5 sin 0.5
2
| |

2 sin 2
∈

 

sin 0.5
2
| |

2 sin 2
∈

 

|3 , 	 1	 	 	 	 	 3  

|3 , 	 2	 	 	 	 	 3  

|3 , 	 	 	 	 	 	 3  

| 	 	 	 	 2 , | 	 	 	 	 2  

UF9	 	 	 	 	 	 	 	 0.5 max 0, 1 1 4 2 1 2
| |

∑ 2 sin 2∈  

0.5 max 0, 1 1 4 2 1 2
2
| |

2 sin 2
∈

 

1
2
| |

2 sin 2
∈

 

|3 , 	 1	 	 	 	 	 3 , 

|3 , 	 2	 	 	 	 	 3 , 

|3 , 	 	 	 	 	 	 3 , 0.1 

UF10	 	 	 	 	 	 	 cos 0.5 0.5
| |

∑ 4 cos 8 1∈  

	 cos 0.5 0.5
2
| |

4 cos 8 1
∈

 

sin 0.5
2
| |

4 cos 8 1
∈

 

|3 , 	 1	 	 	 	 	 3 , 

|3 , 2 3 , 

|3 , 3  
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