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Abstract: In this paper, a stage-structured jellyfish model with two time delays is formulated and
analyzed, the first delay represents the time from the asexually reproduced young polyp to the mature
polyp and the second denotes the time from the developed polyp to ephyra (incipient medusa). Global
dynamics of the model are obtained via monotone dynamical theory: the jellyfish populations go
extinct and the trivial equilibrium is globally asymptotically stable if the survival rate of polyp during
cloning and the survival rate of the incipient medusa during strobilation are less than their death rates.
And if the survival rate of polyp during cloning and the survival rate of the incipient medusa during
strobilation are larger than their death rates, a unique positive equilibrium is globally asymptotically
stable. Moreover, it is proved that the only stage of polyps will continue without growing into medusa
and the boundary equilibrium is globally asymptotically stable if the survival rate of polyp is larger than
its death rate during cloning and if there is no survival of the incipient medusa. Numerical simulations
are performed to verify our analytical results and to explore the dynamics with/without delays.
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1. Introduction

Jellyfish plays an important role in the marine ecosystems as a keystone species and a potential
resource for human consumption [1]. The amount of jellyfish has been significantly increasing in many
waters since 1980s [2]. Jellyfish can be found in many regions worldwide such as Japan [3], the China
Seas [4], the Mediterranean Sea [5], Taiwan [6], Southampton Water and Horsea Lake, England [7]. It
can survive in a wide range of water temperatures (0–36 ◦C) and salinities (3–36%) [8, 9].

Jellyfish has a complex life history with several different phases: planula, polyp, strobila, ephyra
and medusa [10]. The polyp and medusa are two main stages of the life cycle of jellyfish. Medusae
are dioecious, the sperm combines with egg to form a planula, which normally settles to the bottom
and then occur metamorphosis of planula into tentacles-ring polyp (or scyphistoma) [11]. For Aurelia
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aurita jellyfish, the scyphistoma produces external outgrowths asexually by budding, the vitally
asexual reproduction of polyp (94%), stolon (5%) and podocysts (1%) [3]. The scyphistoma changes
into strobila (strobilating polyp) through strobilation, which is asexual reproduction by division into
segments developing into ephyra. After liberating from strobila, the ephyra becomes adult medusa. In
addition, strobila reverts into the initial scyphistoma [11]. Since jellyfish has a distinct mobility
patterns in different phases of its life history, it is interesting to take these facts into account for model
formulation.

Temperature has a great effect on variations of jellyfish populations [12] as the asexual
reproduction rate and strobilation rate depend on the functions of temperatures [11]. Global warming
has affected the increase of jellyfish populations because it might cause the distribution, growth, and
ephyrae production of medusae [13]. The rapid strobilation might be proceeded at the warmer
temperature, but the continuous high temperature results in the fewer budding and increased
mortality [6]. Hence the population explosions of polyps and medusae might be caused at the
appropriate increase of temperature, but rising temperatures lead to the decreased populations.

Many approaches for jellyfish have been developed to discuss the nature of the correlations between
environmental indices and population abundance [6, 14]. In particular, mathematical modeling is one
of the important tools in analyzing the dynamical properties in aquatic systems. In [15], Oguz et al.
presented food web model with an anchovy population and bioenergetics-based weight growth model
governed by system of differential equations. In [16], Melica et al. conducted that the dynamics of
polyps population by the logistic model. In [11], Xie et al. proposed the following two-dimensional
dynamic model of scyphozoan jellyfish:

dP
dt

=α(T )P + s1γM − d1P − d2P − b1P2,

dM
dt

=s2β(T )nP − d3M − d4M − b2M2,

(1.1)

where P(t) and M(t) are the population sizes of polyps and medusae at time t, respectively. For
system (1.1), by using the Bendixson-Dulac’s negative criterion and Poincare-Bendixson Theorem,
the conditions for the global asymptotical stability of the equilibria E0, E1 and E∗ are given. The
effects of temperature, substrate and predation on the population sizes of scyphozoan were
investigated by numerical simulations.

Although multiple progresses have been seen in the above work of [11], for system (1.1), it is
assumed that each population preserves an equal density dependent rate and each individual has the
same opportunity to compete for their common resources during the whole life history. Unfortunately,
this is not realistic due to the life history of jellyfish which has a diverse mobility body structures in
different stages. The immature stages of jellyfish are much weaker than the mature stages and so they
cannot compete for their common resources. Jellyfish reaches maturity after surviving the immature
stages. Therefore, it is realistic and interesting for us to construct the stage-structured jellyfish model
that exhibits a diversity between these different stages.

Recently, population dynamic models with stage structure and time delays have attracted more
attention from authors [17–24]. For instance, Aiello and Freedman proposed a stage-structured model
of single species containing of the immature and mature stages and using a discrete time delay taken
from birth to maturity [18]. Liu et al. showed that the global stability for the two competitive Lotka-
Volterra system with time delay that denotes the time taken from birth to maturity. They proposed
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that the stage structure is one of the main reasons that cause permanence and extinction for the two
competitive system [23]. There have been an increasing interest and progress in the study of the above
stage-structured models which assume all individuals are in the same species that require the analogous
amount of time to become mature at the same age. Unlike birds and mammals, jellyfish species have
the different mobility shapes in the distinctive stages of its life cycle. Thus, the previous methods and
techniques cannot be applied exactly to our system because we classify the single species jellyfish into
two-stage structure. Mathematically, the proposed model has two delay terms and the equations are
matched with each other, which is not similar with the previous models [18, 23, 24].

In this paper, we will propose a time-delayed jellyfish model with stage structure and will investigate
how the stage structure parameters and temperature affect the dynamical behaviors of system (2.2). Our
main purpose is to study the population dynamics of jellyfish for the largest surviving probability as
well as for final population numbers. To find the largest surviving probability, we will take the global
asymptotical behaviors of the model by applying the monotone dynamical properties (for reference,
see [25] and [26, p. 90]).

This paper is organized as follows: in Section 2, we propose the model and show that the solutions
are positiveness and ultimately bounded. The main results of this paper are presented in Section 3. In
Section 4, we perform numerical simulations to explore the effects of two delays and temperature on
the dynamics. Section 5 is the brief discussion of our results.

2. Model description and preliminaries

2.1. Model formulating

The life history of jellyfish is divided into two main stages; polyp and medusa. The larval stage of
polyp is planula and the elementary phase of medusa is ephyra. Let P(t) and M(t) be the population
size or number of polyps and medusae at time t, respectively. The model is based on the following
assumptions and the diagram in Figure 1:

(A1) τ1 is the length of the stage from the young polyp to the mature polyp. The immature polyp
reproduces asexually at time t − τ1 and surviving from time t − τ1 to t is e−(d1+d2)τ1 .

(A2) τ2 is the time lag taken from the developed polyp to ephyra (incipient medusa), i.e., the developed
polyp reaches ephyra after surviving this stage. Denote τ = max{τ1, τ2}.

(A3) Its maturity is denoted by τ = max{τ1, τ2}, τ > 0.
(A4) Each population competes for their common resources.
(A5) Each population has its own natural death rate, the mortality of polyp is varied by the factors of

silt coverage or nudibranch consumption while that of medusa is because of different types of
predators.

By the preceding assumptions, we get the following polyp-medusa population with stage structure:

dP
dt = α(T )e−(d1+d2)τ1 P(t − τ1) + s1γM − d1P − d2P − b1P2,

dM
dt = s2β(T )ne−(d3+d4)τ2 P(t − τ2) − d3M − d4M − b2M2.

(2.1)

As pointed out in [11], α(T ) denotes the asexual reproduction rate affected by temperature, involving
budding, stolon and podocyst et al., s1 is the survival and metamorphosis rate of planula, γ represents
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Figure 1. Diagram of the model (2.1).

the sexual reproduction rate, b1 and b2 denote the density-dependent rates of polyps and medusae
respectively, s2 is the survival and development rate of ephyra, β(T ) is the strobilation rate affected by
temperature and n is strobilation times. Assuming that the death rate of the immature population is
proportional to the existing immature population with proportionality constants di > 0, i=1,2,3,4. The
loss of polyp is either due to natural death rate d1 or due to the factors of silt coverage d2 and τ1 is
the time taken from the immature polyp to the mature one; thus e−(d1+d2)τ1 is the survival probability
of each immature polyp to reach the mature one. The death of medusa is either from natural fatality
rate d3 or because of the predations d4 and τ2 is the time length between the developed polyp and
ephyra (incipient medusa); thus e−(d3+d4)τ2 is the survival rate of each developed polyp to reach the
ephyra (incipient medusa) population. As it takes a few days in the larval stage of jellyfish life, the
permanence and extinction criteria for the stage structured model are independent in this larval stage.

For the goal of simplicity, we denote a = α(T ), b = s1γ, d = d1 + d2, c = s2β(T )n, d∗ =

d3 + d4. Thus the following system can be obtained from system (2.1).
dP
dt = ae−ζ1 P(t − τ1) + bM − dP − b1P2,

dM
dt = ce−ζ2 P(t − τ2) − d∗M − b2M2,

(2.2)

where ζ1 = dτ1 and ζ2 = d∗τ2. Denote ζ1 and ζ2 the degrees of the stage structure.
Let X = C([−τ, 0],R2) be the Banach space of all continuous function from [−τ, 0] to R2 equipped

with the supremum norm, where τ = max{τ1, τ2}. By the standard theory of functional differential
equations (see, for example, Hale and Verduyn Lunel [27]), for any ψ ∈ C([−τ, 0],R2), there exists a
unique solution Y(t, ψ) = (P(t, ψ),M(t, ψ)) of system (2.2); which satisfies Y0 = ψ.

For system (2.2), we consider the initial conditions to either the positive cone
X+ = {ψ ∈ X|ψi(θ) ≥ 0 for all θ ∈ [−τ, 0], i = 1, 2} or the subset of X+ of functions which are strictly
positive at zero, X+

0 = {ψ ∈ X+|ψi(0) > 0, i = 1, 2}.

2.2. Positivity and boundedness of solutions

Lemma 2.1. For equation

dW
dt

= ae−ζ1W(t − τ1) +
bce−ζ2

d∗
W(t − τ2) −

B
2

W
2
, (2.3)

where a, b, c, d∗, B > 0, τ = max{τ1, τ2}, τ > 0 and W(0) > 0 and W(θ) ≥ 0, θ ∈ [−τ, 0], we have:
limt→∞W(t) = 2d∗ae−ζ1 +2bce−ζ2

d∗B
if d∗ae−ζ1 + bce−ζ2 > 0.

Proof. By using the similar argument of Lu et al. [28, Proposition 1], we will prove that W(t) > 0, for
all t ≥ 0. Otherwise, there exists some constant t́0 > 0 such that min{W(t́0)} = 0. Let
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t0 = inf{t́0 : W(t́0) = 0}. Then we have that min{W(t0) = 0} and min{W(t)} > 0, ∀t ∈ [0, t0). From
system (2.3), we have

W(t) = W(0)e−
∫ t

0
B
2 W(ϑ)dϑ + ae−ζ1

∫ t

0
W(ω − τ1)e−

∫ t
ω

B
2 W(ϑ)dϑdω

+
bce−ζ2

d∗

∫ t

0
W(ω − τ2)e−

∫ t
ω

B
2 W(ϑ)dϑdω.

(2.4)

Incorporation initial conditions and Eq (2.4), we get W(t0) > 0, contradicting min{W(t0)} = 0.
Consequently, W(t) > 0 for all t ≥ 0.

Let W
∗

= 2d∗ae−ζ1 +2bce−ζ2
d∗B

denotes the unique positive equilibrium of system (2.3). Denote u(t) =

W(t) −W
∗
, thus system (2.3) takes the form as

du
dt

= ae−ζ1u(t − τ1) +
bce−ζ2

d∗
u(t − τ2) −

B
2

u2(t) − BW
∗
u(t). (2.5)

Constructing the Lyapunov functional

V(u, uτ) =
1
2

u2(t) +
1
2

ae−ζ1

∫ t

t−τ1

u2(s)ds +
1
2

bce−ζ2

d∗

∫ t

t−τ2

u2(s)ds,

we have

dV
dt

∣∣∣∣∣
(2.5)

=ae−ζ1u(t)u(t − τ1) +
bce−ζ2

d∗
u(t)u(t − τ2) −

B
2

u3(t) − BW
∗
u2(t) +

1
2

ae−ζ1u2(t)

−
1
2

ae−ζ1u2(t − τ1) +
1
2

bce−ζ2

d∗
u2(t) −

1
2

bce−ζ2

d∗
u2(t − τ2)

≤
1
2

ae−ζ1u2(t) +
1
2

ae−ζ1u2(t − τ1) +
1
2

bce−ζ2

d∗
u2(t) +

1
2

bce−ζ2

d∗
u2(t − τ2) −

B
2

u3(t)

− BW
∗
u2(t) +

1
2

ae−ζ1u2(t) −
1
2

ae−ζ1u2(t − τ1) +
1
2

bce−ζ2

d∗
u2(t) −

1
2

bce−ζ2

d∗
u2(t − τ2)

=ae−ζ1u2(t) +
bce−ζ2

d∗
u2(t) − BW

∗
u2(t) −

B
2

u3(t)

=(ae−ζ1 +
bce−ζ2

d∗
−

B
2

W
∗
)u2(t) − (W

∗
+ u(t))

B
2

u2(t)

= −
B
2

W(t)u2(t) ≤ 0,

which is negative definite and dV
dt

∣∣∣
(2.5)

= 0 if and only if u = 0. By Lyapunov-LaSalle invariance

principle ( [29, Theorem 2.5.3]), we get limt→∞W(t) = W
∗

= 2d∗ae−ζ1 +2bce−ζ2
d∗B

, this proves Lemma 2.1. �

Lemma 2.2. Given system (2.2), then:

(I) Under the initial conditions, all the solutions of system (2.2) are positive for all t ≥ 0.

(II) Solutions of system (2.2) are ultimately bounded.
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Proof. (I) We start with proving the positivity of solutions by using the similar argument of Lu et al.
[28, Proposition 1]. We will prove that P(t) > 0, M(t) > 0 for t ≥ 0. Otherwise, there exists some
constant t̃0 > 0 such that min{P(t̃0),M(t̃0)} = 0. Let t0 = inf{t̃0 : P(t̃0) = 0,M(t̃0) = 0}. Then we have
that min{P(t0),M(t0)} = 0 and min{P(t),M(t)} > 0, ∀t ∈ [0, t0). From system (2.2), we have

P(t) =P(0)e−
∫ t

0 (d+b1P(η))dη + ae−ζ1

∫ t

0
P(κ − τ1)e−

∫ t
κ

(d+b1P(η))dηdκ

+ b
∫ t

0
M(κ)e−

∫ t
κ

(d+b1P(η))dηdκ,

M(t) =M(0)e−
∫ t

0 (d∗+b2 M(η))dη + ce−ζ2

∫ t

0
P(κ − τ2)e−

∫ t
κ

(d∗+b2 M(η))dηdκ.

(2.6)

Incorporation initial conditions and Eq (2.6), we obtain P(t0) > 0 and M(t0) > 0, contradicting
min{P(t0),M(t0)} = 0. Consequently, P(t) > 0, M(t) > 0 for all t ≥ 0.

(II) We show that the boundedness of solutions as follows.
Let W = d∗

b P + M. By system (2.2), we have

dW
dt

∣∣∣∣∣
(2.2)

=ae−ζ1
d∗
b

P(t − τ1) + ce−ζ2 P(t − τ2) −
dd∗
b

P −
d∗b1

b
P2 − b2M2

=ae−ζ1[
d∗
b

P(t − τ1) + M(t − τ1)] − ae−ζ1 M(t − τ1) +
bce−ζ2

d∗
[
d∗
b

P(t − τ2) + M(t − τ2)]

−
bce−ζ2

d∗
M(t − τ2) −

dd∗
b

P −
bb1

d∗
(
d∗
b

P)2 − b2M2

≤ae−ζ1W(t − τ1) +
bce−ζ2

d∗
W(t − τ2) − B[(

d∗
b

P)2 + M2],

where B := min { bb1
d∗
, b2}.

dW
dt
≤ ae−ζ1W(t − τ1) +

bce−ζ2

d∗
W(t − τ2) −

B
2

W2,

where −2((d∗
b P)2 + M2) ≤ −( d∗

b P + M)2.

Consider the equation

dW
dt

= ae−ζ1W(t − τ1) +
bce−ζ2

d∗
W(t − τ2) −

B
2

W
2
. (2.7)

By using Lemma 2.1 and Comparison Theorem, we get
lim supt→∞W(t) ≤ 2d∗ae−ζ1 +2bce−ζ2

d∗B
, which implies P(t) and M(t) are ultimately bounded. This completes

the proof of Lemma 2.2. �

2.3. Existence of equilibria

The equilibria (P,M) of system (2.2) satisfies the following system

ae−ζ1 P + bM − dP − b1P2 = 0,
ce−ζ2 P − d∗M − b2M2 = 0.

(2.8)
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System (2.2) has the equilibria E0 = (0, 0) for all parameter values and E1 = ( ae−ζ1−d
b1

, 0) if ae−ζ1 − d > 0
and c = 0.

Since Eq (2.8) can be rewritten as

(ae−ζ1 − d − b1P)P = −bM, ce−ζ2 P = (d∗ + b2M)M. (2.9)

When PM , 0, from Eq (2.9) it follows that

ae−ζ1 − d − b1P
ce−ζ2

+
b

d∗ + b2M
= 0. (2.10)

Further, substituting P =
(d∗+b2 M)M

ce−ζ2 into Eq (2.10) and we get

ae−ζ1 − d − b1
(d∗+b2 M)M

ce−ζ2

ce−ζ2
+

b
d∗ + b2M

= 0.

Set

F(M) :=
ae−ζ1 − d − b1

(d∗+b2 M)M
ce−ζ2

ce−ζ2
+

b
d∗ + b2M

,

thus F(M) is a decreasing function of M for any M > 0.
Noting that the continuity and monotonicity of F(M) and that F(+∞) < 0, furthermore since one

can get F(0) > 0 provided that

(ae−ζ1 − d)d∗ + bce−ζ2 > 0, c , 0 (2.11)

hold true, therefore we conclude that system (2.2) admits a unique positive equilibrium given Eq (2.11)
is satisfied.

3. Stability and global attractiveness

The purpose of this section is to study the global stability of system (2.2).

3.1. Stability

Now we consider the local stability of the equilibria. The characteristic equation of system (2.2)
takes the form as follows;

det(λI −G − H1e−λτ1 − H2e−λτ2) = 0,

where

G =

(
−d − 2b1P b

0 −d∗ − 2b2M

)
,H1 =

(
ae−ζ1 0

0 0

)
,H2 =

(
0 0

ce−ζ2 0

)
.

Lemma 3.1. Suppose that (ae−ζ1 − d)d∗ + bce−ζ2 < 0, then the equilibrium E0 = (0, 0) of system (2.2)
is locally asymptotically stable.
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Proof. The characteristic equation of system (2.2) at the equilibrium E0 is as follows:

C(λ) := (λ + d∗)(λ + d − ae−ζ1−λτ1) − bce−ζ2−λτ2 = 0. (3.1)

To show that it is asymptotically stable under assumption (ae−ζ1 − d)d∗ + bce−ζ2 < 0, we just need
to prove that the solutions of the characteristic equation C(λ) = 0 must have negative real parts. Let
λ = u + iv, where u and v are real numbers. Denote

A1 =u + d∗, B1 =v,

A2 =u + d − ae−ζ1−uτ1 cos(vτ1), B2 =v + ae−ζ1−uτ1 sin(vτ1),

C1 =bce−ζ2−uτ2 cos(vτ2), C2 = − bce−ζ2−uτ2 sin(vτ2).

Substituting λ by u + iv into Eq (3.1)

A1A2 − B1B2 = C1, A1B2 + A2B1 = C2.

Then
(A1A2)2 + (B1B2)2 + (A1B2)2 + (A2B1)2 = (C1)2 + (C2)2. (3.2)

Assume that u ≥ 0, then we get

A1 ≥ d∗ > 0, A2 ≥ d − ae−ζ1 > 0.

Hence
(A1A2)2 > ((d − ae−ζ1)d∗)2. (3.3)

(A1A2)2 + (B1B2)2 + (A1B2)2 + (A2B1)2 ≥ (A1A2)2 > ((d − ae−ζ1)d∗)2.

From Eq (3.2), we obtain

(C1)2 + (C2)2 ≥ (A1A2)2 > ((d − ae−ζ1)d∗)2

(bce−ζ2)2(cos2(vτ2) + sin2(vτ2)) ≥ (A1A2)2 > ((d − ae−ζ1)d∗)2

(bce−ζ2)2 ≥ (A1A2)2 > ((d − ae−ζ1)d∗)2.

Hence Eq (3.3) contradicts to the assumption (ae−ζ1 − d)d∗ + bce−ζ2 < 0, thus u < 0, which means λ
must have negative real parts. This proves Lemma 3.1. �

Lemma 3.2. Suppose that ae−ζ1−d > 0 and c = 0, then the equilibrium E1 = (ae−ζ1−d
b1

, 0) of system (2.2)
is locally asymptotically stable.

Proof. The characteristic equation of system (2.2) at the equilibrium E1 is

X(λ) := (λ + d∗)(λ − d + 2ae−ζ1 − ae−ζ1−λτ1) = 0. (3.4)

Then λ = −d∗ is a negative root of the equation X(λ) = 0. Let λ − d + 2ae−ζ1 − ae−ζ1−λτ1 = 0; then
if the root is λ = u + iv, we have u + 2ae−ζ1 − d − ae−ζ1−uτ1 cos(vτ1) = 0. Assume that u ≥ 0, then
u + 2ae−ζ1 − d − ae−ζ1−uτ1 cos(vτ1) ≥ ae−ζ1 − d > 0 is a contradiction, hence u < 0. This shows that all
the roots of X(λ) = 0 must have negative real parts, and therefore E1 is locally asymptotically stable.
This proves Lemma 3.2. �
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Lemma 3.3. Suppose that (ae−ζ1 − d)d∗ + bce−ζ2 > 0 and c , 0, then the equilibrium E∗ = (P∗,M∗) of
system (2.2) is locally asymptotically stable.

Proof. The characteristic equation of system (2.2) at the equilibrium E∗ is

(λ + d + 2b1P∗ − ae−ζ1−λτ1)(λ + d∗ + 2b2M∗) − bce−ζ2−λτ2 = 0.

To show that it is asymptotically stable under (ae−ζ1 − d)d∗ + bce−ζ2 > 0, we just need to prove that the
solutions of the characteristic equation must have negative real parts. Let λ = u + iv where u and v are
real numbers. Denote

D1 =u + d + 2b1P∗ − ae−ζ1−uτ1 cos(vτ1), E1 =v + ae−ζ1−uτ1 sin(vτ1),

D2 =u + d∗ + 2b2M∗, E2 =v,

F1 =bce−ζ2−uτ2 cos(vτ2), F2 = − bce−ζ2−uτ2 sin(vτ2).

Substituting λ by u + iv into the above equation.

D1D2 − E1E2 = F1, D1E2 + D2E1 = F2.

Then
(D1D2)2 + (E1E2)2 + (D1E2)2 + (D2E1)2 = (F1)2 + (F2)2. (3.5)

Assume that u ≥ 0, then we get

D1 ≥ d + 2b1P∗ − ae−ζ1 > d + 2b1
ae−ζ1 − d

b1
− ae−ζ1 = ae−ζ1 − d > 0,

D2 ≥ d∗ + 2b2M∗ = d∗ + 2b2
b1(P∗)2 − (ae−ζ1 − d)P∗

b1

> d∗ + 2b2

b1( ae−ζ1−d
b1

)2 − (ae−ζ1 − d)( ae−ζ1−d
b1

)

b1
= d∗ > 0.

Hence
(D1D2)2 > ((ae−ζ1 − d)d∗)2.

(D1D2)2 + (E1E2)2 + (D1E2)2 + (D2E1)2 ≥ (D1D2)2 > ((ae−ζ1 − d)d∗)2.

By Eq (3.5), we get

(F1)2 + (F2)2 ≥ (D1D2)2 > ((ae−ζ1 − d)d∗)2

(bce−ζ2)2(cos2(vτ2) + sin2(vτ2)) ≥ (D1D2)2 > ((ae−ζ1 − d)d∗)2

(bce−ζ2)2 ≥ (D1D2)2 > ((ae−ζ1 − d)d∗)2.

By assumption (ae−ζ1 − d)d∗ + bce−ζ2 > 0, which is a contradiction, thus u must be negative real parts.
This completes the proof of Lemma 3.3. �
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3.2. Global attractiveness

Before the details, we will present the notion from the literature [25]. We define

xt ∈ C([−τ, 0],R2),

by xt(θ) = x(t + θ),∀θ ∈ [−τ, 0]. Consider a delay system

x′(t) = f (xt), (3.6)

for which uniqueness of solutions is assumed, x(t, ψ) designates the solution of Eq (3.6) with initial
condition x0 = ψ (ψ ∈ C).

A non-negative equilibrium v = (vp, vm) ∈ R2 of system (2.2) is said to be globally attractive if
Y(t) → v as t → ∞, for all admissible solutions Y(t) of system (2.2). We say that v is globally
asymptotically stable if it is stable and globally attractive.

System (2.2) is written as Eq (3.6),

f1(ψ) =ψ1(0)[−d − b1ψ1(0)] + ae−ζ1ψ1(−τ1) + bψ2(0),
f2(ψ) =ψ2(0)[−d∗ − b2ψ2(0)] + ce−ζ2ψ1(−τ2).

(3.7)

Observe that system (2.2) is cooperative, i.e., D fi(ψ)ϕ ≥ 0, for all ψ, ϕ ∈ X+ with ϕi(0) = 0, i = 1, 2.
This implies that f satisfies quasi-monotonicity condition [26, p. 78]. Typically, in population
dynamics the stability of equilibria is closely related to the algebraic properties of some kinds of
competition matrix of the community. Denote

A =

(
ae−ζ1 − d 0

0 −d∗

)
, D =

(
0 b

ce−ζ2 0

)
.

For convenience, we shall refer to N = A + D as the (linear) community matrix:

N =

(
ae−ζ1 − d b

ce−ζ2 −d∗

)
. (3.8)

Since D ≥ 0, the matrix N in Eq (3.8) is called cooperative. If D is irreducible, then the matrix N in
Eq (3.8) is also irreducible; in this case, system (2.2) is called an irreducible system [26, p. 88], and
the semiflow ψ 7→ Yt(ψ) is eventually strongly monotone. f = ( f1, f2)T : R2 → R2 is strictly sublinear,
i.e., for any P � 0,M � 0 and any α ∈ (0, 1),

f1(αP, αM) =αP[−d − b1αP] + ae−ζ1αP(t − τ1) + bαM

>α[P(−d − b1P) + ae−ζ1 P(t − τ1) + bM] = α f1(P,M),
f2(αP, αM) =αM[−d∗ − b2αM] + ce−ζ2αP(t − τ2)

>α[M(−d∗ − b2M) + ce−ζ2 P(t − τ2)] = α f2(P,M).

Cooperative DDEs satisfying these sublinearity conditions have significant
properties [30, Proposition 4.3].

Recall that the stability modulus of square matrix N in Eq (3.8), denoted by s(N), is defined by
s(N) = max{Reλ : λ is an eigenvalue of N}. If the matrix N in Eq (3.8) has nonnegative off diagonal
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elements and is irreducible, then s(N) is a simple eigenvalue of the matrix N with a (componentwise)
positive eigenvector (see, e.g., [31, Theorem A.5]).

The matrix N in Eq (3.8) is

N =

(
ae−ζ1 − d b

ce−ζ2 −d∗

)
,

then we can easily get the following:
s(N) > 0 if and only if (ae−ζ1 − d)d∗ + bce−ζ2 > 0 and s(N) < 0 if and only if (ae−ζ1 − d)d∗ + bce−ζ2 < 0.

Definition 3.4. [32] A square matrix A = [ai j] with non-positive off diagonal entries, i.e., ai j ≤ 0
for all i , j, is said to be an M-matrix if all the eigenvalues of A have a non-negative real part, or
equivalently, if all its principal minors are non-negative, and A is said to be a non singular M-matrix if
all the eigenvalues of A have positive real part, or, equivalently, if all its principal minors are positive.

Theorem 3.5. Suppose that (ae−ζ1 − d)d∗ + bce−ζ2 < 0, then the equilibrium E0 of system (2.2) is
globally asymptotically stable.

Proof. Let P(t, l), M(t, k) be the solutions of system (2.2) with P(0 + θ, l) = l, M(0 + θ, k) = k for
θ ∈ [−τ, 0]. Note that f1(l) = l[−d + b + ae−ζ1 − b1l] < 0 for l > 0 sufficiently large and f2(k) =

k[−d∗ + ce−ζ2 − b2k] < 0 for k > 0 sufficiently large. Hence we can easily conclude that all admissible
solutions of system (2.2) are bounded [26, Corollary 5.2.2]. We have s(N) < 0 if and only if (ae−ζ1 −

d)d∗ + bce−ζ2 < 0. By the assumption (ae−ζ1 − d)d∗ + bce−ζ2 < 0, we observed that it is equivalent
to having −N a non singular M-matrix. Since matrix −N is a non singular M-matrix, there exists the
equilibrium v = (vp, vm) ∈ R2, v > 0, such that Nv < 0, hence we get

ae−ζ1vp − dvp + bvm < 0,
ce−ζ2vp − d∗vm < 0.

(3.9)

Let P(t) ≥ 0, M(t) ≥ 0 be solutions of system (2.2). Denote yp(t) =
P(t)
vp

and ym(t) =
M(t)
vm

, thus
system (2.2) takes the form as

y′p(t) =yp(t)[−d − b1yp(t)vp] + ae−ζ1yp(t − τ1) +
bvm

vp
ym(t),

y′m(t) =ym(t)[−d∗ − b2ym(t)vm] + ce−ζ2
vp

vm
yp(t − τ2).

(3.10)

It suffices to prove that (Lp, Lm) := lim supt→∞(yp(t), ym(t)) = (0, 0). Let Lp := lim sup{yp(t)},
Lm := lim sup{ym(t)}, L̃ := max{Lp, Lm} and suppose that L̃ > 0. From Eq (3.9), we can choose ε > 0
such that

L̃[−d − b1L̃vp + ae−ζ1 +
bvm

vp
] + ε[ae−ζ1 +

bvm

vp
] =: γp < 0,

L̃[−d∗ − b2L̃vm + ce−ζ2
vp

vm
] + ε[ce−ζ2

vp

vm
] =: γm < 0.

Let T > 0 be such that yp(t) ≤ L̃ + ε, ym(t) ≤ L̃ + ε for all t > T − τ and the cases of yp(t) and ym(t)
are separated as eventually monotone and not eventually monotone. By [26, Proposition 5.4.2], if yp(t)
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and ym(t) are eventually monotone, then yp(t)→ L̃ and ym(t)→ L̃ as t → ∞ for t ≥ T and we obtain

y′p(t) ≤ yp(t)[−d − b1yp(t)vp] + ae−ζ1(L̃ + ε) + (L̃ + ε)
bvm

vp
→ γp,

y′m(t) ≤ ym(t)[−d∗ − b2ym(t)vm] + ce−ζ2
vp

vm
(L̃ + ε)→ γm as t → ∞.

(3.11)

Since γp < 0 and γm < 0, these imply that limt→∞(yp(t), ym(t)) = −∞, which is impossible. By using
the similar argument of Aiello and Freedman [18, Theorem 2], if yp(t) and ym(t) are not eventually
monotone, there is a sequence tn → ∞ such that yp(tn) → L̃, y′p(tn) = 0 and ym(tn) → L̃, y′m(tn) = 0.
We obtain (3.11) with t replaced by tn, again a contradiction. This proves limt→∞(yp(t), ym(t)) = (0, 0).
Using Lemma 3.1, we complete the proof of Theorem 3.5. �

Theorem 3.6. Suppose that ae−ζ1 −d > 0 and c = 0, then the equilibrium E1 of system (2.2) is globally
asymptotically stable.

Proof. If c = 0, the second equation of system (2.2) becomes

M′(t) = −d∗M − b2M2, (3.12)

For the independent subsystem (3.12), it is obvious that limt→∞ M(t) = 0.
Then the first equation of system (2.2) becomes

P′(t) = ae−ζ1 P(t − τ1) − dP(t) − b1P2(t). (3.13)

Let ε > 0 be sufficiently small and L > 0 be sufficiently large such that ε ≤ P(t) ≤ L, t ∈ [−τ, 0], and

ae−ζ1ε − dε − b1ε
2 > 0, ae−ζ1 L − dL − b1L2 < 0.

Let Pε(t) and PL(t) be the solutions of Eq (3.13) with Pε(t) = ε and PL(t) = L for t ∈ [−τ, 0]. From the
monotone properties of the equation [26], the function Pε(t) is increasing and PL(t) is decreasing for
t ≥ 0 and

Pε(t) ≤ P(t) ≤ PL(t), t ≥ 0.

It therefore follows that

ae−ζ1 − d
b1

= lim
t→∞

P(t) ≤ lim
t→∞

PL(t) =
ae−ζ1 − d

b1

because the only equilibrium of the equation between ε and L is ae−ζ1−d
b1

. Using Lemma 3.2, we complete
the proof of Theorem 3.6. �

Lemma 3.7. Suppose there is a positive equilibrium (P∗,M∗) of system (2.2), and that (ae−ζ1 − d)d∗ +

bce−ζ2 > 0 and c , 0. Then all solutions P(t, ψ1), M(t, ψ2) of system (2.2) with ψi ∈ X+
0 , i = 1, 2 satisfy

lim inft→∞(P(t, ψ1),M(t, ψ2)) ≥ (P∗,M∗).
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Proof. For (P∗,M∗) an equilibrium of system (2.2), we have

ae−ζ1 − d + b
M∗

P∗
= b1P∗ > 0,

−d∗ + ce−ζ2
P∗

M∗
= b2M∗ > 0.

(3.14)

Denote P̄(t) =
P(t)
P∗ and M̄(t) =

M(t)
M∗ in system (2.2), and dropping the bar for simplicity, we get

P′(t) =P(t)[−d − b1P(t)P∗] + ae−ζ1 P(t − τ1) +
bM∗

P∗
M(t),

M′(t) =M(t)[−d∗ − b2M(t)M∗] + ce−ζ2
P∗

M∗
P(t − τ2).

(3.15)

For the solutions P(t) = P(t, ψ1) and M(t) = M(t, ψ2) of Eq (3.15) with ψi ∈ X+
0 for i = 1, 2, we first

claim that (lp, lm) := lim inft→∞(P(t),M(t)) > (0, 0). Otherwise, there exist δ ∈ (0, 1) and t0 > τ such
that l̃ = min{(P(t),M(t)) : t ∈ [0, t0]} and l̃ < δ. By using Eq (3.14),

P′(t0) = P(t0)[−d − b1P(t0)P∗] + ae−ζ1 P(t0 − τ1) +
bM∗

P∗
M(t0)

≥ l̃[−d − b1l̃P∗] + ae−ζ1 l̃ +
bM∗

P∗
l̃

= l̃(b1P∗ − b1l̃P∗) = l̃b1P∗(1 − l̃) > 0,

M′(t0) = M(t0)[−d∗ − b2M(t0)M∗] + ce−ζ2
P∗

M∗
P(t0 − τ2)

≥ l̃[−d∗ − b2l̃M∗] + ce−ζ2
P∗

M∗
l̃

= l̃(b2M∗ − b2l̃M∗) = l̃b2M∗(1 − l̃) > 0.

But these are not possible. Since the definition of t0, P′(t0) ≤ 0 and M′(t0) ≤ 0.
Next we prove that (lp, lm) ≥ (1, 1). Choose l̃ = min{lp, lm} and suppose that l̃ < 1. Let T > 0 and

ε > 0 be chosen so that P(t) ≥ l̃ − ε and M(t) ≥ l̃ − ε for all t > T − τ.

l̃b1P∗(1 − l̃) − ε[ae−ζ1 l̃ +
bM∗

P∗
] =: np > 0,

l̃b2M∗(1 − l̃) − ε[ce−ζ2
P∗

M∗
] =: nm > 0.

By [26, Proposition 5.4.2], if P(t) and M(t) are eventually monotone, then P(t) → l̃ and M(t) → l̃ and
for t ≥ T , we have

P′(t) ≥ P(t)[−d − b1P(t)P∗] + ae−ζ1(l̃ − ε) + (l̃ − ε)
bM∗

P∗
→ np,

M′(t) ≥ M(t)[−d∗ − b2M(t)M∗] + (l̃ − ε)ce−ζ2
P∗

M∗
→ nm as t → ∞,

leading to P(t) → ∞ and M(t) → ∞ as t → ∞, contradicting l̃ < 1. By using the similar argument
of Aiello and Freedman [18, Theorem 2], if P(t) and M(t) are not eventually monotone, there is a
sequence tn → ∞ such that P(tn) → l̃, P′(tn) = 0 and M(tn) → l̃, M′(tn) = 0. For tn ≥ T , we obtain
the above inequalities tn instead of t, which yield that 0 = P′(tn) ≥ np and 0 = M′(tn) ≥ nm, again
contradicting l̃ < 1. This proves that l̃ ≥ 1. �
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Theorem 3.8. Suppose that (ae−ζ1−d)d∗+bce−ζ2 > 0 and c , 0, then the equilibrium E∗ of system (2.2)
is globally asymptotically stable.

Proof. For (P∗,M∗) of system (2.2), after the changes P(t) 7→ P(t)
P∗ and M(t) 7→ M(t)

M∗ , consider
system (3.15) with positive equilibrium (1, 1) ∈ R2. In view of Lemmas 3.3 and 3.7, we only need to
prove that (Lp, Lm) := lim supt→∞(P(t),M(t)) ≤ (1, 1) and any positive solution P(t), M(t) of Eq (3.15).

For the sake of contradiction, suppose that L̃ = max{Lp, Lm} > 1. Choose ε > 0 and t > τ, such that
P(t) ≤ L̃ + ε and M(t) ≤ L̃ + ε for all t > T − τ and

L̃b1P∗(1 − L̃) + ε[ae−ζ1 L̃ +
bM∗

P∗
] =:Np < 0,

L̃b2M∗(1 − L̃) + ε[ce−ζ2
P∗

M∗
] =:Nm < 0.

Separating the cases of P(t) and M(t) eventually monotone and not eventually monotone, and reasoning
as in the proofs of Theorem 3.5 and Lemma 3.7, we obtain a contradiction, thus L̃ ≤ 1. Finally we get
limt→∞(P(t),M(t)) = (P∗,M∗). Using Lemma 3.3, we complete the proof of Theorem 3.8. �

Remark 1. Note that when τ1 = τ2 = 0, system (2.2) becomes system (1.1). Theorems 4–6 in [11]
are the corresponding results of Theorems 3.5, 3.6 and 3.8 for system (2.2), respectively. Our main
results not only extend the results in [11] but also generalize the related results into the stage-structured
system with two delays. But the proof methods of our results are quite different to those in [11].

4. Numerical simulations

In this section, we numerically simulate the dynamics of system (2.2) for a range of parameters
which are the same as those in [11]. In this paper, we add the values of two delays τ1 and τ2 from
[10, 33]. The parameters are given in Table 1.

Table 1. Two sets of parameter values used in numerical simulations.

Parameter Ranges Ref. Unit data 1 data 2
α(T ) 0.03 ∼ 0.15a [14] ind · d−1 P−1 0.12 0.15
β(T ) 0.065 ∼ 0.139a [14] ind · d−1time−1 P−1 0.108 0.122
γ 19 ∼ 178a [33, 34] ind · d−1 M−1 100 170
s1 0.001 ∼ 0.3b [34, 35] no unit 0.008 0.01
s2 0.01 ∼ 0.8b [34] no unit 0.2 0.8
n 1 ∼ 2 [14] times 1 1
d1 0 ∼ 0.028a,b [6, 14] d−1 0.0001 0.0001
d2 0.0001 ∼ 0.3b [34] d−1 0.0001 0.0001
d3 0.004 ∼ 0.02a [34, 36] d−1 0.006 0.004
d4 0.0001 ∼ 0.8b [1] d−1 0.0001 0.0001
b1 0.00001 ∼ 0.1b [3, 37] d−1ind−1 0.0012 0.0001
b2 0 ∼ 0.1b d−1ind−1 0.0001 0.0001
τ1 30 ∼ 120b [10, 33] d 120 120
τ2 60 ∼ 300b [10, 33] d 90 150
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Values signatured by a are from experimental data with unit innovation and those signatured by b

are estimated from references.
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Figure 2. Global stability of E∗ under different initial values and the population sizes for
data 1 and data 2, respectively.

The left figure of Figure 2 shows that the positive equilibrium E∗ of system (2.2) is globally
asymptotically stable under different initial values. The left figure and right figure of Figure 2 take the
parameters data 1 and data 2, respectively. Figure 2 shows that the population sizes change with
respect to environmental indices but do not depend on the initial values. The population explosion
occurs even though the initial values (P = 0,M = 2) are small (see the right figure of Figure 2). The
numbers of two stages in the right figure of Figure 2 are larger than those in the left figure of Figure 2
because the reproduction is high while the destructions and competitions are low in the right figure of
Figure 2. The trajectories of the right figure of Figure 2 finally tend towards a higher population level
up to 10–15 times than the trajectories in the left figure of Figure 2 (in the corresponding Figure 3
of [11], the populations of Figure 3(b) is higher 30–50 times than Figure 3(a)) although the initial
values (0, 2) are of equal values.
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Figure 3. The effects of delays on the population sizes for data 2.

Based on data 2, Figure 3 illustrates how time delays affect the population dynamics. In the left
figure of Figure 3, we fix the delay τ2 as the best fit value and increase the delay τ1 ∈ [30, 120]. We
find that the populations are slightly fallen over the longer period τ1 (see the left figure of Figure 3).
This is because of the lack of needed temperature and resources and so the asexual reproduction period
is long, and the results of the population are low. When we fix the delay τ1 and change the delay τ2
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from 60 to 300, the populations are significantly decreased over the longer period τ2 (see the right
figure of Figure 3). Overall, Figure 3 can be seen that the peaks of population abundance occur at the
small τ1 and τ2 while the longer maturation periods may be responsible for the lower populations.
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Figure 4. The effects of temperature on the population sizes for data 1 and data 2,
respectively.

Figure 4 depicts the effect of temperature T ∈ [7, 36] on the populations. Temperature is the impact
factor that affects the asexual reproduction and strobilation of the jellyfish. In [11], Xie et al. presented
that

α(T ) =
1.9272

T 3 − 30.3904T 2 + 294.7234T − 871.29
+ 0.0378,

β(T ) = 0.1430 exp {−(
T − 16.8108

10.5302
)2}.

In Figure 4, the numbers of polyp reach a peak at 12.5 ◦C, which correlates with the maximum budding
rate of experimental data [14] and then gradually declined over the high temperature. From 12.5 ◦C
to 16.8 ◦C is the maximum level of the number of medusae which is different from the experimental
result 15 ◦C [14]. Figure 4 reveals that an appropriate increase of temperature might cause a large
increase in the number of populations but the rise of temperatures would result in the fewer populations.
Comparing the corresponding Figure (4d) in [11] with the right figure of Figure 4 in this paper, we find
out that we can exactly see the peak populations due to the stage structure and can exactly know the
effects of temperature on the population dynamics because the temperature is considered up to 36 ◦C
in this paper.

5. Discussion

In this paper, we propose and analyze a delayed jellyfish model with stage structure, which is an
extension of ODE model studied by Xie et al. in [11]. We have investigated how the phenomena of
budding and strobilation influence the population dynamics of the jellyfish population. τ1 stands the
time needed from the stage of the young polyp to the developed polyp and τ2 stands the time taken
from the mature polyp to ephyra (incipient medusa). We have developed the systematic analysis of the
model in both theoretical and numerical ways.

We have proved the global stability of the equilibria under suitable conditions. Our results not
only extend but also improve some related results of literature [11]. Our Theorems 3.5, 3.6 and 3.8
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straightly extend the corresponding Theorems 4–6 in [11], respectively. Comparing the corresponding
Theorems 4–6 in [11] for the ODE system (1.1) with Theorem 3.5, 3.6 and 3.8 for system (2.2), we
find out that there are two extra terms e−dτ1 and e−d∗τ2 in our permanence and extinction criteria, i.e.,
the surviving probability of each immature population to develop into mature, which obtains due to
the stage structure. From our results, we find that the jellyfish population will be extinct in the large
immature mortality rate d, d∗ or the long maturation τ1, τ2. Thus we may suggest that the proper
increases of dτ1 and d∗τ2 have a negative effect of jellyfish population.

Biologically, our results suggest that (i) jellyfish species go extinct if the survival rate of polyp
during cloning and the survival rate of the incipient medusa during strobilation are less than their death
rates; (ii) polyps will continue and there is no complement from polyp to medusa if the survival rate
of polyp during cloning is larger than its death rate and the temperature is not enough to strobilate;
(iii) both polyp and medusa will survive in a certain ideal environment and our result converges to the
positive constant when the survival rate of polyp during cloning and the survival rate of the incipient
medusa during strobilation are larger than their death rates.

Besides the above systematic theoretical results, we have performed the numerical simulations to
support the theoretical results. Our numerical results suggest that the positive equilibrium is globally
asymptotically stable under distinctive initial values and the population sizes don’t deal with the initial
values but they change with respect to environmental factors. In Figures 3 and 4, our results suggest
that the abundance in population occurs at the smaller periods τ1 and τ2 whereas the longer periods
τ1 and τ2 will lower the peak population of polyp and medusa. In addition to the problem due to
increasing τ1 and τ2, the increase of temperatures might cause the outburst of the population dynamics.
If there is much higher temperature, the population rate leads to decline. Since temperature has a great
impact on jellyfish population, it is interesting for one to consider the populations under the relevance
to temperature. We leave this interesting problem as our future work.
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