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Abstract: The stability of the moisture content of the cigarette is an important index to evaluate the 
quality of the cigarette. The cooling moisture content after cut tobacco drying process is a key factor 
affecting the stability of the moisture content of the cigarette. In order to realize its accurate prediction 
and ensure the stability, in Honghe cigarette factory, a cooling moisture content prediction model is 
built based on a particle swarm optimization-extreme learning machine (PSO-ELM) algorithm via the 
historical production data. Besides, the proposed PSO-ELM algorithm is also compared with multiple 
linear regression (MLR), support vector machine (SVM) and the traditional extreme learning machine 
(ELM) algorithms in the same data set on the prediction. The prediction accuracy of PSO-ELM method 
is the highest and the average error of the prediction standard is the lowest. The results indicated the 
proposed method can achieve a better prediction performance over compared methods and it provides 
a new method to realize the prediction of the cooling moisture content after cut tobacco drying process. 

Keywords: PSO-ELM; cooling moisture content; export moisture content; environment temperature; 
environment humidity 
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1. Introduction 

Cut tobacco drying and cooling are two important part of cigarette producing process [1]. During 
the tobacco primary processing, moisture control plays an important role on cigarette quality. The 
cooling moisture content of the cut tobacco after drying will directly affect final cigarette quality. The 
stability of the moisture content of the cigarette is an important index to evaluate the quality of the 
cigarette. Some foreign scholars have studied how different moisture contents affect the smoking 
quality of cigarettes and summarized a reasonable moisture content of finished product of tobacco. In 
actual production, the moisture content of finished product of cut tobacco is controlled in a reasonable 
range of moisture content. Whether the moisture content of finished product of cut tobacco can be 
controlled stably or not, the control of the cooling moisture content of the cut tobacco is crucial. Usually, 
the cooling moisture content is depended on the export moisture content after drying. Therefore, how 
to set a previous export moisture content is of great importance. 

Nowadays the export moisture content of the cut tobacco is adjusted by artificial experience, 
which is subjective, fatigable and unstable. In Honghe cigarette factory, the time that cut tobacco 
transfers from drying process to cooling process is 270 seconds and the final cooling moisture content 
is also affected by the environment temperature and humidity. However, there is still no related 
research on building the mentioned model so far. As the result, how to establish the relationship 
between the export moisture content, environment temperature, environment humidity and the cooling 
moisture content to improve the stability of the cooling moisture content has the great practical value. 

Huang has proposed a machine learning method-the extreme learning machine (ELM) [2], which 
has been widely used in classification [3], regression [4], clustering [5], and feature learning [6]. 
Comparing with the traditional neural networks and support vector machine (SVM) algorithm [7], 
ELM is composed of single hidden layer feed-forward neural networks (SLFNs) and has faster learning 
speed and better generalization [8]. One significant achievement made in those years is to successfully 
prove the universal approximation and regression capabilities of ELM in theory [9–13]. In ELM, the 
input weights and hidden layer biases are randomly assigned. However, ELM tends to require more 
hidden neurons than traditional tuning-based algorithms in many cases, which may lead ELM to 
respond slowly to unknown data [14,15]. 

Particle Swarm Optimization (PSO) algorithm is a species of the intelligent optimization 
algorithm [16–18]. It has not only the merits of the traditional optimization algorithm, which adopts 
the global search strategy, but also avoids the complex genetic operation and enhances the learning 
and competition between the particles. At the same time, it possesses excellent global search ability. 
Therefore, PSO has no complicated operators as evolutionary algorithms and it has less parameters 
which need to be adjusted. It is very suitable for engineering practice. In this work, the PSO algorithm 
will be used in combination with ELM to improve the generalization capacity of the SLFNs. We will 
show that this strategy promises excellent performance and produces compact and well-conditioned 
SLFN than other ELM approaches. 

Considering the above challenges, in this paper, we propose a PSO-ELM export moisture content 
prediction method. The PSO-ELM method optimizes the input weights and hidden biases according to 
the root mean square error (RMSE) on the validation set instead of random weight generation. The 
structure of this paper is as follows. Section 2 introduces the description of production process and 
data pre-processing. The proposed PSO-ELM is presented in section 3. Section 4 shows the 
experimental results and confirms the effectiveness of the proposed algorithm, and the article is 
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concluded in section 5. 

2. Description of production process and data pre-processing 

2.1. Description of production process 

The description of production process is shown in Figure 1. In Honghe cigarette factory, the time 
that cut tobacco transfers from drying process to cooling process is 270 seconds. Usually, the cooling 
moisture content is not only affected by export moisture content after drying but also by the 
environment temperature and humidity. Therefore, two moisture meters are installed to record the 
moisture content of the drying export and cooling export respectively. Besides, the environment 
temperature and humidity are measured in real time. 

 

Figure 1. Description of production process. 

2.2. Data pre-processing 

The experimental data is provided by Honghe cigarette factory. All the samples are collected by 
manufacturing execution system of the factory in order to ensure they are on the same situation, the 
same method of cutting and also the same size. It contains HCACS, HBSRY and HBSYH three 
production brands. The total samples of the three brands are 11,862, 3605 and 6247 respectively. The 
detail of the experimental data is shown in Table 1. 

Table 1. Details of date set 1 and date set 2. 

Production Brand Time Samples Training samples Testing samples 

HCACS 2019.5–2019.6 11,862 9877 1985 

HBSRY 2019.5–2019.6 3605 3005 600 

HBSYH 2019.5–2019.6 6247 5000 1247 

2.2.1. Excluding data outliers 

Firstly, the data should be cleaned before building the models. It mainly contains excluding null 
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values and data outliers. 3  rule and Grubbs Criterion are often used to exclude the data outliers. 
Usually, Grubbs Criterion is chosen when the size of the samples is small and rule is chosen when the 
size of the samples is big. As the result, 3  rule is adopted to exclude the data outliers considering 
the size of the samples of the paper [19]. The rule can be described as Eq (1). 
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    is the residual of the variable ix . If the residual of the data is greater 

than 3 , it will be regarded as the outlier and excluded. The operation should be implemented multiple 
times until there is no outliers in the data. 

2.2.2. Data standardization 

As the magnitude features and the dimension of the data are inconsistent, the data normalization 
operation should also be implemented before building the models. The normalization formula is shown 
as Eq (2). 
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All the data will be scaled in the 0–1 interval after normalization. Then, the data are used to build 
the prediction models. 

2.3. Evaluation indexes 

2.3.1. Model building evaluation indexes 

Coefficient of determination (R2), root mean square error (RMSE), mean squared error (MSE) 
and mean absolute error (MAE) are four common evaluation indexes that are used for evaluate the 
performance of a regression model. R2 is a key output of regression analysis. It is interpreted as the 
proportion of the variance in the dependent variable that is predictable from the independent variable. 
It ranges from 0 to 1. The value of R2 indicates that the model is a good or bad fit for the data. If the 
value is close to 1, it means the model is a good fit for the data. The use of RMSE is very common and 
it makes an excellent general purpose error metric for numerical predictions. Compared to the similar 
MSE and MAE, RMSE amplifies and severely punishes large errors. As in Honghe cigarette factory 
production, the error of cooling moisture content is controlled in 0.5%. It is necessary to punish large 
error that the cooling moisture content is larger than 0.5%. Therefore, the quality of different building 
models is evaluated based on the coefficient of determination (R2) and root mean square error (RMSE) 
with Eqs (3) and (4), respectively. 

2 (1 / )R RSS SS                                  (3) 
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RSS and SS represent the residual sums of squares of the calibration data prediction of the final 
model and the variance of the response variable respectively. ( )if x  is the prediction value and it  is 

the actual value. 

2.3.2. Prediction evaluation indexes 

Mean absolute error (MAE) and mean absolute percentage error (MAPE) are often used to evaluate 
the performance of the machine learning algorithms. However, MAE can only achieve an evaluation 
value but it cannot reflect the model is good or bad. MAPE can not only consider the error of the 
prediction value and true value, but also reflect the proportion of the error and the true value. As the 
result, MPAE is a very important evaluation index of representing the prediction accuracy. Besides, as 
the cooling moisture content prediction is a true value prediction issue, mean absolute percentage error 
(MAPE) and accurate proportion (AP) are chosen as the prediction evaluation indexes in order to 
guarantee a small enough error between the actual value and prediction value [20]. Here, MAPE is the 
mean or average of the absolute percentage errors of forecasts. In actual factory production, the error 
of cooling moisture content is controlled in 0.5%. As the result, AP defines the accurate proportion that 
the MAPE of prediction value and actual value is smaller than 0.5%. MAPE of AP are defined as 
follows Eqs (5) and (6). 
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In Eqs (5) and (6), ( )if x   is the prediction value and it   is the actual value. 

( ( ) 0.5%)i iN f x t   is the number that the error between the prediction value and actual value is 

smaller than 0.5%. 

3. Methods 

3.1. ELM algorithm 

ELM was given to such models by its principal inventor Huang [2]. ELM is formulated as a linear-
in-the-parameter model that boils down to solve a linear system. Compared with traditional feed-
forward neural network (FNN) learning methods, ELM is remarkably efficient and tends to reach a 
global optimum. Theoretical studies show that even with randomly generated hidden nodes, ELM 
maintains the universal approximation capability of SLFNs [3,4]. 
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Given a single hidden layer of ELM, suppose that the output function of the i-th hidden node is 
( ) ( , , )i i ih G a bx x , where ia and ib  are the parameters of the i-th hidden node. The output function of 

the ELM for SLFNs with L hidden nodes is Eq (7). 
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In Eq (7), i  is the output weight of the i-th hidden node. ( ) [ ( ( ),..., ( ))]i LG h hh x x x  is the 

hidden layer output mapping of ELM. Given N training samples, the hidden layer output matrix H of 
ELM is given as Eq (8). 
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The training data-target matrix T is given as Eq (9): 
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Generally speaking, ELM is a kind of regularization neural networks with non-tuned hidden layer 
mappings (formed by either random hidden nodes, kernels or other implementations), its objective 
function is: 

Minimize: 1 2

p q
C

   H T                          (10) 

where 1 0  , 2 0  and 
1

, 0, ,1,2,...,
2

p q   . 

Different combinations of 1 , 2 , p and q can be used and result in different learning algorithms 

for regression, classification, sparse coding, compression, feature learning and clustering. 
As a particular case, a most straightforward training algorithm learns a model of the form (for 

single hidden layer sigmoid neural networks): 

2 1
ˆ ( )xY W W                                  (11) 

where 1W is the matrix of input-to-hidden-layer weights,  is an activation function, and 2W is the 

matrix of hidden-to-output-layer weights. The algorithm proceeds as follows: 
(ⅰ) Fill 1W  with random values, such as Gaussian random noise; 
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(ⅱ) Estimate 2W  by least-squares fit to an array of response variables Y, computed using the 

pseudoinverse, given a design matrix X: 2 1( ) W W X Y . 

3.2. Theory of particle swarm optimization algorithm 

In computer science, PSO is a computational method that optimizes a problem by iteratively 
trying to improve a candidate solution with regard to a given measure of quality [18]. Here PSO 
algorithm uses particles moving in an m-dimensional space to search solutions of an optimization 
problem with m variables. In our approach, PSO is used to search for the optimal particle iteratively. 
Each particle represents a candidate solution. ELM classifier is built for each candidate solution to 
evaluate its performance. The velocity and position of particles can be updated by the Eq (12). 

( 1) 1 1
1 1 2 2( ) ( )t t t t t t t t t

ij ij ij ij ij ij ij ij ijv v c rand pbest x c rand gbest x x x v        
     (12) 

Where t is an evolutionary generation, vij and xij stand for the velocity and position of particle i 
on dimension j, respectively. ω is the inertia weight and it is used to balance the global exploration and 
local exploitation. Rand represents the random function, c1 is the personal learning factor and c2 is the 
social learning factor. 

PSO algorithm and Genetic algorithm (GA) are two common algorithms to optimize the 
parameters of the machine learning algorithms. Comparing with GA algorithm, PSO algorithm has the 
advantages of fast searching speed, less parameters adjusting, simple structure and it is more suitable 
for engineering practice. Therefore, PSO is adopted for parameter optimization of ELM and SVM in 
the following part. 

3.3. Theory of particle swarm optimization-extreme learning machine algorithm 

Figure 2 is the flow chart of building a cooling moisture content prediction model by using PSO-
ELM algorithm, followed by data pre-processing, parameter optimization of ELM by PSO, PSO-ELM 
prediction. 

 

Figure 2. Flow chart of building prediction model by using PSO-ELM algorithm. 
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4. Experimental results and discussions 

4.1. Prediction modeling built 

In the following research, all the experiments are performed on an Intel machine (Core TM i5-4590s, 
3.00 GHz, CPU with 8 GB RAM, with 64-bit Windows 7 Professional operation system). As one kind 
of powerful and simple engineering calculation software, Matlab is widely used in automatic control, 
mechanical design, fluid mechanics, mathematical statistics and other engineering fields. Engineering 
and technical personnel can solve complex engineering problems efficiently, simulate the system 
dynamically and achieve the numerical calculation results with powerful graphic functions by means of 
using the toolbox provided by Matlab. Matlab is more suitable for engineering practice comparing with 
C++, python, R. Therefore, all methods are implemented in the language MATLAB, 64-bit version 
2010b. 

Firstly, the parameters used in the PSO are defined as follows. The coefficients c1 and c2 were both 
set to 2.0 and the adaptive inertia is used where the initial inertia is 0.9 and the end inertia is 0.4. The 
PSO is executed for 100 iterations. All components are limited within the range [−1,1]. Figure 3 shows 
the evolution of the RMSE along the iterations and we can observe the behavior of the PSO in the figure. 
It can be seen from Figure 3 that there is an optimal value for the number of neurons in the hidden layer 
of ELM. In order to calculate the optimal number of neurons automatically in the actual production 
process, PSO is implemented according to the section 3.2. The optimization interval is [0,100] and the 
PSO reaches the best RMSE values for three different testing brands after 60 iterations. 

 

Figure 3. PSO-ELM fitness function change process. 

All the training data of the three different brands (HCACS, HBSRY, HBSYH) are cleaned and 
normalized by using Eqs (1) and (2). MLR and SVM algorithms are two traditional regression 
algorithms which are widely used in all kinds of areas. As the result, it is very typical to compare the 
results of PSO-ELM algorithm with MLR and SVM algorithms. Besides, the paper use PSO algorithm 
to optimize the parameters of ELM algorithm, so it is also necessary to compare the results of PSO-
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ELM algorithm with traditional ELM algorithm. Then, four different regression algorithms were built 
and compared: MLR [21], PSO-SVR [22] and ELM and PSO-ELM. The SVM algorithm has two very 
important parameters punishment coefficient and Gamma. If the punishment coefficient is too large, 
the model is easy to occur overfit. If the punishment coefficient is too small, the model is easy to occur 
underfit. The value of Gamma determines the number of support vectors. The number of support 
vectors affects the speed of training and prediction. In order to make a fair comparison, the parameters 
of SVM algorithm are also optimized by using PSO algorithm. Here, the kernel function of SVM 
algorithm is radial basis function (RBF), and the punishment coefficient is 42.14 and Gamma is 0.02 
after PSO optimization. Here the parameters of PSO algorithm are the same with the above section. 
For ELM algorithm, the number of hidden neurons is 20, and the transfer function is Sigmoidal 
function. The statistics of established models in calibration set is shown in Table 2. For all the models, 
the calibration results of the PSO-ELM model were compared with that of the MLR, SVR and ELM 
models. PSO-ELM models had much higher R2 values and lower RMSE values. The results show PSO 
algorithm can optimize the parameters effectively, in order to improve the accurate of the ELM model. 

Table 2. Statistics of established models in calibration set. 

Brand Evaluation index 
Method 

MLR SVR ELM PSO-ELM 

HCACS 
R2 0.8617 0.8619 0.9173 0.9517 

RMSE 0.0801 0.0788 0.0619 0.0459 

HBSRY 
R2  0.6356 0.7019 0.8342 0.8846 

RMSE 0.0459 0.0416 0.0328 0.0306 

HBSYH 
R2 0.7574 0.8416 0.8813 0.9372 

RMSE 0.0844 0.0674 0.0595 0.0492 

4.2. Prediction results and discussion 

The prediction performance comparison results of PSO-ELM and the traditional methods could 
be obtained and listed in Table 3. It can be clearly seen that: 1) the MAPE of PSO-ELM method is the 
lowest among all the four methods for each testing brand; 2) the AP of PSO-ELM method is the highest 
among all the four methods for each testing brand. The results indicate that the proposed PSO-ELM 
method outperformed the traditional methods. It should be noted that the optimal results used for 
comparison are all obtained on the same data set for all the comparison methods and all the results are 
obtained through fine parameters tuning. 

In Figure 4, it can be easily seen that the prediction results of PSO-ELM are better than those of 
the other MLR, SVR and traditional ELM methods. The prediction values are the closest to the actual 
production values for all the three different brands (HCACS, HBSRY and HBSYH). Besides, the PSO-
ELM algorithm has the better prediction accuracy than the traditional ELM algorithm after parameters 
optimization. ELM can find the optimal number of neurons after PSO algorithm optimizes the number 
of extreme learning neurons. As the result, PSO-ELM algorithm reaches the highest prediction 
accuracy and the prediction error is reduced to the minimum. Due to the computational rapidity and 
strong generalization ability of extreme learning, ELM method can realize the real-time prediction of 
production and ensure the optimal model all the time. Its performance and feasibility are much higher 
than those of MLR and SVM methods and it is very suitable for engineering practice. 
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Table 3. Prediction accuracy and error of different methods. 

Brand 
Evaluation 

index 
Method 

MLR SVR ELM PSO-ELM 

HCACS 
MAPE 0.0571 0.0651 0.0401 0.0259 

AP 62.06% 53.9% 79.3% 92.99% 

HBSRY 
MAPE 0.0417 0.0327 0.0282 0.0126 

AP 78.02% 83.47% 86.16% 94.72% 

HBSYH 
MAPE 0.1219 0.0919 0.0491 0.0348 

AP 34.72% 50.84 72.89% 87.49% 

     

(a)                                         (b) 

 

(c) 

Figure 4. Comparison results of different prediction methods of three different testing 
brands. (a) is the result of the brand of HCACS, (b) is the result of the brand of HBSRY, 
(c) is the result of the brand of HBSYH. 

5. Conclusions 

The paper uses PSO algorithm to optimize the parameters of ELM algorithm and builds a novel 
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PSO-ELM model to predict the cooling moisture content after cut tobacco drying process. The 
experimental results show that PSO-ELM algorithm works better than MLR, SVR and traditional ELM 
algorithms on the prediction accuracy and generalization ability. In addition, the fast calculation speed 
of the ELM algorithm makes the factory easy to build and update the online model. In the following 
research, the online update learning method of ELM will also be studied. 

All the calculated results in the paper are all from the actual production data of the Honghe 
cigarette factory. It is of great importance to improve the quality of the cigarette, enhance the economic 
benefit of enterprises and reduce the unnecessary investment in physical test. Besides, the method 
proposed by the paper can also be used in the other cigarette factories. However, the new model should 
be built if the method is adopted in the other cigarette factories according to the collected data of 
themselves. That is the work that is planned in the future. 
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