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Abstract: In this work, we study the problem of p−th moment global exponential stability for
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Meanwhile, the p−th moment global exponential synchronization for the proposed equations is
also discussed, whereas the main results are proved by using Lyapunov function and Razumikhin
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results to Mackey Glass blood cell production model and Ikeda bistable resonator model. Finally, the
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1. Introduction

The time delay plays an important role in various fields such as biology, economics, chemistry,
physiology, neural network, engineering, etc. Indeed, the presence of delay in models often results in
chaos, instability, and poor performance. The effect of time delay on nonlinear models has been the
objective of many researchers in the last decades. For instance in [1], Mackey and Glass investigated
the time delay nonlinear model of blood cell production for patients with Leukemia. However in [2],
Ikeda studied the chaotic nature of delay of the optical bistable resonator.
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On other direction, time delay systems which describe real phenomena might undergo sudden
changes in their nature. This case is best described by incorporating the action of impulses to time
delay systems which provides more adequate interpretation for real situations. It has been realized
that the action of the impulses may cause chaos and instability in systems. Alternatively, impulses can
be used as a control to stabilize and synchronize the chaotic delayed systems. We refer here to the
papers [3, 4] where impulsive stabilization results for chaotic systems are studied and to the paper [5]
where the impulsive stabilization and impulsive synchronization for Lorenz system are proved. In [6],
it was shown that the impulsive controller guarantees the exponential convergence rate and
exponential stability of chaotic time delay systems. Recently, several types of stability results are
obtained based on impulsive control theory [7–11]. For more impulsive stability and synchronization
results, we refer the reader to the literature [12–30].

The study of delay differential systems with impulses has attracted the attention of many
researchers due to their practical applicability in describing the nature of occurrences in real-world
systems that often require past history and change from one state to another. However, most works
have been conducted for systems with fixed impulses. Never the less, it has been realized that the
impulsive arrival taken at random times leads to the solutions that are stochastic in nature and is
different from the deterministic impulses. The literature has witnessed the appearance of some works
on differential systems with random impulses. The existence, uniqueness, and stability of differential
systems with random impulses have been carried out in [31]. The study of p−th moment exponential
stability of differential systems with randomly occurring impulses has been done in [32]. Recently
in [33], the authors investigated the applicability of random impulse control to make the unstable
time-delay systems stable. Particularly, the exponential stability for stochastic differential systems
under the impulsive effects taken at random time points was investigated in [34–36]. To the best of
our observation, however, there is no paper has addressed the concepts of global exponential stability
(GES) for random impulsive scalar delayed equation (RIDDEs) and random impulsive scalar chaotic
delayed equation (RISCDEs) by using Lyapunov and Razumikhin technique. Most of the impulsive
stabilization and impulsive synchronization results published in the literature have involved fixed time
impulsive effects [37–45].

The objective of this paper is to fill in this gap and investigate functional differential equations
and scalar chaotic delayed equations under the effects of impulses taken at fixed and random times.
For this purpose, we consider the effects of impulses taken at random time points and assume the
waiting time between two consecutive impulses to follow an exponential distribution. The Lyapunov–
Razumikhin technique is employed to obtain p−th moment GES. Moreover, the p−th moment global
exponential synchronization(GESy) for the given systems is addressed. For the purpose of applications,
we examine the validity of our results by applying them to the Mackey-Glass blood cell production and
Ikeda optical bistable resonator models. Comparing to the above mentioned results, we claim that our
results are new and discusses different approach. The current paper extends and improves the results
reported in [46].

The structure of the paper is as follows: In section 2, essential preliminaries and model formulation
are adressed. In Section 3, we prove p−th moment GES and p−th moment GESy for the proposed
systems. In section 4, the obtained results are applied to Mackey-Glass blood cell production and
Ikeda optical bistable resonator models. The effectiveness of fixed and random impulses are illustrated
via graphical representations. We end the paper by a conclusion.
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Notations: Let R = (−∞,∞), R+ = [0,∞), and Z+ = {1, 2, . . . } . Let Rn be the Euclidean space and
(Ω,F , P) be a probability space. Let PC ([−r, 0] ,Rn) = {ϕ : [−r, 0] → Rn} be the set of all piecewise
right continuous real valued random variables, and E‖ϕ‖ = sup

θ∈[−r,0]
E‖ϕ(θ)‖, denotes the norm of function

ϕ ∈ PC ([−r, 0] ,Rn), where E is the expectation operator and r > 0. We use PCB(t) to denote set of
all bounded piecewise right continuous real valued random variables ϕ. Let {τ

′

m}
∞
m=1 be a sequence

of independent exponentially distributed random variable with parameter γ defined on sample space Ω

and {τm}
∞
m=1 be a sequence of points, where τm are arbitrary values of the random variable τ

′

m,∀ m ∈ Z+.
Let {χ

′

m}
∞
m=0 be an increasing sequence of random variables and {χm}

∞
m=0 be an increasing sequence of

points, where χm is an value of the corresponding random variable χ
′

m,∀ m ∈ Z+. Note that χ
′

0 = t0,
where t0 ≥ 0 is a fixed point and τ

′

m = χ
′

m − χ
′

m−1 for m ∈ Z+, and τ
′

m define the waiting time between

two consecutive impulses such that
∞∑

m=1
τ
′

m = ∞ with probability 1.

2. Preliminaries

Consider the random impulsive functional differential equations
y′(t) = g(t, yt), χ

′

m < t < χ
′

m+1, t ≥ t0,

y(χ
′+
m ) = Im(χ

′

m, y(χ
′−
m )), m ∈ Z+,

y(θ) = φ(θ), θ ∈ [−r, 0],

(2.1)

where g ∈ C([0,∞) × PC ([−r, 0] ,Rn) ,Rn), g(t, 0) = 0 and φ ∈ PCB(t). For every t ≥ t0, yt =

{y(t + θ), θ ∈ [−r, 0]}, where r > 0. For each m ∈ Z+, Im(t, y) ∈ C([0,∞) × Rn,Rn), Im(χ
′

m, 0) = 0 and
for any ρ > 0, there exists ρ1 > 0 (ρ1 < ρ) such that y ∈ S (ρ1) which implies that y + Im(χ

′

m, y) ∈ S (ρ),
where S (ρ) = {y : ‖y‖ < ρ, y ∈ Rn}. The quantities y(χ

′+
m ) and y(χ

′−
m ) denote the right and left limits at

χ
′

m, respectively. Let ϕ(θ) = y(t + θ) then it implies ϕ(0) = y(t).
For convenience, we define χ0 = t0 and τm = χm − χm−1, ∀ m ∈ Z+, where τm denote the value of

the waiting time. Then, system (2.1) becomes


y′(t) = g(t, yt), t , χm, t ≥ t0,

y(χ+
m) = Im(χm, y(χ−m)), m ∈ Z+,

y(θ) = φ(θ), θ ∈ [−r, 0],

(2.2)

where y(t; t0, φ, {τm}) is the solution of system (2.2) which depends on the impulses χm, m ∈ Z+ with
the initial condition (t0, φ). We will say that y(t; t0, φ, {τm}) is a sample path solution of system (2.1)
and we will assume that lim

t→χm−0
y(t; t0, φ, {τm}) = y(χm; t0, φ, {τm}). Moreover, the set of all solutions

y(t; t0, φ, {τm}) of systems (2.2) generates a stochastic process. We will denote it by y(t; t0, φ,
{
τ
′

m

}
) and

we will say that it is a solution of system (2.1).
For the initial value problem system (2.1), we assume its solution is exists and unique. Moreover

and since g(t, 0) = 0, and Im(χ
′

m, 0) = 0, m ∈ Z+, we can conclude that y(t) = 0 is the trivial solution
of system (2.1).
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Lemma 2.1. [32, 33], Assume there exist exactly m impulses until the time t, t ≥ t0, and τ
′

m = χ
′

m −

χ
′

m−1, ∀ m ∈ Z+, then the probability

P[∆m(t)] =
γm(t − t0)m

m!
e−γ(t−t0),

where the events ∆m(t) = {ω ∈ Ω : χ
′

m(ω) < t < χ
′

m+1(ω)},m ∈ Z+.

Definition 2.2. [46], The function W : [−r,∞) × PC ([−r, 0] ,Rn) −→ R+ belongs to class ω0 if

(i) W is continuous differentiable almost every where function.
(ii) W(t, y) is locally Lipschitzian in y and W(t, 0) ≡ 0.

Definition 2.3. [46], For given W ∈ ω0, D+W is defined as

D+W(t, ϕ(0)) = lim sup
h→0+

{[
W(t + h, ϕ(0) + hg(t, ϕ)) −W(t, ϕ(0))

]
h

}
,

for (t, ϕ) ∈ R+ × PC ([−r, 0] ,Rn).

Definition 2.4. Let p > 0. Then the trivial solution of system (2.1) is said to be p−th moment GES,
if there exist λ > 0 and L ≥ 1, such that E ‖y(t)‖p

≤ LE ‖φ‖p e−λ(t−t0), t ≥ t0, for any initial value
φ ∈ PCB(t0).

Theorem 2.5. Assume there exist a function W(t, y) ∈ ω0, and constants a1 > 0, a2 > 0 (a1 ≤ a2), p >
0, q > 0,M > 1, λ > 0,wm > 0, κ > 0, such that E [wm] ≤ κ,m ∈ Z+. Then the following conditions
hold:

(i) a1 ‖y‖p
≤ W(t, y) ≤ a2 ‖y‖p , (t, y) ∈ [−r,∞) × Rn;

(ii) For any t ≥ t0 and ϕ ∈ PC ([−r, 0] ,Rn), ifMW(t, ϕ(0)) ≥ W(t + θ, ϕ(θ))eλθ,−r ≤ θ ≤ 0, χ
′

m <

t < χ
′

m+1, then D+W(t, ϕ(0)) ≤ qW(t, ϕ(0)).
(iii) For every (χ

′

m, ϕ) ∈ R+ × PC ([−r, 0] ,Rn) , W(χ
′

m, ϕ(0) + Im(χ
′

m, ϕ)) ≤ M−1wmW(χ
′−
m , ϕ(0)),

withM =

{
∞∏

i=1
E [wi]

}
< ∞;

(iv) lnM
q > τ

′

, where τ
′

= max
m∈Z+

{
χ
′

m − χ
′

m−1

}
< ∞. Then the trivial solution of system (2.1) is p−th

moment GES.

Proof. Let y(t), t ≥ t0 be a solution of system (2.1). We shall show that

E ‖y‖p
≤ LE ‖φ‖p e−[η+γ(1−κ)](t−t0), t ≥ t0, (2.3)

where η = min {λ, 0.5τ∗}. From (iv), we define positive constant τ∗ =
lnM−qτ

τ
> 0, where τ is the value

of τ
′

. Set W(t) = W(t, y(t)), and we define

W (t) =


m∏

s=1
ws, t ≥ χ1

1, t0 ≤ t < χ1

, Λ(t) =

W(t)eη(t−t0), t ≥ t0

W(t), t0 − r ≤ t < t0
,

then we shall prove that

Λ(t) ≤ Ma2 ‖φ‖
p W (t), t ≥ t0.
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It is equal to show that

Λ(t) ≤ Ma2 ‖φ‖
p W (t), t ∈ [χk, χk+1), k ∈ Z+.

Assume k = 0. First, we prove for t ∈ [t0, χ1),

Λ(t) ≤ Ma2 ‖φ‖
p W (t) =Ma2 ‖φ‖

p .

Suppose on the contrary it is not, then there exists some t ∈ [t0, χ1) such that Λ(t) > Ma2 ‖φ‖
p. Note

that Λ(t0) <Ma2 ‖φ‖
p.

We define

t̂ = in f {t ∈ [t0, χ1)| Λ(t) ≥ Ma2 ‖φ‖
p
} ,

then t̂ > t0, Λ(t̂) =Ma2 ‖φ‖
p and Λ(t) ≤ Ma2 ‖φ‖

p , t ∈ [t0, t̂).
Since

Λ(t) ≤ Ma2 ‖φ‖
p , t ∈ [t0 − r, t̂). (2.4)

Furthermore, we note that Λ(t̂) =Ma2 ‖φ‖
p > a2 ‖φ‖

p
≥ Λ(t0). So we define

ˆ̂t = sup
{
t ∈ [t0, t̂)| Λ(t) ≤ a2 ‖φ‖

p} ,
then ˆ̂t < t̂,Λ(ˆ̂t) = a2 ‖φ‖

p and a2 ‖φ‖
p < Λ(t), t ∈ (ˆ̂t, t̂]. Combining with Eq (2.4), we have

eλθW(t + θ) ≤ e−η(t−t0)Λ(t + θ)
≤ e−η(t−t0)MΛ(t)
= MW(t), θ ∈ [−r, 0], t ∈ [ˆ̂t, t̂].

From (ii), D+W(t) ≤ qW(t) holds for t ∈ [ˆ̂t, t̂]. Hence, we have

D+Λ(t) = D+W(t)eη(t−t0) + ηW(t)eη(t−t0)

= eη(t−t0)(D+W(t) + ηW(t))
≤ eη(t−t0)(qW(t) + ηW(t))
= W(t)eη(t−t0)(q + η)
≤ (q + η)Λ(t), t ∈ [ˆ̂t, t̂].

Thus ∫ Λ(t̂)

Λ(ˆ̂t)

ds
s
≤

∫ t̂

ˆ̂t
(q + η)ds ≤

∫ ˆ̂t+τ

ˆ̂t
(q + η)ds ≤ qτ + ητ.

However, noting that ∫ Λ(t̂)

Λ(ˆ̂t)

ds
s

=

∫ Ma2‖φ‖
p

a2‖φ‖
p

ds
s

= lnM = ττ∗ + qτ > qτ + ητ.
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This is a contradiction. Hence, Λ(t) ≤ Ma2 ‖φ‖
p , t ∈ [t0, χ1).

We assume it is true for k = m − 1,

Λ(t) ≤ Ma2 ‖φ‖
p W (t), t ∈ [χm−1, χm), (2.5)

which implies

Λ(t) ≤ Ma2 ‖φ‖
p W (χm−1), t ∈ [t0 − r, χm).

Next we shall prove for k = m,

Λ(t) ≤ Ma2 ‖φ‖
p W (t), t ∈ [χm, χm+1). (2.6)

Suppose that this assertion is not true, then there exists some t ∈ [χm, χm+1) such that

Λ(t) >Ma2 ‖φ‖
p W (χm).

It follows from Eq (2.5) that Λ(χm) <Ma2 ‖φ‖
p W (χm). Thus we define

t∗ = in f {t ∈ [χm, χm+1)| Λ(t) ≥ Ma2 ‖φ‖
p W (χm)} ,

then t∗ > χm, Λ(t∗) = Ma2 ‖φ‖
p W (χm) and Λ(t) ≤ Ma2 ‖φ‖

p W (χm), t ∈ [χm, t∗). Also, from Eq
(2.5), we know that

Λ(t) ≤ Ma2 ‖φ‖
p W (χm), ∀ t ∈ [t0 − r, t∗). (2.7)

Noting that

Λ(χm) ≤ a2 ‖φ‖
p W (χm),

and

Λ(t∗) =Ma2 ‖φ‖
p W (χm) > a2 ‖φ‖

p W (χm).

Further, we define

t∗∗ = sup {t ∈ [χm, t∗)| Λ(t) ≤ a2 ‖φ‖
p W (χm)} .

Then t∗∗ < t∗,Λ(t∗∗) = a2 ‖φ‖
p W (χm) and Λ(t) > a2 ‖φ‖

p W (χm), t ∈ [t∗∗, t∗]. We can deduce that

eλθW(t + θ) ≤ e−η(t−t0)Λ(t + θ)
≤ e−η(t−t0)Ma2 ‖φ‖

p W (χm)
≤ e−η(t−t0)MΛ(t)
= MW(t), θ ∈ [−r, 0], t ∈ [t∗∗, t∗],

from condition (ii)

D+W(t) ≤ qW(t), t ∈ [t∗∗, t∗],
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which implies that

D+Λ(t) ≤ (q + η)Λ(t), t ∈ [t∗∗, t∗].

Thus ∫ Λ(t∗)

Λ(t∗∗)

ds
s
≤

∫ t∗

t∗∗
(q + η)ds ≤

∫ t∗∗+τ

t∗∗
(q + η)ds ≤ qτ + ητ.

However, we note that∫ Λ(t∗)

Λ(t∗∗)

ds
s

=

∫ Ma2‖φ‖
pW (χm)

a2‖φ‖
pW (χm)

ds
s

= InM = ττ∗ + qτ > qτ + ητ.

This is a contradiction. Thus, Eq (2.6) holds. Then by the definition of Λ(t) and W (t), we get

W(t) ≤ Ma2 ‖φ‖
p

m∏
s=1

wse−η(t−t0), t ≥ t0,

from the condition (i), we obtain

‖y(t)‖p
≤ L ‖φ‖p

m∏
s=1

wse−η(t−t0),
[
χm, χm+1) ,

where L = a2
a1
M ≥ 1. This solution generates a stochastic process, and it denoted by

‖y(t)‖p
≤ L ‖φ‖p

m∏
s=1

wse−η(t−t0), χ
′

m < t < χ
′

m+1.

By using Lemma 2.1, and taking expectation, we have

E[‖y(t)‖p] =

∞∑
m=0

E[‖y‖p
|∆m(t)]P[∆m(t)],

≤ LE ‖φ‖p
∞∑

m=0

m∏
s=1

E [ws] e−η(t−t0)P[∆m(t)]

≤ LE ‖φ‖p
∞∑

m=0

m∏
s=1

E [ws] e−η(t−t0)γ
m(t − t0)m

m!
e−γ(t−t0)

E ‖y(t)‖p
≤ LE ‖φ‖p e−[η+γ(1−κ)](t−t0),

where [η + γ(1 − κ)] > 0 is exponential convergent rate.

3. Chaotic delayed equations

In this section, Theorem 2.5 will be applied to study the p−th moment GES and p−th moment
GESy results for RISCDEs.
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3.1. Exponential stability of RISCDEs

Consider the following RISCDEs
ẏ(t) = −ay(t) + bg[y(t)] + ch[y(t − r)], χ

′

m < t < χ
′

m+1, t ≥ t0,

y(χ
′+
m ) = wmy(χ

′−
m ), t = χ

′

m,m ∈ Z+,

y(θ) = φ(θ), θ ∈ [−r, 0],

(3.1)

where φ ∈ PCB(t), a, b, c are positive scalar constants, r > 0 is delay constant and the nonlinear
functions g and h satisfy the conditions |g(y)| ≤ N |y| and |h(y)| ≤ L|y| where N, L > 0.

Corollary 3.1. Assume that there exist constants M > 1, λ > 0, p > 0,wm > 0, κ > 0, such that
E(wm) ≤ κ. Let the following conditions hold:

(i) p[−a + bN + cLM
1
p e

λr
p ] > 0.

(ii) τ
′

< lnM

p[−a+bN+cLM
1
p e

λr
p ]

, where τ
′

= max
m∈Z+

{
χ
′

m − χ
′

m−1

}
< ∞.

Then the trivial solution of Eq (3.1) is p−th moment GES.

Proof. Choose the Lyapunov function W(t) = |y(t)|p. From Eq (3.1), we have

W(χm, y(χm)) = |y(χm)|p = wm

∣∣∣y(χ−m)
∣∣∣p ≤ wmW(χ−m, y(χ−m)).

From Theorem 2.5, the Razumikhin conditionMe−λθW(t, ϕ(0)) ≥ W(t + θ, ϕ(θ)), θ ∈ [−r, 0], implies
thatM

1
p e

λr
p |y(t)| ≥ |y(t − r)|. Then calculating D+W along the solution of Eq (3.1), we get

D+W(t, y(t)) ≤ p |y(t)|p−1 [
−a |y(t)| + bg[|y(t)|] + ch[|y(t − r)|]

]
≤ p |y(t)|p−1 [

−a |y(t)| + bN |y(t)| + cL |y(t − r)|
]

≤ p |y(t)|p−1
[
−a |y(t)| + bN |y(t)| + cLM

1
p e

λr
p |y(t)|

]
≤ qW(t),

where q = p
[
−a + bN + cLM

1
p e

λr
p
]
. By using Theorem 2.5, we end up with

lnM

p[−a + bN + cLM
1
p e

λr
p ]
> τ

′

.

Hence the trivial solution of Eq (3.1) is p−th moment GES.

3.2. Exponential synchronization of RISCDEs

Consider the following RISCDEs,ẋ(t) = −ax(t) + bg[x(t)] + ch[x(t − r)], t ≥ t0 ,

x(θ) = Φ(θ), θ ∈ [−r, 0],
(3.2)

where Φ ∈ PCB(t). To inspect the synchronization problem through random impulsive control, we
define the following response system:

ẏ(t) = −ay(t) + bg[y(t)] + ch[y(t − r)], χ
′

m < t < χ
′

m+1, t ≥ t0,

y(χ
′+
m ) = −wm[x(χ

′−
m ) − y(χ

′−
m )], t = χ

′

m, m ∈ Z+,

y(θ) = φ(θ), θ ∈ [−r, 0],

(3.3)
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where φ ∈ PCB(t). Let ϑ(t) = x(t) − y(t) be the synchronization error condition. Then we define the
following error system between Eqs (3.2) and (3.3):

ϑ̇(t) = −aϑ(t) + b f [ϑ(t)] + c f [ϑ(t − r)], χ
′

m < t < χ
′

m+1, t ≥ t0,

ϑ(χ
′+
m ) = wmϑ(χ

′−
m ), t = χ

′

m, m ∈ Z+,

ϑ(θ) = Φ(θ) − φ(θ), θ ∈ [−r, 0],

(3.4)

where f is a nonlinear bounded function, defined by f [ϑ(t)] = g[ϑ(t) + y(t)] − g[y(t)], f [ϑ(t − r)] =

h[ϑ(t − r) + y(t − r)] − h[y(t − r)], where a, b, c are constants.

Corollary 3.2. Assume that then there exist constantsM > 1, λ > 0, p > 0,wm > 0, κ > 0, such that
E(wm) ≤ κ. Let the following conditions hold:

(i) p[−a + bN + cLM
1
p e

λr
p ] > 0.

(ii) τ
′

< lnM

p[−a+bN+cLM
1
p e

λr
p ]

, where τ
′

= max
m∈Z+

{
χ
′

m − χ
′

m−1

}
< ∞.

Then the trivial solution of system (3.4) is p−th moment GESy.

The proof is similar to the proof of Corollary 3.1 and hence it is omitted.

4. Applications

In this part, we shall discuss the stability results for nonlinear scalar time delay model under fixed
and random time impulses.

4.1. Blood cell production model

Leukemia means cancer that starts in the blood forming cells of the bone marrow. It is nothing
but the increase of abnormal white blood cells produced by the bone marrow that is relatively mature.
This results in the excess production of abnormal white blood cells compared to the normal production
rate. The patients with Leukemia may take treatments (with fixed or at random time period) such
as chemotherapy, monoclonal antibodies, supportive care, leukapheresis, surgery and radiotherapy,
the patient may be curative. The following random impulsive model reflects the effectiveness of the
treatments.

Example 4.1. From [1,47], the blood cell production model can be represented by nonlinear first order
random impulsive control system of the form

ẏ(t) = −ay(t) +
by(t−r)

1+yc(t−r) , χ
′

m < t < χ
′

m+1, t ≥ t0,

y(χ
′+
m ) = wmy(χ

′−
m ), t = χ

′

m, m ∈ Z+,

y(θ) = φ(θ), θ ∈ [−r, 0],

(4.1)

where y(t) represents the density of mature cells at time t, y(t − r) represents the density of abnormal
white blood cells and r is the time-delay between the production of abnormal white blood cells in the
bone marrow and their release of the mature cells in to the blood streams. In patients with leukemia,
when the time r is large, the rapid increase in the density of abnormal white blood cells may vary
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chaotically. There are various kinds of treatments wm like chemotherapy, monoclonal antibodies,
supportive care, leukapheresis, surgery and radiotherapy. The aim of the treatment is to control the
production of abnormal white blood cells which provides the cure of the disease. Here, a is the
average density independent death rate of the population and the constants a, b, and c are obtained
from [1, 47]. Consider the particular values a = 0.1, b = 0.2, c = 10, φ(θ) = 0.1, r = 17 and
wm = 0.011 in Eq (4.1). Then Eq (4.1) exhibits a chaotic behavior illustrated in Figure 1 .

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y(
t)

Figure 1. Without impulsive effects of Mackey Glass model.

Proposition 4.2. If τ
′

< 0.1591. Then the solution of system (4.1) is GES.

Proof. Consider the Lyapunov function W(t) = |y(t)|. From Corollary 3.1, we take p = 1,M = 16, λ =
1
10 and use Razumikhin condition to obtain 16e

1
10×17 |y(t)| ≥ |y(t − 17)|. Then we have

D+W(t) ≤ −0.1 |y(t)| +
0.2 |y(t − 17)|

1 +
∣∣∣y10(t − 17)

∣∣∣
≤ −0.1 |y(t)| + 0.2 |y(t − 17)|
≤ −0.1 |y(t)| + 0.2 × 16e

1
10×17 |y(t)|

≤ qW(t),

where q = 17.4166. By using Corollary 3.1, we get ln16
17.4166 = 0.1591 > τ

′

. Therefore, the solution of
system (4.1) is GES.

Remark 4.3. Proposition 1 says that in patients with leukemia, the treatment like chemotherapy,
monoclonal antibodies, supportive care, leukapheresis and radiotherapy is taking at random within the
maximum duration between two consecutive treatments is less than 0.1591 days, then the patient may
cure.
Remark 4.4. Figures 2 and 3, show that the effective of the treatment like chemotherapy, monoclonal
antibodies, supportive care, leukapheresis and radiotherapy is taking at fixed and random. Furthermore,
Figure 4 demonstrates the effective of random time treatment compared to the fixed time treatment.
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Figure 2. Fixed impulsive effects of Mackey Glass model.
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Random impulses

Figure 3. Random impulsive effects of Mackey Glass model.

Example 4.5. [2], When the intensity of the incident light is increased in the optical bistable resonator
the transmitted light from a ring cavity containing a nonlinear dielectric medium undergoes a transition
from a stationary state to other states. Ikeda addressed the optical bistable resonator with time delay in
the following system: ẋ(t) = −ax(t) + bsin[x(t − r)], t ≥ t0,

x(θ) = φ(θ), θ ∈ [−r, 0],
(4.2)

where, x is the phase lag of the electric field across the resonator and a is the relaxation coefficient, b is
the laser intensity and r is the round-trip time of the light in the resonator. Then, system (4.2) exhibits
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a chaotic behavior as shown in Figure 5 . Let wm be the amount of external cavity, it fit at the random
way in system (4.2), then we obtain the following form of random impulsive system:

ẏ(t) = −ay(t) + bsin[y(t − r)], χ
′

m < t < χ
′

m+1, t ≥ t0,

y(χ
′+
m ) = wmy(χ

′−
m ), t = χ

′

m, m ∈ Z+,

y(θ) = φ(θ), θ ∈ [−r, 0],

(4.3)

where a = 1, b = 4, φ(θ) = 0.1, r = 2 and wm = 0.29.

8 8.5 9 9.5 10

time 104

0

1

2

y(
t)

10-4

Random impulses
Fixed time impulses

Figure 4. Fixed and random impulsive effects of Mackey Glass model.
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Figure 5. Without impulsive effects of Ikeda delayed model.

Proposition 4.6. If τ
′

< 0.0558. Then the error value of Eqs (4.2) and (4.3) is GESy.
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Proof. Consider the Lyapunov function W(t) = |ν(t)|. From Corollary 3.2, we takeM = 5, λ = 1
5 , p = 1

and use the Razumikhin condition to obtain 5e
1
5×2 |y(t)| ≥ |y(t − 2)|. Hence, we have

D+W(t) ≤ −1 |y(t)| + 4sin[|y(t − 2)|]
≤ −1 |y(t)| + 4 |y(t − 2)|
≤ −1 |y(t)| + 4 × 5e

1
5×2 |y(t)|

≤ qW(t),

where q = 28.8364. By Corollary 3.2, we get ln5
28.8364 = 0.0558 > τ

′

. Therefore, the error value of Eqs
(4.2) and (4.3) is GESy.
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Figure 6. Fixed impulsive effects of Ikeda delayed model.
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Figure 7. Random impulsive effects of Ikeda delayed model.
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Remark 4.7. Figures 6 and 7 illustrate the external cavity that controls the transmitted light with fixed
and random times. Besides, the comparative results on external cavity (fixed and random time) is
depicted in Figure 8.
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-y
(t

)

Random impulses
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Figure 8. Fixed and random impulsive effects of Ikeda delayed model.

5. Conclusions

In this paper, the p−th moment global exponential stability and p−th moment global exponential
synchronization are studied for functional differential equations and scalar chaotic delayed equations.
We propose the main equations under random impulsive effects and show the effeteness of impulses
to stabilize and synchronize the solutions of the proposed equations. Our approach is based on the
Lyapunov–Razumikhin techniques which help establishing new sufficient conditions that are extending
the existing results in the literature. The blood cell production and optical bistable resonator models
are proposed to examine the validity and applicability of the theoretical results. We illustrate the main
theorems by graphical simulations that demonstrate the fast convergence of the random impulsive
control compared to the fixed impulsive control.

The applications of random impulsive control can be extended to investigate many physical
phenomena that involve delay systems. For future consideration, the consideration of random
impulsive control for neural network time-delay systems could be a promising topic.
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