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Abstract: Collagen alignment has shown clinical significance in a variety of diseases. For instance,
vulvar lichen sclerosus (VLS) is characterized by homogenization of collagen fibers with increasing
risk of malignant transformation. To date, a variety of imaging techniques have been developed to vi-
sualize collagen fibers. However, few works focused on quantifying the alignment quality of collagen
fiber. To assess the level of disorder of local fiber orientation, the homogeneity index (HI) based on
limiting entropy is proposed as an indicator of disorder. Our proposed methods are validated by veri-
fication experiments on Poly Lactic Acid (PLA) filament phantoms with controlled alignment quality
of fibers. A case study on 20 VLS tissue biopsies and 14 normal tissue biopsies shows that HI can
effectively characterize VLS tissue from normal tissue (P<0.01). The classification results are very
promising with a sensitivity of 93% and a specificity of 95%, which indicated that our method can
provide quantitative assessment for the alignment quality of collagen fibers in VLS tissue and aid in
improving histopathological examination of VLS.
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1. Introduction

Collagen is a kind of vital and abundant structural protein in the human body. So far, more than 20
types of collagen have been identified, which are characterized by a triple helical domain [1]. How-
ever, type I, II, III, and IV collagen consist over 90% of the collagen in the body. In particular, type-I

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2021118


2332

collagen is the most abundant collagen type in many tissues, e.g., skin, cornea, or bone, which consists
of nanometer-scale fibrils. Collagen fibers are bundles of fibrils with a diameter of 2µm to 5µm [2–4].
These fibers are the prominent components of extracellular matrix (ECM), which normally provides
the underlying structural framework of biological tissues [5]. Alterations of collagen fibers organi-
zation parameters, specifically fiber orientation and alignment, play an integral role in many diseases
including cancer [6, 10, 11], scaring [7], scleroderma [9], and glaucoma [8]. Thus, quantifying these
parameters may be important to study the properties of healthy and diseased tissues and to develop a
potential innovative diagnostic tool.

Figure 1. Scanning electron microscopy of a lesion of LS. As LS occurs, the alignment
quality of collagen fibers decreases. (a) Homogenized area (x 10,000 magnification); (b)
Normal collagen fibers (x 15,000 magnification). Reproduced with permission from Almeida
Jr, Anais brasileiros de dermatologia; published by SciELO Brasil, 2013 [30].

Lichen Sclerosus (LS) is a chronic disorder of skin characterized by hypopigmented fibrotic
plaques. It is most commonly found in women, but also found in men and children. Though any
skin site may be affected, LS has a preference for the anogenital area [12, 13]. For example, Vulvar
Lichen Sclerosus (VLS) is mainly found in the anogenital area of pre-pubertal and post-menopausal
females [14–17]. It is among one of the most common referrals for vulvar pruritus and is the most com-
mon form of structural change to the vulvar region [17–19]. According to an educational bulletin by
American College of Obstetricians & Gynecologists (ACOG) [20], VLS accounts for approximately
10% of patients seen in vulvar clinic visits. Developing lesions lead to vulvar pain and sexual dys-
function, with a huge impact on the patients’ quality of life [21–23]. Moreover, affected women have
an 4-5% risk of developing squamous cell carcinoma of the vulva [22, 24]. However, general practi-
tioners may overlook this skin disorder despite the characteristic clinical and histological appearance,
which can lead to considerable delays in diagnosis [25, 26]. Currently, histopathological examination
is the gold standard for differentiation from other inflammatory or tumorous vulvar diseases [27]. Al-
though the etiology of VLS is still unknown, the histopathology of VLS is characterized by alterations
in the epidermis and dermis as well as inflammatory cell infiltration [27]. Among these histopatho-
logic features, homogenization of collagen (hyalinization) has been recognized as the most prominent
pathological change [27–29]. Yet, there were few quantitative studies about this histological diagnos-
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tic criterion to date. In most literatures, it was defined as “a zone of thickened, homogenous collagen
fibrils” [27–29]. It is subjective and may lead to misdiagnosis in microscopic examinations of the le-
sions. However, in a recent study by Hiram et al., they performed scanning electron microscopy of
the dermis from a lesion of LS and found that collagen fibers were adherent to each other as well as
packed together, and round structures were also observed in the homogenization zone [30], as shown
in Figure 1. Since collagen fiber alignment is involved with the pathological processes of LS (includ-
ing VLS), accurate characterization of the structure information of collagen fibers in VLS tissues may
be of great interest to understand the pathology and possibly to improve the histological diagnostic
criteria.

A variety of imaging methods are available to retrieve structural information of collagen fibers in
tissue [33, 35, 36, 38]. For examples, scanning and transmission electron microscopy has an advan-
tage of visualizing individual collagen fibers at nanometer scale. However, it requires complicated
sample preparation procedures, and is expensive [37]. Second harmonic generation (SHG) imaging
provides label-free detection of collagen fibers with unequalled specificity and contrast but is relatively
expensive as it requires multiphoton microscopy [34, 39, 40]. Recently, due to the system simplicity,
low cost and effectiveness, polarized imaging methods have been widely used to characterize collagen
fiber organization and to detect the pathological changes of biological tissues [31, 41–43], especially
those related with fibrous structural changes [6, 7, 43]. It has been found that linear polarization im-
ages with single incident polarization can be very different when the incident polarization or sample
orientation distribution is changed [44–46]. Yang et al presented a polarized light spatial frequency do-
main imaging method to quantify collagen fiber orientation on fresh bovine tendon and porcine aortic
valve leaflet tissue (PVL). They found that collagen fibers, when placed between two synchronously
rotating polarizers, showed maximum brightness if the polarization direction of polarizers corresponds
to preferred local fiber orientation [44]. Also, Bancelin et al determined collagen fiber orientation in
histological slides of uterine cervical tissue using Mueller polarimetry (MP) and validated the results
by SHG. In their work, the orientation of collagen fiber is expected to be collinear with the azimuth of
the slow axis of its retardation [32]. Therefore, the local fiber orientation can be determined by rotating
the two polarizers synchronously and finding the rotation angle in individual pixels in an image stack,
at which collagen fiber shows maximum/minimum brightness.

To detect the anomaly of fiber alignment, a measure of disorder for local fiber orientation map is
desired. Such measure should satisfy two requirements to have a high potential for clinical application,
including (i) invariant to the angular translation and (ii) insensitive to the resolution and accuracy of
the system or equipment. Both requirements ensure that the characterization of malignant tissue is
generic and the results from labs can be easily put into practice. The traditional methods to quantify
disorder involves use of spread, kurtosis, Chi-square test and Dykstra-Parsons coefficient [33, 47, 48].
However, all those indexes are not well designed for assessment of distributions. For instance, spread
(standard deviation) [33], one of the most commonly adopted statistic indices, is heavily dependent on
the relative angles with respect to the reference axis. Illustrated by Figure 2, the change of reference
axis can alter the spread, as the spread is not invariant to periodic translation. Nonetheless, the reference
axis is linked with the specimen’s placement under microscope. The variation of positioning, which
is impossible to eliminate, probably contributes to large variation of the quantification result. A more
common and advanced way for quantifying disorder is to employ cyclic statistics [49]. It connects
angle value with complex number and the statistical indexes are evaluated by manipulating complex
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numbers. Though effective cyclic statistics is, it is sensitive to the accuracy of rotor motors in our
system, which inspires proposition of another viable index.

(a) (b)

(c) (d)

Figure 2. Comparing the performance of spread (standard deviation), CVar (cyclic variance)
and HI (homogeneity index) to quantify the same fiber orientation distribution under different
sample placement. Spread is heavily dependent on the relative angles with respect to the
reference axis whereas CVar and HI are independent of the placement of the sample. (a)
Fibers mostly oriented at 10◦ before rotation. (b) After 80◦ rotation of (a). (c) Corresponding
histogram of fiber orientation of (a). (d) Corresponding histogram of fiber orientation of (b).

Given the success in communication theory, information entropy, which deals with the probability
distribution and is irrelevant to the coding of variable, is supposed to be a solution to the placement
problem. The discrete information entropy was proposed by Claude Shannon and is widely adopted
in communication theory to quantify the information conveyed in the system [50]. There are various
interpretations of discrete information entropy in communication field, including a measure of uncer-
tainty, information of a system and even minimal expected number of queries to determine a code [51].
Entropy is also an important concept in statistical mechanics, where a system is comprised of enormous
number of elements. Since each element occupies a certain microstate, the system is characterized by
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the probability of each microstate occupied. Therefore, the entropy can be adopted to quantify the level
of disorder in such a system [52]. In our study, the local fiber orientation map by signal processing
over a stack of polarized images, can be deemed as a physical system in statistical mechanics. The
orientation of each pixel represents a microstate and the map is thus characterized by the distribution
of fiber orientations. Therefore, discrete information entropy should be an effective tool to quantify
the disorder of fiber orientations in the map. Some significant works have been done. For example,
Ducourthial et al. proposed a revised discrete entropy to measure the orientation distribution of colla-
gen fibers generated by SHG system [53]. They normalized the discrete information entropy to reduce
the influence of bin size. Chiverton et al. applied entropy to analyze the steel fibers in X-ray Micro-
tomography (XCT) data [54]. Their method successfully quantified 3D XCT images in multiscale.
Though powerful the abovementioned methods are, the potential in clinical application is still limited.
Both methods are based on discrete entropy and relies on discretization of the system. To tackle this
problem, an index based on limiting entropy is proposed and described in detail in this manuscript.

In this paper, we established a rotating linear polarization imaging system combined with a novel
parameter, homogeneity index (HI), which is based on limiting entropy, to quantify the alignment
quality of collagen fibers. Compared with other parameters, i.e., such as cyclic variance, discrete
entropy and normalized entropy, HI is more robust to the sample orientation at different placement and
systematic sampling increment (angular step size). Since there is a trade-off between total number of
bins and accuracy of probability estimation in each bin, being insensitive to number of bins indicate
lower requirement for system resolution while detaining high estimation accuracy. Verification was
performed on a set of Poly Lactic Acid (PLA) filament phantoms with controlled alignment quality
of fibers to validate the ability of our proposed method to measure the level of disorder of the local
fiber orientation. Then, we applied this method to assess the collagen fiber alignment in both normal
and VLS biopsies for further understanding of the pathology of VLS and possible improvement of
the histological diagnostic criteria for VLS. The structure of this paper is as follows: Section 1 is the
introduction. Section 2 is a detailed account of theoretical foundation, the experimental system, data
acquisition and analysis procedures. The experiment process and results are presented in Section 3,
followed by the discussion in Section 4; Finally, Section 5 is the conclusion.

2. Materials and methods

2.1. Theory background

This section first presents a novel quantification method, homogeneity index (HI), to characterize
images of spatially distributed orientations. Then the proof that HI is robust to variation of the his-
togram binning size and the precision of measurements (angular step size), is given. Moreover, the
traditional cyclic statistics and other entropy-based indexes are introduced briefly and the comparisons
between HI and those indices are conducted. Finally, the computational verification is presented.

2.1.1. Derivation of Homogeneity Index

The discrete entropy was proposed by Claude Shannon and widely used in communication theory to
quantify the information conveyed in the system [50]. The name originated from the entropy in thermal
mechanics and statistical mechanics. Discrete information entropy is independent of the coding of

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2331–2356.



2336

variables and can reflect the complexity and disorder of the investigated system. In this work, it can be
written as:

HN = −ΣN
i=1P (θi) log10 (P (θi)) (2.1)

where P(θi) represents the possibility of the entity staying in state i, or the portion of occurrences
in state i. Subscript N is the total number of discrete points. If P(θi) = 1 for certain i, meaning that
all the fibers of in the image are oriented towards θi, such a system can be highly ordered, or has zero
information entropy. It can be proven that the system has the highest information entropy when the
angles of fibers are evenly distributed (i.e. totally randomized).

Despite the success in communication system, the discrete information entropy is highly dependent
on the total number of discrete points (N). When N goes to infinity, HN also goes to infinity, indicating
that the discrete entropy cannot be considered as a discrete approximation of a limiting distribution. To
address this problem, Jaynes proposed limiting density information entropy [55]:

H = −

∫ b

a
p(θ) log10(p(θ)/m(θ))dθ (2.2)

In this formula, p(θ) is the probability density, and m(θ) refers to the limiting of sampling distribu-
tion. In our application, all the angles are evenly distributed, i.e. m(θ) = 1/180. As a result,

H = −

∫ 180

0
p(θ) log10(180p(θ))dθ (2.3)

It can be further proven that the below important relationship holds:

H = HN − log10(N) + O(1/N) (2.4)

When N is large enough, O(1/N) is negligible.
To show this, let’s consider the evenly sampling case and assume that the distribution function

(probability density function) p(θ) is strictly positive and differentiable. Then, for any partition a =

x0 < x1 < ... < xN = b of the interval [a, b], the Eq. 2.2 can be written as:

H = −
∫ b

a
p(θ) log10((b − a) ∗ p(θ))dθ

= −
∑N

i=1

∫ xi

xi−1
p(θ) log10((b − a) ∗ p(θ))dθ

(2.5)

HN = −ΣN
i=1P (θi) log10 (P (θi)) = −ΣN

i=1

∫ xi

xi−1

p(θ) log10 (P (θi)) dθ (2.6)

Hence,

H − HN + log10(N) = −ΣN
i=1

∫ xi

xi−1

p(θ) log10

(
(b − a) ∗ p(θ)

P (θi) N

)
dθ (2.7)

Using intermediate value theorem,

P (θi) =

∫ xi

xi−1

p(θ)dθ = p (ξi) ∆xi (2.8)
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And given the fact that

∆xi =
b − a

N
(2.9)

We have,

H − HN + log10(N) = −ΣN
i=1

∫ xi

xi−1

p(θ) log10

(
p(θ) − p (ξi)

p (ξi)
+ 1

)
dθ (2.10)

When N is large, p(θ) − p (ξi) goes to 0. Moreover, because p(θ) is differentiable, there exists a
constant K, such that for any ξ, η ∈ [a,b],

|p(ξ) − p(η)| ≤ |K(ξ − η)| (2.11)

Therefore,

|
p(θ) − p (ξi)

p (ξi)
| ≤ |K(

θ − ξi

p (ξi)
)| ≤ |M(θ − ξi)| ≤ |M∆xi| (2.12)

where M is a constant.
Then we have

log10

(
p(θ) − p (ξi)

p (ξi)
+ 1

)
= O

(
p(θ) − p (ξi)

p (ξi)

)
= O(∆xi) = O(1/N) (2.13)

Hence,

H − HN + log10(N) = −ΣN
i=1

∫ xi

xi−1

p(θ)O(1/N)dθ = O(1/N) (2.14)

The proof is completed. In fact, the condition that the probability density function is differentiable,
can be replaced with Lipschitz continuous, which is very natural for physical phenomenons.

According to this formula, H is indeed the limiting density entropy after removing the influence
of number of sampling points. Though H eliminates the sampling number effect, it is very hard to
calculate H directly from the distribution. Take into account that when N goes to infinity, the right-
hand side of Eq. 2.4 will converge to H, enabling the approximation of H by HN . Based on this, we
propose the following index by taking the right hand side of Eq. 2.4 into 10-based exponential function:

HI =
10HN

N
(2.15)

We name this index as homogeneity index. It can be shown that the homogeneity index has follow-
ing properties:

1) Relatively stable under change of total number of sampling angles (number of bins for sampling
angles).

2) Converges as N gets to infinity.
3) Lies on [0, 1] due to concavity of log10(x).
4) Rises as the alignment quality of fibers decreases. Especially, when the fibers are aligned, HI =0;

when fibers are totally disordered, HI = 1.
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2.1.2. Cyclic Variance and Normalized Entropy

It is popular to adopt cyclic statistics to characterize the distribution of angles. In cyclic statistics,
the angles are represented in complex numbers and the related attributes are calculated in the form
of complex expressions [49]. One advantage of cyclic statistics is that it is inherently invariant to the
periodic translation of 360◦. In general, each angle θ is transformed to z such that,

z(θ) = eiθ = cos θ + i sin θ (2.16)

Then the sample moment is defined by:

Mn =

n∑
k=1

P(θk)z(θk) (2.17)

The circular mean angle reflecting the location of average angles, can be calculated by:

Mean = Arg(Mn) (2.18)

The circular variance (CVar), in contrast, is defined by:

CVar(Mn) = 1 − |Mn| (2.19)

CVar is ranging from 0 to 1. By definition, CVar is invariant to the periodic translation of 360◦.
However, our system requires 180◦ as the period. Therefore, the definition of z is revised as the fol-
lowing form to satisfy the requirement:

z(θ) = ei2θ = cos 2θ + i sin 2θ (2.20)

CVar computed based on Eq. (2.20) is adopted in this paper. Similar with HI, it can be proved that
CVar converges as number of sampling angles increases.

Let

M0 =

∫ 180◦

0
ei2θp(θ)dθ =

n∑
k=1

∫ θk

θk−1

ei2θp(θ)dθ (2.21)

where θk = 180◦
n k and

Mn =

n∑
k=1

∫ θk

θk−1

ei2θk p(θ)dθ (2.22)

Now we can prove |Mn − M0| goes to 0 when n goes to infinity. In fact,

|Mn − M0| =

∣∣∣∣∣∣∣
n∑

k=1

∫ θk

θk−1

(
ei2θk − ei2θ

)
p(θ)dθ

∣∣∣∣∣∣∣ ≤
n∑

k=1

∣∣∣∣∣∣
∫ θk

θk−1

(
ei2θk − ei2θ

)
p(θ)dθ

∣∣∣∣∣∣
≤

n∑
k=1

∫ θk

θk−1

∣∣∣ei2θk − ei2θ
∣∣∣ p(θ)dθ ≤

n∑
k=1

∫ θk

θk−1

A (θk − θk−1) p(θ)dθ

=
180◦A

n

n∑
k=1

∫ θk

θk−1

p(θ)dθ =
180◦A

n

(2.23)
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Therefore, Mn converges to M0. Consequently, CVar(Mn) converges to CVar(M0).
Another measure employed in literature for angular distribution utilizes normalizing discrete en-

tropy to reduce the influence of bin size [53]. Namely,

S =
HN

log10(N)
(2.24)

However, this index is only effective when N is small. It fails to distinguish the difference between
two angular distributions with large N, since:

H = HN − log10(N) + O(
1
N

) (2.25)

Then,

S =
HN

log10(N)
=

H
log10(N)

+ 1 + O
(

1
N log10(N)

)
(2.26)

H is independent of N, hence a constant for given distribution. Therefore, S is in fact a function of
N and will converge to 1 as N rises for all the distributions except for completely oriented or uniform
distribution (in these cases, S is always 0 or 1). When number of bins is large, S will always be close
to 1.

Figure 3. Comparing the impact of the number of bins to different measures The measure that
is the most insensitive to bin size is considered to be the best since it is universal regardless
of difference in motor step sizes. The x axis refers to the total number of sampling angles
during data collection. This plot depicts that discrete information entropy grows dramatically
and exceeds 1 finally. Normalized entropy grows gradually. Whereas HI and CVar are very
insensitive to the number of bins, showing that they are independent of motor rotational step
size.
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As mentioned before, being insensitive to the choice of number of bins reduces the requirement
of system resolution for high estimation accuracy. This is because for a given system resolution, the
total number of pixels in the image is constant. The average counts of occurrences in each bin is
inversely proportional to total number of bins. If the index is invariant to the number of bins, one can
purposely select large bin number, hence higher average number of occurrences or a better estimation
of probability. Figure 3 shows a computation experiment result for different disorder measures, where
a normal distribution between 0◦ and 180◦ with average 90◦ and standard deviation 10◦ is employed.
Discrete information entropy grows logarithmically. S increases fast at smaller bin number and will
finally reach 1, while HI and CVar are relatively unchanged. This figure depicts the superiority of
HI and CVar. Therefore, HI, comparing with CVar will be adopted in our work as a measure of
homogeneity.

2.2. Polarized light imaging system and acquisition of polarized images

In this manuscript, we used a rotating linear polarized light imaging method to measure the distri-
bution of local fiber orientation in both filament phantom slices and unstained human biopsies. The
polarized light imaging system was schematically depicted in Figure 4(a). Non-polarized light from a
halogen lamp (OSL2, Thorlabs, US) with a broad spectrum and adjustable intensity was first roughly
collimated and passed through a filter (FB69010, Thorlabs, US) of 690 nm center wavelength, 10 nm
bandpass. Then, a linear polarizer (LPVISE100-A, Thorlabs, US) was used to polarize the light along
the polarizer’s axis prior to illuminating the sample. A second linear polarizer was introduced behind
the sample to measure the change in light polarization upon propagation through the sample. The two
co-polarized polarizers are automatically and synchronously rotated over 180◦ polarization range with
a step size of 10◦, driven by two stepper motors. At each polarization angle, a monochrome charge-
coupled device camera coupled with a lens (BM-141-GE, JAI, Denmark) was used to record the image
of sample. Both stepper motors and the camera were controlled by a customized LabVIEW program.

In this study, we defined the direction parallel to the optical table as the initial zero angle. Then, the
whole process of acquiring the polarized images of the test sample was as follows.

• Step 1: two polarizers were co-polarized to zero angle so that their transmission axes were aligned
to zero angle.
• Step 2: the test sample was placed in the sample holder perpendicular to the optical path.
• Step 3: an image stack of the test sample with 18 frames was captured by the camera as two

polarizers rotated synchronously from 0 to 180◦ with an increment of 10◦, presented as Figure
4(a).

2.3. Quantification of alignment quality

2.3.1. Local fiber orientation

To better understand the method, note that ignoring other optical effects, if there is a birefringent
sample, such as collagen fibers in a thin tissue section, between the two co-polarized polarizers, the
transmitted light will be as:

Intensity = I0(1 − sin2 2θ sin
2πd∆n
λ

) (2.27)

where I0 is the intensity of the input light before the polarizer, θ is the relative angle between
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(a) (b)

Figure 4. Data acquisition system and an example of collected data. In (a), two co-polarized
polarizers were rotated synchronously from 0 to 180◦ by the stepper motors. The polar-
ized images of the sample were acquired at every 10◦. (b) illustrates an intensity response
(Intensity vs. θpolarizer) for the example fiber with an orientation angle θ f iber=67◦ and a po-
larizer angle θpolarizer defined on the polar axis with the same reference. The fiber orientation
was thus determined by finding the angle of the polarizer which yielded the maximum in
the fitted curve. Note that the red points were the measured birefringent intensity data over
180-polarization range and the blue curve was the corresponding fitted curve.

the polarizer and the birefringent axis of the sample, ∆n is the sample birefringence, d is the sample
thickness and λ is the light wavelength [56,57]. Considering all values are kept constant over different
measurement angles, the transmitted light will be as:

Intensity ∝ I0(1 −C sin2 2θ) (2.28)

with the maximum achieved at θ = 0◦ or 90◦, i.e., θpolarizer = θ f iber or θ f iber + 90◦. In real tissues,
although birefringence is the dominant optical effect due to small thickness of test specimens, other
effects, e.g. cylinder scattering, are not negligible. Consequently, the intensity–θpolarizer curve is char-
acterized by one higher peak followed by one lower peak, which corresponds to θ f iber and θ f iber + 90◦

respectively. By locating the global maximum of this curve, the fiber orientation angle θ f iber can be
inferred. Thus, the above-mentioned method in section 2.2 can be used to determine fiber orientation
angles in thin sample slices. Since the 2-D fiber orientation is determined by locating the global max-
imum of the intensity–θpolarizer curve, multiple images are required to have enough angular resolution
to find the peak. Though more data is better for curve fitting, 18 is a convenient number and enough
for curve fitting. Therefore, we acquired 18 frames for every test sample.

There were three steps to obtain the local fiber orientation results.

• Step 1: three random regions of interest (ROIs) at a size of 50×50 pixels were selected for the
image stack of one sample.
• Step 2: a plot of all the intensity values from the 18 frames of the stack was given for each pixel

of the randomly selected ROIs, presented as the red points in Figure 4(b) .
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• Step 3: the local fiber orientation for each pixel was extracted by tracking the location of the
maximum intensity of the fitted intensity response curve, presented as Figure 4(b) .

To minimize the influence of systematic measurement error on the intensity response and get reliable
values of the fiber orientation, fibers with peak-to-valley height less than 2% of the peak value were
excluded in the map.

2.3.2. Calculation of Homogeneity Index (HI)

With the local orientation thus determined for each pixel of the ROI, a local fiber orientation map
was obtained. For further quantification, homogeneity index (HI) was used to assess the level of
disorder of the local fiber orientation map, which also corresponds to the homogenization degree of
fibers. Then HI is calculated by:

HI =
10−ΣN

i=1P(θi) log10(P(θi))

N
(2.29)

where θi represents the fiber orientation and its probability is calculated by counting the number of
orientated pixels in the image; The definition of HI index is inspired by the limiting entropy and has
the advantage of being invariant to the sample’s placement and the polarizers’ rotation spacing [55].

2.3.3. Statistic

Data were analyzed using MATLAB software. The classification ability of HI and CVar to quantify
the alignment quality of collagen fibers were evaluated using a linear classifier with leave-one-out
cross-validation to reduce the probability of a type I error (false positive). The statistical significance
of any observed difference was analyzed by Student’s t-test. Statistical significance was defined as a
P<0.01.

3. Experiments and results

3.1. Verification experiments with PLA filament phantoms

We utilized Poly Lactic Acid (PLA) filament phantoms to test the performance of the polarized
light imaging system and validate that the change in polarization state can be used to compute the
alignment quality of fibers within a sample. An electrostatic spinning method was applied to produce
PLA filament phantoms with designated orientation and polarization characteristics [58, 59], which
simulated collagen and elastic fiber orientation in biological tissue. The alignment quality of the PLA
filaments was adjusted by controlling the speed of the roller of the electrostatic spinning device [60–
63]. As the rotation speed of the roller increased from 500 revolutions per minute (rpm) to 3000 rpm,
the filament alignment became ever more ordered [57]. Here, we defined the homogenization of fibers
as a state of being homogeneous, where fibers distribute randomly with no preference [30]. As the
quality of alignment increases, the fibers became more aligned with a preference of local orientation.
Thus, an increase in order caused a decrease in homogeneity. In our experiments, a set of PLA samples
with increasing alignment quality (decreasing homogeneity) of the identical thickness (5.3± 0.7 µm)
were produced by electrospinning at the same feeding rate, the same collection time (7 min), but
with different rotational speeds of 500rpm, 1000rpm, 2000rpm and 3000rpm, respectively [57]. And
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(a)

(b) (c)

(d) (e)

Figure 5. System verification and validation of PLA phantoms with different alignment
quality of fibers. (a) The intensity responses of phantoms at 0rpm, 500rpm and 3000rpm.
(b) The local fiber orientation map within one ROI of the 3000rpm PLA phantom. (c) The
corresponding histogram, CVar and HI of (b). (d) The local fiber orientation map within
one ROI of the 500rpm PLA phantom. (e) The corresponding histogram, CVar and HI of
(d). Both HI and CVar of the less ordered filaments obtained at 500rpm are larger than those
of the well-aligned filaments obtained at 3000rpm. It can be observed from (a) that as the
alignment quality of filaments increases, the peak value of the fitted curve increases. Note
that pixel intensities in (a) were stored as unsigned-8-bit integers (range 0-255).
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the diameters of the fibers mainly lie in the range of 1-2.2 µm, which is similar to the diameters of
collagen fibers. More details about PLA filements in this study can be found in our previous work [57].

3.2. Results of PLA filament phantoms

3.2.1. System error

Since the measurement bias are introduced by the light sources that emit partially polarized light
and by the polarizer that has synchronous rotation error, calibration is a necessity. To do that, we
directly acquired images of a “blank” sample (a PLA phantom embed with no fibers obtained at 0rpm)
as the two polarizers synchronously rotate [57]. The sum intensity of the images was calculated and
plotted with the rotation angle of the two polarizers. As expected, the green curve in Figure 5(a) was
flat and its intensity value was close to zero over 180◦ range, which indicated that the overall system
error is tiny and thus negligible.

Figure 6. Both HI and CVar show a strong negative correlation with the rotation speed of
collection cylinder. In the previous work, we found that the rotational speed can represent the
alignment quality of PLA phantom [57]. As the rotation speed of the roller increased from
500rpm to 3000rpm, the filament alignment became ever more ordered. Therefore, these two
indices can be used to quantify the alignment of fibers.

3.2.2. HI of PLA phantoms

The validation of our system combined with HI to successfully quantify the disorder is implemented
on PLA phantoms described in section 3.1. Following imaging of the phantoms, we plotted the inten-
sity over 180◦ polarization range of each pixel and constructed the local fiber orientation maps for each
ROI. The averaged intensity plots over the three random ROIs for each PLA phantom were plotted
in Figure 5(a). The peak value of the blue fitted curve of the PLA phantom obtained at 3000 rpm
was much larger than the red fitted curve of the PLA phantom obtained at 500rpm, indicating that the
peak value correlates with the alignment quality of fibers, where the bigger peak value means a more
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Figure 7. Verification of discrete entropy of two PLA phantoms obtained at the speed of
500rpm and 3000rpm. The discrete information entropy increases logarithmically as the
number of bins increases.

organized structure. Figure 5(b) shows the local fiber orientation map within one ROI of the 3000rpm
PLA phantom, while Figure 5(d) shows the map of the 500rpm PLA phantom. From these data, we
can also extract the corresponding histograms as indicated in Figure 5(c) and Figure 5(e). Then, HI
was calculated for each ROI to assess the level of disorder of the local fiber orientation map, which
also corresponds to the degree of homogenization of the filaments in PLA phantoms. For each phan-
tom, the HI value was an average of the three random ROIs. The averaged HI of the PLA phantom
at 500rpm (HI=0.93±0.008) is larger than the PLA phantom at 3000rpm (HI=0.36±0.003). Figure 6
displays a strong negative correlation between the collecting spinning speeds of the PLA phantom and
their corresponding HI.

3.2.3. Comparison of Different Measures

In section 2.1, HI is mentioned to be advantageous over Shannon’s information entropy. Here we
adopted PLA phantoms experiment to test this. Figure 7 and Figure 9 shows the dependency of discrete
entropy and HI on rotation increments and at different PLA spinning speeds, where the number of bins
is the total number of sampling angles of linear motors. The discrete entropy, as shown in Figure 7,
grows logarithmically as sampling increment declines. CVar, shown in Figure 8, tends to fluctuate.
While HI is insensitive to the change of increments (shown in Figure 9). Even when only six sampling
angles, which corresponds to 30◦ as increment step, are collected, HI is still close to the limiting value.
Moreover, CVar and HI can both indicate the level of disorder of color map. Taking into account the
fact that HI is always smaller than 1, the PLA phantom obtained at 500rmp is very close to completely
random. Finally, by definition, the value of all measures only depends on the probability at each angle
interval rather than coding, i.e. the angle value. Therefore, sample placement will not affect HI. This is
an important property since many traditional indexes, such as variance, change as the sample is rotated,
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Figure 8. Verification of CVar of two PLA phantoms obtained at the speed of 500rpm and
3000rpm. A significant fluctuation of CVar can be observed for PLA at 500rmp.

shown in Figure 2 (c) and (d).

3.3. Application of our polarized light imaging system combined with HI in human vulvar tissues

Histologically, the homogenization of collagen fiber in the dermis has been used as a diagnos-
tic criterion of VLS [27–29]. In VLS, significant biochemical alterations occur around the zone of
homogenization with changes in the organization and expression of collagen fibers. These changes,
especially the alignment quality of fibers, may form the basis for the differentiation of VLS from nor-
mal vulvar biopsies without H&E staining. Therefore, after validating the system as described in the
preceding subsection, we measured the local fiber orientation distribution in unstained human vulva
tissue biopsies.

14 normal vulvar tissue biopsies and 20 biopsies from patients with VLS, presented in Table 1, were
obtained under a protocol approved by the Institutional Review Board (IRB) of the Second Affiliated
Hospital of Chongqing Medical University (IRB No: 2013KLS002). All the involved women acknowl-
edged and signed written consent for participation in the study. The location and number of biopsies
collected were determined based on clinical necessity. As part of the standard clinical protocol, all
vulvar specimens were formalin-fixed and paraffin-embedded, and then were sliced to a thickness of
4µm. In order to reduce the possible polarimetric signal artifacts, the unstained samples were chemi-
cally dewaxed before polarized imaging. Although formalin fixation has been reported to affect linear
retardance and depolarization of myocardium and liver samples, use of this substance for ex-vivo po-
larimetry studies is acceptable as such influence in the optical polarization properties is negligible [64].
According to a recent study using a polarization microscopy to characterize fiber orientation of ocular
tissues, the fiber orientation measurements were robust to formalin fixation, with few differences be-
tween fresh and 1 hour fixing [65]. After the experiments, the sections were stained with hematoxylin
and eosin (H&E) to generate a pathological report.
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Figure 9. Verification of HI on two PLA phantoms obtained at the speed of 500rpm and
3000rpm. HI successfully quantifies the alignment quality of PLA phantoms. Compared
with discrete entropy and CVar, HI is the more stable and insensitive to the number of bins.

3.4. Results of Human Vulvar Tissues

The local fiber orientation maps of two random ROIs from one normal tissue sample and one VLS
sample are shown in Figure 10(a) and Figure 10(c), respectively. The corresponding histograms are
shown in Figure 10(b) and Figure 10(d). The maps from the diseased tissue showed a much larger
variation in local fiber orientation angle, suggesting low alignment quality of collagen fibers. Similarly,
this is reflected in the broad histograms for the diseased tissue with the more uniform distribution than
those in normal tissue. The calculated HI of the ROI from the diseased tissue (HI=0.98±0.006) is larger
than the normal tissue (HI=0.88±0.002). The box plot of averaged HI from three random ROIs for each
vulvar specimen was shown in Figure 11(a). Although the value difference is not large, the distribution
difference between diseased tissues and normal tissues is obvious (P<0.01), which clearly demonstrates
the differences between normal and diseased tissues. To quantify how accurately this polarized imaging
diagnostic method can discriminate VLS from normal vulva, we created linear discriminant models
for HI. The sensitivity and specificity of the models was computed using leave-one-patient-out cross
validation, with the receiver operating characteristic (ROC) curves shown in Figure 11(b). The area
under the curve (AUC) was 0.98 and the sensitivity and the specificity were 93% and 95%, respectively.
In addition, it is worthwhile to mention that CVar also achieves the same accuracy in classifying VLS
and normal tissues, illustrated in Figure 11(d). Therefore, in terms of characterizing disorder of angular
distribution, the performance of HI is comparable with the circular statistics.

4. Discussion

In this paper, we presented a rotating linear polarized light imaging system combined with a novel
parameter HI based on entropy to quantify the alignment quality (homogeneity) of collagen fibers in
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(a) (b)

(c) (d)

Figure 10. Comparison of HI and CVar on normal and VLS vulvar tissue biopsies. (a) Local
fiber orientation map of one random ROI from a normal vulva biopsy. (b) The corresponding
histogram, CVar and HI of (a). (c) Local fiber orientation map of one random ROI from a
VLS biopsy. (d) The corresponding histogram, CVar and HI of (c).
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Table 1. Basic information of all human vulvar tissue slices.

Case
No

Histopathological
result

Age
(year)

Case
No

Histopathological
result

Age
(year)

P1 Normal 42 P18 VLS 43
P2 Normal 45 P19 VLS 39
P3 Normal 36 P20 VLS 47
P4 Normal 36 P21 VLS 56
P5 Normal 25 P22 VLS 52
P6 Normal 51 P23 VLS 66
P7 Normal 52 P24 VLS 48
P8 Normal 28 P25 VLS 46
P9 Normal 34 P26 VLS 44

P10 Normal 32 P27 VLS 50
P11 Normal 56 P28 VLS 52
P12 Normal 46 P29 VLS 65
P13 Normal 63 P30 VLS 63
P14 Normal 58 P31 VLS 34
P15 VLS 37 P32 VLS 31
P16 VLS 40 P33 VLS 29
P17 VLS 55 P34 VLS 57

biological tissues. First, the local fiber orientation was characterized in individual pixels in an image
stack by finding the location of the maximum value of the fitted intensity plot over 180◦. Then, the
resulting map of local fiber orientations was further processed to plot a histogram of the orientations
within the ROI area. Finally, based on this histogram, one can readily calculate the alignment quality of
the orientation map. In the previous work, spread (standard deviation) has already been implemented
for quantification of collagen fiber alignment [33]. However, this simple parameter is not an appropri-
ate quantitative measure of fiber orientation distributions in our case since it is highly dependent on
the placement of sample, illustrated in Figure 2. The change of sample’s placement under microscope
can alter the spread make it inapplicable for quantitative measurement of fiber orientation distribu-
tions. Therefore, it is critical to develop a more appropriate statistical method to distill the complex
information about the degree of fiber homogenization down into a single number. To enable the clini-
cal application, it is also essential that such index should not be influenced by system implementation
and precision of device. One relevant study is to apply normalized entropy in orientation maps [53].
However, such index is only effective for large motor step size and may lose its generality for small
case. Specifically, when the step size decreases, the index converges to one for any samples. The
other solution is to employ circular variance (CVar). Nonetheless, the application of CVar has a high
requirement for the circular distribution and it may fluctuate significantly in clinical practice, shown
by Figure 8. Inspired by the concept of limiting entropy, HI was proposed in this manuscript to rate
the isotropic level of fibers (ranging from 0 to 1). The index is constant under the rotation of sample
orientation for different tests and proved to be insensitive to the change of sampling increment (angular
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(a) (b)

(c) (d)

Figure 11. Polarized imaging results of all vulvar tissue biopsies. Due to the homogenization
of collagen fibers, the alignment quality of fibers in VLS tissues is lower than normal ones.
Both HI and CVar of VLS tissue show a significant increase (P<0.01) compared with those
of normal tissue. (a) Boxplot of HI for all vulvar tissue biopsies. (b) ROC curve of HI for all
vulvar tissue biopsies. (c) Boxplot of CVar for all vulvar tissue biopsies. (d) ROC curve of
CVar for all vulvar tissue biopsies.

step size). Those properties guarantee the stable HI value for the same sample regardless of variations
in motors and sampling increment, also reducing the requirement of system resolution. In order to
better illustrate HI, one application was presented in our manuscript to quantify the disorder of the
collagen fiber orientation maps of VLS tissues and normal tissues for ex-vivo diagnosis. A polarized
light imaging method, which works best for thin sample slices, was used to obtain the collagen fiber
orientation maps. Besides the polarized light imaging system in this work, HI can be applied to many
other methods that acquire the collagen fiber orientation maps, such as SHG. In addition, HI can also
be found useful in many other scenarios and is not limited to quantifying orientation.

Our system’s ability to assess the alignment quality (homogeneity) of fibers was validated using a set
of synthetic phantoms, presented in section 3.1. In a recent study, we found that as the rotational speed
of the collection cylinder increased [57], the alignment quality of the PLA phantom increased, and the
corresponding homogeneity decreased. Since Figure 6 reveals the negative relationship between the HI
and the spinning speed of the collection cylinder, HI can reflect the alignment quality (homogeneity)
of the PLA phantom. Though the results verified the good performance of our method, limitations
of this study still exist. In the PLA phantom experiments, we only practiced the influence of fiber
organization to polarization state, while in a real tissue section, much more complex scatters of both
cells and organelles also exist. In the future study, we will improve our phantom with both spherical
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and cylindrical scatters, which would be beneficial to fully simulate structural and optical properties of
skin tissues.

The ability of our system to differentiate VLS was verified by the clinical application. Sensitivity
of 93% and specificity of 95% are obtained to characterize VLS in vulvar biopsies without H&E
staining. Compared with other optical systems for investigating VLS, our system is advantageous in
many aspects. For example, Raman spectroscopy (RS) had been applied to the ex-vivo study of LS [66].
According to the study by Jonathan et al., RS was able to correctly differentiate VLS from other vulvar
conditions in biopsies with a sensitivity of 91% and specificity of 80% [66]. While the RS system
has a better resolution and is able to evaluate the biomolecular composition of tissue by assessing
the vibrational energy levels of the constituent molecules, our system provides a simpler and low-
cost method for VLS characterization with higher sensitivity and specificity. Moreover, our method
provides a potential quantitative diagnosis tool for VLS and can promote understanding the roles of
collagen fibers alignment during malignant transformation of VLS. One may notice that in this work,
the fiber orientation of the sample is assumed to be 2D single layer rather than 3D multi-layer. This
is a reasonable assumption because when preparing the biopsy, it is required that the sample should
be sliced along the major orientation plane. Additionally, the thickness of sample slices (4µm) is very
small compared to its length scale (1mm). Such thin sample condition guarantees that the fiber with
higher inclination has smaller contribution to the imaging result. With a thickness of 4µm, the slices
only contains less than 3 layers of fibers. Consequently, 2D single layer simplification is reasonable
in this study. There are several limitations of the current work. First, our transmission co-polarized
system works best for thin samples. If the sample is thick, reflectance-based imaging will be needed.
In the future works, HI will be applied with different imaging methods to quantify the disorder of
the images, which depends on the sample. Secondly, the sample size is not very large, and the control
group only includes normal vulvar tissue samples. As a preliminary study, the relatively high sensitivity
and specificity results from 34 samples can reveal the feasibility of our method to distinguish diseased
tissues from normal tissues. However, a lager sample size with additional biopsies from patient with
other vulvar conditions, i.e., vulvar intraepithelial neoplasia (VIN) and vulvar squamous cell carcinoma
(VSCC) will be needed for further validation of the clinical performance in the future. Thirdly, we only
consider the application of HI in 2D problems. Future study involves exploring the application of HI
in 3D problems.

5. Conclusions

This study demonstrates the feasibility of a novel parameter HI based on limiting entropy to quantify
the disorder of an image. Compared with the performance of other parameters, such as cyclic variance,
discrete entropy and normalized entropy, our proposed HI is more robust to the placement of the sample
slice and the systematic sampling increment (angular step size). Our attempt of using this method to
differentiate VLS and normal vulvar tissue in biopsies is very promising. Our method possesses several
advantages with significant clinical impact: 1) the diagnosis results are objective and quantitative; 2)
no need to stain the samples so that the diagnosis is faster and less expensive. Existing limitations
of the study include a small number of test samples and a relatively low resolution of our system, so
further study is needed. Future studies will focus on increasing the number of test subjects, exploring
the effect of additional pathologies on the fiber alignment, and acquiring images at a higher resolution.
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Implementing HI in a clinical setting may lead to quantitative characterization and accurate diagnosis
of many diseases in the future.
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