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Abstract: In magnetic resonance imaging (MRI), the scan time for acquiring an image is relatively 

long, resulting in patient uncomfortable and error artifacts. Fortunately, the compressed sensing (CS) 

and parallel magnetic resonance imaging (pMRI) can reduce the scan time of the MRI without 

significantly compromising the quality of the images. It has been found that the combination of 

pMRI and CS can better improve the image reconstruction, which will accelerate the speed of MRI 

acquisition because the number of measurements is much smaller than that by pMRI. In this paper, 

we propose combining a combined CS method and pMRI for better accelerating the MRI acquisition. 

In the combined CS method, the under-sampled data of the K-space is performed by taking both 

regular sampling and traditional random under-sampling approaches. MRI image reconstruction is 

then performed by using nonlinear conjugate gradient optimization. The performance of the 

proposed method is simulated and evaluated using the reconstruction error measure, the universal 

image quality Q-index, and the peak signal-to-noise ratio (PSNR). The numerical simulations 

confirmed that, the average error, the Q index, and the PSNR ratio of the appointed scheme are 

remarkably improved up to 59, 63, and 39% respectively as compared to the traditional scheme. For 

the first time, instead of using highly computational approaches, a simple and efficient combination 

of CS and pMRI is proposed for the better MRI reconstruction. These findings are very meaningful 
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for reducing the imaging time of MRI systems. 

Keywords: magnetic resonance imaging (MRI); compressed sensing (CS); random under-sampling; 

parallel magnetic resonance imaging (pMRI); K-space 

 

1. Introduction  

Magnetic Resonance Imaging (MRI) is a well-known medical imaging method based on the 

Nuclear Magnetic Resonance (NMR) phenomena. The reconstructions of 2D or 3D images 

representing the spatial density of the target area or volume are achieved by using the MRI. During 

MRI imaging, the sampled signal is reconstructed from the spatial frequency component of the 

image. Under a fully sampled data acquisition followed by the Nyquist criterion, the conventional 

Inverse Fast Fourier Transform (IFFT) is commonly used to reconstruct the image. Unfortunately, 

the time required for acquiring a complete data set is time-consuming; therefore, its broader 

applications such as real-time diagnosis and emergencies are less concerned. Over the last few 

decades, many advanced techniques have been used to incredibly improve the quality and acquisition 

speed of the NMR image. The recent advanced methods have been mainly focused on accelerating 

hardware operation and imaging algorithms.   

The currently emerging of two main research fields enable to reduce the scan time of the MRI 

without significantly reducing the quality of the images. The first approach is associated with the 

development of the parallel MRI (pMRI) that allows speeding up the MRI acquisition. In this 

technique, the MR image’s most important information is spontaneously received using an array of 

radiofrequency (RF) coils [1,2]. Many groups have tried to improve the pMRI with different 

reconstruction algorithms such as simultaneous acquisition of spatial harmonics (SMASH) that 

increases the speed of image acquisition by an integer factor over traditional fast-imaging methods [3], 

the SENSE (Sensitivity encoding) that uses the sensitivity maps for reducing the scan time of MRI 

acquisition [4], the Generalized autocalibrating partially parallel acquisitions (GRAPPA) [5], and the 

iterative self-consistent parallel imaging reconstruction [6]. The second method is the novel sampling 

technique of compressed sensing (CS) that utilizes the spatial redundancy of medical images [7–9]. 

In fact, the MR image can be recovered from a tiny amount of sampled data. Since the first 

introduction of CS by Lustig et al. [10], the CS has been developed using various strategies and 

optimization algorithms. Some well-developed methods of random under-sampling were described 

in [11,12]. Some recent work tried to optimize both the random [13] and non-random [14] 

under-sampling patterns. More recently, it has been found that the 2D Cartesian random 

under-sampling can be optimized better by using a hybrid under-sampling approach [15]. In this 

hybrid under-sampling, the number of horizontal sample lines taken from the K-space is defined by 

the under-sampling ratio r, which consists of two sampling parts: (i) a major part is still randomly 

sampled by following the power-law; (ii) the rest minor one is regularly sampled by the remaining 

lines surrounding the center of the K-space. The numerical simulation evaluations have confirmed 

that when applying the hybrid under-sampling approach to the K-space of MRI, the reconstructed 

image is more accurate than the use of the traditional random under-sampling methods because a 

more considerable amount of useful information near the origin of the K-space is permanently taken.  

Although both CS and pMRI can significantly reduce the image acquisition scan time, they have 
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their limitations. The combination of CS and pMRI has been developed for mitigating the drawbacks 

when they are used together [16,17], such as the CS was used for highly accelerating first-pass 

cardiac perfusion pMRI [18] and the hybrid regularized reconstruction for the combination of pMRI 

and CS [19]. The uniform and random under-sampling methods were also individually applied to 

parallel imaging for better image reconstruction [20]. CS-pMRI has been used for reducing the scan 

time of brain imaging without significantly reduced image quality [21–32]. The CS-SENSE is 

denoted for the combination of CS and pMRI, which used the reconstruction algorithm SENSE. The 

development of CS-SENSE can be divided into some directions as following: 

Firstly, calibration and calibrationless image reconstruction approach: conventional SENSE 

requires the knowledge of coil sensitivity profiles. For calibrationless image reconstruction 

approaches, the authors introduce a calibrationless image reconstruction approach that no longer 

requires this knowledge [24–27]. 

Secondly, conventional and improved reconstruction algorithms approach: based on the original 

reconstruction algorithm SENSE, the author proposed some enhanced algorithms for better 

reconstruction [27–30]. For example, in [28], the authors presented a reconstruction algorithm that 

promote joint sparsity by using additional spatial information from multiple coils.  

Thirdly, design the under-sampling patterns approach: the authors design different kinds of 

under-sampling patterns and adjustments to improve imaging reconstruction [31–35]. In [33], the 

authors proposed HF-SENSE, which is an enhanced partially parallel imaging using a high-pass filter. 

This method explores artificial sparsity to improve the image quality of SENSE reconstruction. 

Previously, we combined the chaotic under-sampling and the pMRI for improving the CS-MRI 

reconstruction [31,32]. This chaotic CS approach can speed up the image acquisition of the MRI due 

to reducing the number of samples.  

Recently, in 2019, the authors in [21] compared the image quality of CS-SENSE accelerated 3D 

T1-echo-spoiled gradient echo and T2-FLAIR (CS-SENSE FLAIR) sequences with the conventional 

ones. They found that CS-SENSE accelerated sequences provide the image quality equivalent to that 

of conventional ones. In [22], the authors proposed CS-pMRI supported by a modified fast spin-echo 

to accelerate data acquisition for the susceptibility-based positive contrast MRI. MR imaging data 

acquired from several phantoms (i.e., biopsy needles, stents, and brachytherapy seeds) to validate the 

proposed technique. Also, in 2019, the authors in [23] proposed using a preconditioner in the 

reconstruction procedure. The preconditioner can be constructed quickly, and its inverse can be 

evaluated fast using only two fast Fourier transformations. They verified the preconditioner's 

performance for the conjugate gradient method as the linear solver, integrated into the 

well-established Split Bregman algorithm. The designed circulant preconditioner reduces the number 

of iterations required in the conjugate gradient method by almost a factor of 5. 

Inspired by these works, we propose a combination of the hybrid under-sampling design and 

pMRI in this paper. In this sense, instead of using the traditional random or chaotic method, the 

pMRI reconstruction measurements are obtained by hybrid under-sampling the k-space. As reporting 

from our previous findings [15,32], when a certain amount of encoding information is permanently 

taken around the origin of the K-space, the hybrid under-sampling method will improve the quality 

of the reconstructed image for the pMRI. Our results based on simulation evaluations of the 

recovered image error, the universal image 𝑄 index and the peak signal to noise ratio (𝑃𝑆𝑁𝑅) have 

confirmed the significant improvement of image reconstruction compared to the all our previous 

der-sampling methods.  
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The rest of this paper is organized as follows. In section 2, the pMRI acquisition based on 

SENSE, the proposed method of hybrid compressed, and the imaging reconstruction using our 

proposed method are introduced. Evaluation results of the proposed method and compared to 

conventional methods are described in section 3. These achieved results are discussed in section 4 

while conclusions are drawn in section 5. 

2. Materials and methods 

2.1. Parallel MRI acquisition based on SENSE 

In MRI, to create an image, the number of phase-encoding steps is repeated for obtaining a 

necessary amount of measurements or horizontal lines of the K-space trajectory, which will 

determine the total scan time of the image acquisition. Differently, in the pMRI, the total number of 

horizontal lines of the K-space trajectory is spontaneously obtained from an array of individual 

coils [4]. However, the drawbacks of this parallel imaging are the reduction of the sensed size of the 

image (also called the field-of-view (FOV)) and the creation of the aliasing artifacts in image 

reconstruction. To solve this problem, the previous studies used SENSE based methods to remove 

the aliasing effects caused by the combination of different images from individual coils. In this 

method, the inversion value of the aliasing transformation for each pixel is individually estimated. 

A 2D MRI slice image of an object is considered as m (x; y), and the number of coils is L. Each coil 

will contribute its values of image intensity. The K-space data acquired by the l-th coil is determined 

by Eq (1), 
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where kx and ky are encoding information of the K-space according to a specific location of the 

corresponding image with x and y coordinates. The Cl (x; y) is the sensitivity function of the l-th coil, 

and k = {𝑘𝑥, 𝑘𝑦} will lie in the K-space. Sl(𝑘𝑥; 𝑘𝑦) implied in Eq (1) is the Fourier transform of the 

multiplication of its respective coil's sensitivity function and the weighted image produced from that 

coil. Moreover, the image acquired from each coil, ml (x; y), can be calculated by multiplying the ideal 

image by the corresponding sensitivity function, as described in the following Eq (2), 

   ),(),(, yxmyxCyxm ll 
 (2) 

Subsequently, the intensity value of each pixel in the full FOV image can be calculated by the Eq (3). 

   ),(),(),(),(,ˆ 1 yxmyxCyxCyxCyxm HH 
 

(3) 

where C = [C1; : : : ; CL] is a vector of the sensitivity function of all coils. The sensitivity of each coil 

is practically measured and calibrated by using reference images. These reference images are selected 

to ensure that they do not contain any aliasing artifact and noise. Moreover, smoothing and extrapolation 

algorithms are utilized for each coil sensitivity data to obtain a good sensitivity map. To apply the 
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compressed sensing into SENSE, the K-space's fully sampling data can be discretized by Eq (4), 
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where Nx and Ny are the numbers of pixels along 𝑥 and 𝑦 axes of the image, while 𝑛𝑥 and 𝑛𝑦 are 

the pixel values at coordinate (𝑥, 𝑦). It can be seen that Sl (kx; ky) is expressed as a vector x within 

the compressed sensing scheme. Thus, the under-sampled data lŜ (kx; ky) in the l-th coil can be 

calculated by applying the hybrid under-sampling matrix Φ to 
lS (kx; ky) which can be also 

expressed as a vector y within the compressed sensing setting. 

In this paper, the Cartesian K-space data of a 2D MRI image is used for evaluating the 

efficiency of the combination of the hybrid under-sampling approach and the pMRI. The Fourier 

relationship between the K-space domain and the 2D image is shown in Figure 1; the K-space’s full 

sampling performance, followed by the Nyquist criterion, which ensures most of the encoded 

information of the K-space is taken (the red dots), is shown in Figure 1a; the image reconstruction is 

simply performed by applying the 2D IFFT to the K-space data domain, as depicted in Figure 1b. 

 

Figure 1. Fully-sampled k-space example of an MRI [7]. 

2.2. Hybrid compressed sensing 

For a signal which can be expressed by a vector 𝑥 ( NRx ), it can be sparsely represented in 

some domains by algorithms such as Fourier [36,37] and Wavelet [38,39] transformations. The 

sparse representation can be expressed by 𝑥 = 𝛷 ∗ 𝑠 ( NRs and NNR  ) as a L-sparse vector (𝐿 

is the number of nonzero values in 𝑠 and Φ is a sparsifying matrix). If the signal 𝑥 is supposed to 

be sensed by using a linear function NMR  , the acquired samples, MRy , will be determined by 

𝑦 = 𝛹 ∗ 𝑥. The signal 𝑥 is expected to recover from its acquired samples y. This work can be 

performed by recovering 𝑠 from 𝑦 as the obtained samples can also be expressed by 𝑦 =  𝛩𝑠 

(with 𝛩 = 𝛷𝛹).  
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Figure 2. Illustration of basic compressive sampling principle [11]. 

The mathematical model of compressive sampling performance is illustrated in Figure 2. Here, 

a measurement matrix, Ψ or Θ, is often under-determined. To accurately reconstruct signal 𝑥, a 

critical factor of CS, the restricted isometry property (RIP), must be satisfied. It is found that the RIP 

condition is satisfied if the number of measurements M ≥ c * K * log (N/K) (c is a constant) [40]. It 

ensures that Φ is incoherent with Ψ, which is required when performing the CS [41]. Consequently, S 

can be reconstructed from y by using sparse approximation approaches, such as l1- BP [1] or 

orthogonal matching pursuit (OMP) [9]. The CS has been practically applied to the MRI by 

designing random and chaotic measurement matrixes for accelerating image acquisition [11,31]. 

In the 2D Cartesian sampled K-space, the total time required to obtain the K-space data is 

proportional to the number of phase-encoding steps [42]. It has been found that the regular Cartesian 

under-sampling caused the artifacts to manifest as coherent copies of the image structure. The 

rational random Cartesian K-space under-sampling followed by the power-law can significantly 

improve the image reconstruction, but still suffer incoherent artifacts, especially at a low 

under-sampling ratio. The random or chaotic under-sampling approaches can be used to interrupt the 

regularity of Cartesian K-space as they ensure the incoherence. However, the signal intensity of the 

K-space data reduces from the focal point of K-space to the periphery, which consequently causes 

the problem that only random or chaotic schemes with their sampling distributions are dense at the 

origin and sparse at the periphery of the K-space domain will guarantee a better image reconstruction. 

Suppose that a small value of under-sampling ratio 𝑅 is applied to the CS profile. In that case, the 

reconstruction's quality is low because the random or chaotic under-sampling schemes will be lost the 

critical portion of the phase-encoding steps around the center of K-space even that the center of the 

scheme is at the origin of the K-space domain. Therefore, in this research, the following three 

under-sampling approaches are evaluated: i) the traditional random under-sampling approach 

followed by the Gaussian random measurements along the phase-encoding (ky) in the K-space [9,11]; 

ii) Chaotic under-sampling approach [31,32]; iii) The new hybrid under-sampling approach [15].  

As illustrated in Figure 3, the Cartesian hybrid under-sampling approach is implemented as 

compared to the fully sampled Cartesian trajectories of the K-space (followed by the Nyquist 

criteria). Different from the full Cartesian sampling (shown in Figure 3a), the hybrid under-sampling 

takes much smaller phase encoding rows of the Cartesian Nyquist sampling, which is defined by the 

under-sampling ratio. The under-sampled rows in this hybrid under-sampling method are dividing 
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into two portions. Specifically, 70% of the rows are for random under-sampling, and 30% of the 

remaining rows are for the regular under-sampling row (defining by the Mup and Mdouwn border rows 

around the K-space center domain as shown in Figure 3b). 

 

Figure 3. (a) The fully sampled trajectories of the K-space by the Cartesian acquisition; 

(b) The hybrid under-sampled K-space performed by the combination of the traditional 

random under-sampling and regular sampling (between Mup and Mdown borders near the 

origin of the K-space). 

2.3. Multi-channel compressed sensing with the conjugate gradient SENSE 

The hybrid under-sampling matrix is applied to the pMRI acquisition procedure. The values of kx 

and 𝑘𝑦  of the under-sampled K-space are obtained using the combined algorithm of regular and 

random processes, as described above. The image recovery of the pMRI can be implemented using 

some iterative reconstruction algorithms such as gradient descent and conjugate approaches [10,12,40]. 

These algorithms begin with an aliased MR image and continuously update to remove this artifact. In 

these algorithms, the regularization parameter λ is used to balance between information consistency 

(ℓ2-norm) and the advancement of sparsity (ℓ 1-norm). In this paper, the well-developed and optimized 

Nonlinear Conjugate Gradient (NCG) is utilized for recovering the image from under-sampled 

K-space data [10]. Let m be the imaging object. The recovered image of the object, m̂ , is obtained by 

solving the following Eq (5) under the specific condition: 
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where 𝐹u is the Fourier operator, y is the obtained measurements, and Ψ is the sparsifying transform 

operator. The scheme can be briefly described in this following algorithm. 

The algorithm of hybrid Under-sampling scheme for pMRI Acceleration: 

Step 1: Generate the under-sampled data (kx, ky) defined by the hybrid under-sampling pattern. The 

number of sampled data is based on the pre-defined under-sampling ratio 𝑟 = 𝑀/𝑁, (select r1 for 

random sampling and R2 for regular sampling, and r = r1 + r2). 
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Step 2: Determine coordinates (kx, ky) of the K-space for each coil and store them as a template. 

Step 3: Acquire digital data of the K-space based on the template and store them in a vector for each 

coil. 

Step 4: Create sensing maps by using polynomial fitting. 

Step 5: Perform the multi-channel CS-SENSE reconstruction using the NCG algorithm. 

To evaluate the efficiency of investigated under-sampling methods, the averaged error between the 

recovered object and the initial object is firstly compared. Taking an image m with a size of 𝑁 × 𝑀 

for the initial object and m̂  is the recovered object, the normalized averaged error can be calculated 

by this Eq (6): 
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The Peak Signal Noise Ratio (PSNR) index is also estimated for evaluating the image 

compression quality of the reconstructed images for both under-sampling approaches [43]. To 

compute the PSNR, the mean-squared error (MSE) is firstly calculated by Eq (7): 

 
𝑀𝑆𝐸 =  

∑ [𝐼1(𝑚, 𝑛) − 𝐼2(𝑚, 𝑛) ]2
𝑀,𝑁

𝑀 ∗ 𝑁
 (7) 

where M and N are the numbers of rows and columns in the original image respectively. Thus, the 

PSNR is calculated by Eq (8): 
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Another performance index, the universal image quality (𝑄) index, is used as proposed by Wang 

and Bovik [44]. This index represents the distortion based on three different components: loss of 

correlation, luminance distortion, and contrast distortion. The 𝑄 index is defined as Eq (9): 

 
])())[((

..4

2222 yx

yx
Q

yx

xy






  
(9) 

where x  and y  are the mean of the original image and the reconstructed one, respectively; 𝜎𝑥
2 and 

𝜎𝑦
2 are the variances of x  and y ; and 𝜎𝑥𝑦 is the covariance between x  and y . Notice that 𝑄 

index varies between -1 and 1. The 𝑄 index reaches to 1 if two images are identical. 

3. Numerical simulation results 

The numerical simulations are performed for a data source obtained from the human MPRAGE 

data from an 8-channel head array coil. This used data source has an image size of 128 × 128, as 

shown in Figure 4. To prove the advantage of the proposed method, the under-sampling ratio r is 

selected from 0.03 to 0.3 for evaluating the error 𝐸, the 𝑃𝑆𝑁𝑅 ratio 𝑃, and the 𝑄 index from 

reconstructed images of all investigated under-sampling methods.  
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Figure 4. The original brain MR slice image obtaining by pMRI. 

 

Figure 5. The binary mask point for illustrating the random under-sampling (upper 

images) and the hybrid under-sampling (lower images) implemented in the k-space using 

the traditional and proposed approaches respectively for compression ratios of 10, 20 

and 30%. The bright horizontal lines are taken samples in the phase encoding dimension 

(vertical). 

The binary mask that illustrates the under-sensing implemented in the k-space based on the 

power-law using the traditional random and the hybrid under-sampling approaches for different 

𝑟 =  0.1, 0.2, and 0.3 is shown in Figure 5. It can be seen that, with the small under-sampling 

ratio of 0.05, only a small number of sampled horizontal rows are taken from the K-space. These 

sampled rows are distributed in the random distribution for the traditional random under-sampling or 

in a random manner with partially enhanced rows in the origin of the K-space for the hybrid 

under-sampling. For a higher under-sampling ratio, more sampled rows are permanently taken near 

the center of the K-space in the hybrid under-sampling method as compared to the traditional random 

approach. The reconstructed images of the under-sampled K-space for the respective under-sampling 

ratio are shown in Figure 6. Besides the visual image quality, the normalized parameters of the image 

quality are also evaluated, such as the error, the 𝑃𝑆𝑁𝑅, and the 𝑄-index between the original and 

the reconstructed images. Interestingly, these parameters being assessed have indicated the 

significant quantitative improvement of our proposed under-sampling method. For example, with the 
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under-sampling ratio of 0.05, the error and 𝑄-index of the reconstructed image by the hybrid 

under-sampling can be improved more than twice as compared to the traditional random sampling. 

 

Figure 6. The reconstructed brain MR slice image using the traditional random (upper 

images) and the proposed hybrid (lower images) under-sampling approaches for different 

under-sampling ratios of 0.1, 0.2 and 0.3. The averaged error (E), PSNR(P), and (Q) index 

of each under-sampling method are calculated as indicated under the reconstructed image. 

Generally, the hybrid under-sampling method can produce better-reconstructed images at 

low under-sampling ratios of 0.1 and 0.2. In contrast, the images are reconstructed from 

the random under-sampling method are poorer and varied in each simulation. At higher r 

from 0.3, the difference of image reconstruction between both under-sampling methods is 

negligible. 

To confirm the improvement of the proposed combination of the hybrid under-sampling and the 

parallel imaging, the simulation has been repeated form each under-sampling ration for statistical 

evaluation of the reconstructed image quality. Averaged values of the 𝐸  calculated by 100 

simulations of the traditional random, our previous work (the chaotic under-sampling [32]), and the 

hybrid under-sampling [15] methods for different under-sampling ratios (r) from 0.03 to 0.3 are 

shown in Figure 7. It can be seen that the E calculated by the hybrid method is significantly lower 

than the value calculated by the traditional random and chaos methods, especially at the 

under-sampling ratio of 0.06. This difference is gradually reduced when the r is increased to 0.3. 

 Results of the PSNR and the Q-index comparison between three under-sampling approaches are 

also shown in Figure 8. It can be seen that for under-sampling ratios that are less than 0.3, the image 

reconstructed by the proposed approach offers a better value of the normalized PSNR than that 

reconstructed from other investigated methods (the left graph of Figure 8). A similar observation is 

also indicated for the normalized Q index comparison between the three under-sampling methods is 
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shown in the right graph of Figure 8. As expected, for under-sampling ratios which are less than 0.3, the 

image reconstructed by the proposed approach offers a better enhancement of the Q index among 

studied under-sampling methods. 

 

Figure 7. Normalized average error E (averaged by 100 times) of the proposed and 

traditional under-sampling methods. 

 

Figure 8. The PSNR (left graph) and Q index (right graph) (averaged by 100 times) of the 

proposed and traditional under-sampling methods. 

4. Discussion   

The CS reconstruction implements sparsity of the solution to suppress the incoherent aliasing 

artifacts and maximizes data consistency between the solution and the available under-sampling data. 

The combination of the CS and the parallel imaging has been found in its improvement in comparison 

with applying CS or pMRI individually.  
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An improved SENSE method termed HCS-SENSE is proposed in this article. In our data 

acquisition scheme, the under-sampled data of the K-space is performed by taking both regular 

sampling and traditional random under-sampling approaches. As shown in Figure 7, the normalized 

averaged error of the proposed combination method decreased to 59% at the under-sampling ratio of 

0.06 compared to other methods. Analogously, the statistic evaluations of the normalized 𝑃𝑆𝑁𝑅 and 

𝑄 index also confirm the significant enhancement of 63 and 39% for the hybrid under-sampling 

method over other schemes when applied to the parallel imaging, as indicated respectively in Figure 8. 

The most significant improvement in using the hybrid under-sampling approach to the pMRI is 

observed in the low under-sampling ratios of under 0.3 compared to the others. At the same time, there 

are almost no differences between them at the higher ratios. This finding is consistent with the recent 

study [15].Nevertheless, the reconstructed image quality and the image acquisition time are improved. 

The time processing of this CS-pMRI algorithm is only a few seconds compared to the performance of 

hybrid under-sampling alone (commonly more than 30 seconds). 

The complexity of the HCS-SENSE method is not larger than conventional CS-SENSE because 

only a proposed under-sampled data of the K-space is applied before and after SENSE reconstruction 

individually; both work in K-space. Thus, it would not add any calculation compared to conventional 

CS-SENSE. The performance of the proposed method can be also compared with recent work [29] in 

terms of: 1) complexity (i.e., none of high-pass filter and its corresponding inverse filter are needed 

before and after SENSE reconstruction); and 2) reconstruction error. In addition, HCS-SENSE can be 

combined with the other improved methods in the calibrationless approaches [24–26] or the improved 

reconstruction algorithm approaches [27–29]. 

5. Conclusions 

A new SENSE method termed HCS-SENSE is proposed in this paper for significant quality 

improvements of the image reconstruction by applying the simple and efficient under-sampling 

scheme to the parallel imaging. Focusing on the concentrated information at the origin of the 

K-space, instead of individually using the random or chaotic under-sampling approaches, we propose 

to use a significant portion of the phase-encoding (ky) lines in the K-space with the traditional 

random under-sampling. Simultaneously, the minor rest part is permanently enhanced by the regular 

sampling around the center part of the K-space. It ensures that a certain amount of encoding 

information closed to the origin of the K-space is always taken to obtain the under-sampled K-space. 

Therefore, the image reconstruction is significantly improved for parallel imaging, especially at the 

low under-sampling ratios of smaller than 0.3. The numerical simulations and evaluations of all 

investigated under-sampling approaches have exhibited the efficacy of the combined method. 
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