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Abstract: Three-dimensional (3D) sparse reconstruction of landslide topography based on 

unmanned aerial vehicle (UAV) images has been widely used for landslide monitoring and 

geomorphological analysis. In order to solve the isolated island phenomenon caused by multi-scale 

image matching, which means that there is no connection between the images of different scales, we 

herein propose a method that selects UAV image pairs based on image retrieval. In this method, 

sparse reconstruction was obtained via the sequential structure-from-motion (SfM) pipeline. First, 

principal component analysis (PCA) was used to reduce high-dimensional features to 

low-dimensional features to improve the efficiency of retrieval vocabulary construction. Second, by 

calculating the query depth threshold and discarding the invalid image pairs, we improved the 

efficiency of image matching. Third, the connected network of the dataset was constructed based on 

the initial matching of image pairs. The lost multi-scale image pairs were identified and matched 

through the image query between the connection components, which further improved the integrity 

of image matching. Our experimental results show that, compared with the traditional image retrieval 

method, the efficiency of the proposed method is improved by 25.9%. 

Keywords: unmanned aerial vehicle (UAV); image retrieval; image matching, image pairs; 3D 

reconstruction; Structure-from-Motion (SfM) reconstruction 

 

1. Introduction 

Unmanned aerial vehicles (UAV) are a convenient and cost-efficient platform for mapping 
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inaccessible or dangerous areas [1], and they have been widely used in landslide mapping [2], heritage 

site reconstruction [3], emergency response measures[4] , and three-dimensional (3D) urban modelling 

[5]. The payload of a typical UAV mapping system is a camera, which can take images according to a 

pre-planned route. Based on the structure-from-motion (SfM) pipeline method [6,7], the poses of the 

acquired two-dimensional (2D) sequence images can be accurately recovered. The reconstruction of 

large-scale landslide surfaces based on UAV is important for landslide monitoring and 

geomorphological analysis [8]. In order to yield more accurate and detailed reconstruction results in 

key areas, it is necessary to control the UAV to fly lower and obtain multi-view images. However, the 

completeness and efficiency of 3D sparse reconstruction is a great challenge for multi-scale UAV 

images. 

The 3D sparse reconstruction-based sequence images can be divided into two tasks: 

correspondence search and reconstruction. The first task is to select image pairs with overlap regions 

and then obtain the corresponding points by image matching. Although the exhaustive method (EM) 

can find all potential image pairs with overlap regions [9,10], it is time-consuming and proportional 

to the square number of images. Further, it is difficult to meet the application needs of a large 

number of image data. The second method calculates the approximate footprint of the image via 

measurements found using a position and orientation system (POS) equipped with UAV [11,12]. If 

two image footprints intersect, image matching is performed for the image pair. However, the 

method is difficult to apply when the optical axis of the camera swings around the vertical direction. 

The third method selects image pairs based on image retrieval [13], which is when relevant images 

from the database for a query image are found. The image pair selection method based on image 

retrieval constructs the bag-of-words (BoW) model [14], which represents the image as a set of 

weighted visual words by quantizing the local feature space. All visual words are composed of a 

hierarchical tree that generates a vocabulary tree [15]. Then, one can determine whether the two 

images share overlap regions by evaluating the similarity of the image visual words vector. It is 

common to apply a weighting to visual words, such as the frequency-inverse document frequency 

(TF-IDF), rather than applying frequency directly. For large-scale image retrieval, the Hamming 

embedding (HE) [16] technique represents local descriptors as binary codes, which improves 

efficiency and saves memory. These methods are directly applied to hybrid and multi-scale UAV 

images that result in insufficient image pairs and in sufficient image pairs, all of which may lead to 

disconnected structures or incomplete components in the SfM pipeline [17]. The second task is to 

reconstruct a scene model that computes both the 3D sparse points and camera poses. Methods for 

this task can be divided into two classes: sequential and global [18]. Sequential SfM reconstruction 

starts from a minimal reconstruction based on two or three views, then incrementally adds new views 

into a merged representation (e.g., Bundler [19], OpenMVG [20], etc.). The sequential SfM method 

needs to perform multiple bundle adjustments (BA) and is a rather slow procedure when too many 

images (more than 10,000) are involved in the reconstruction. Global SfM reconstruction generally 

adopts the method of divide and conquer to “bundle” data from a large area [21]. Large-scale SfM 

reconstruction data is divided into small pieces and processed separately. Then, the results of small 

pieces are fused into a whole result. Although the global reconstruction method is more efficient, the 

sequential SfM reconstruction method algorithm is simpler, and the results are stable and reliable [22]. 

In this paper we propose an image pair selection method for multi-scale UAV images based on 

Hamming Embedding (HE) and TF-IDF weighting. This method greatly reduces the invalid 

calculation in the image matching and achieves complete sparse reconstruction results. Based on the 
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sequential SfM reconstruction method, the 3D sparse points of landslide topography are completely 

reconstructed. The remainder of this paper is structured as follows. In section 2, we present the main 

method, and describe in detail the two key components of the method: threshold segmentation and 

missing image pair search. Experiments and results are shown in section 3. We summarize the 

conclusions and contributions of the paper in section 4. 

2. Methodology 

Figure 1 shows the image pair selection method used for multi-scale UAV image matching. The 

method contains six steps: feature extraction, vocabulary tree construction, visual words indexing, 

image similarity query, two view matching, and missing image pair searching. 
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Figure 1. Overall workflow for multi-scale UAV image matching. 

2.1. Feature extraction 

The main idea of selecting image pairs based on image retrieval is to represent the image with 

visual feature information and then determine whether the image overlaps according to the similarity 

of the feature information. In most image retrieval works, the features vectors extracted by SIFT [23] 

or SURF [24] are used. These local features are widely used because they are invariant to lighting, 

scale, and rotation changes, and they can overcome affine image changes. ASIFT [25] is based on 

SIFT and is more suitable for affine transformation when its efficiency is too low to be practical. 

Although SURF is more efficient, SIFT proves to be the most robust to changes in perspective [26].  

Since the original SIFT feature contains 128-dimensional feature vectors, a large number of 

high-dimensional feature operations can also reduce the efficiency of image retrieval [27]. Therefore, 

this paper uses the principal component analysis (PCA) [28] method to reduce the high-dimensional 

features to low-dimensional features and to improve efficiency while maintaining most of the feature 

information. Since the PCA-SIFT [29] method can also achieve a similar effect, SIFT features 

obtained better results than the PCA-SIFT with regard to image matching [30]. Thus, the features 

after dimension reduction are only used in the image pair selection stage.  

Suppose that a total of n features are obtained and represented by a matrix F . The singular 
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value decomposition (SVD) of the matrix F  is performed according to the PCA algorithm and the 

result is shown in Eq (1). 

T

128 128 128 128n n n n    F U V                              (1) 

n  is the number of SIFT features; 
n nU  and 

128 128V  are the n  and 128-order orthonormal 

matrices, respectively;  1 r L  represents the r  eigenvalues of SVD decomposition of matrix 

128nF ; and 
128n  is a diagonal matrix formed by r  eigenvalues arranged in descending order. 

If the SIFT feature is reduced to the d-dimensional feature, the first d  row vectors of the 

matrix T

128 128V  are converted into a matrix T

128dV , and the reduced-dimensional SIFT feature 
n d
F  

is as follows: 

T

128 128n d n d  
 F F V                                  (2) 

2.2. Words indexing 

The vocabulary tree is composed of visual words generally obtained by clustering SIFT features 

with k-means [31]. In order to evaluate the importance of visual words in different images, the 

weights are calculated by TF-IDF method, as shown in Eq (3). 

N
lnid
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d i

n
t

n n
                                     (3) 

idn  is the number of the occurrences of visual word ( i ) in the image ( d ); dn  is the number of 

words in the image ( d ); 
in  is the number of occurrences of visual word i  in the image; N  is the 

number of images; and 
idt  is the weight of the visual word ( i ) in the image ( d ). 

After the vocabulary tree is created, the occurrences number of all visual words can be indexed 

in the entire image dataset. After, Eq (3) calculates the weights of each visual word in different 

images. Supposing that there are k  visual words in the vocabulary tree, the ith image can be 

represented as a vector of k  weights, as shown in Eq (4): 

 1 ,i kit tiV L                                     (4) 

where 
i

V  are the k  weights of image i . 

2.3. Image query 

The purpose of image query is to find the most similar image sequence in the dataset. If there 

are overlap regions between the two images, the extracted SIFT features should be similar, and the 

visual word weight vectors of the two images should also be similar. The similarity between them 

can be obtained by calculating the angle between the weight vectors, as shown in Eq (5): 
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where 
( , )i jS  is the similarity between the ith image and the jth image,   is the angle between 
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the two weight vectors. 

The query depth means that the top Q images with the highest similarity in the dataset for the 

query image, as shown in Figure 2. 

Ii Q

depth threshold

 

Figure 2. The diagram of query depth threshold. 

In Figure 2, the conventional method forms image pairs by the query image ( Ii
) and all images 

in query depth Q. However, if the value of Q is too small, the image pairs with overlap regions will 

be lost. In contrast, a large number of image pairs without overlap regions can be added, which 

greatly reduces the efficiency of image matching. Therefore, we proposed a method of query depth 

threshold based on that proposed by Otsu [32], using images above the threshold and query images 

that form image pairs. The threshold calculation method is shown in Eq (6): 
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, and 

1N  is the 

number of images above the threshold, ( )g t  is the corresponding variance value at the threshold t . 

Equation (6) divides the image sequence within the query depth Q into two parts: above the 

threshold t  and below the threshold t  based on the maximum variance between two parts. Within 

the query depth range  0,Qt , the variance values are calculated according to Eq (6), and the 

position corresponding to the largest variance is the selected threshold t , as shown in Eq (7). 

0 Q

arg max{ ( )}
t

t g t

 

                              (7) 

2.4. Search missing pairs 

After querying every image in the dataset, we performed two-view image matching on all 

candidate image pairs based on the methods of SIFTGPU [33]. We removed outliers using the 

fundamental matrix estimation within the RANSAC [34] algorithm. Unlike conventional 
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similar-scale UAV images, the retrieval results of multi-scale UAV images showed aggregation. The 

reason is that image retrieval is based on image similarity and the similarity of similar-scale images 

are much higher than cross-scale images. Under a fixed query depth, the query images preferentially 

select images of a similar scale and the obtained matching relationship may show an isolated island 

phenomenon, which means that there is no connection between the images of different scales. To this 

end, we proposed a fusion method of local connected components, as shown in Figure 3. 

PCC

CCC1

CCC2

 

Figure 3. Adjacent connected components. PCC denotes the parent connected 

component, whereas CCC denotes the child connected component. The blue dot 

represents an image in the parent connected components; red dots and yellow dots 

represent the images of two different child connected components; the solid line indicates 

that there is an overlap region between the two images after the geometrical verification 

in child connected component; the dashed line indicates that there is an overlap region 

between two images of adjacent connected components after the geometrical verification. 

We considered the image pairs after two-view geometrical verification with more than 16 

correspondence points as one edge. The two images were two vertices of the same edge. An 

undirected graph was constructed based on the initial matching graph by the open source library 

lemon [35]. The local connected components were searched in the undirected graph and the 

connected component with the largest number of images were considered as the parent connected 

component (PCC), such as in Figure 3, while the other connected components were considered as 

child connected components (CCC), such as CCC1 and CCC2 in Figure 3. Next, we selected each 

image in the CCC and followed the method presented in section 2.3 to query only in the vocabulary 

tree of the PCC. Then, the PCC and CCC were connected by the image pairs between the PCC and 

CCC, as shown by the dashed line in Figure 3. 

Using the same method as the image pairs obtained using image retrieval, the missing image 

pairs obtained by searching missing pairs were performed using two-view geometrical verification, 

and the complete matching relationship of the obtained dataset. 

3. Experiments 

In our experiments, we used a dataset to evaluate the proposed method. Image match pairs were 

firstly selected using the proposed method, whose performance would be compared with two 

state-of-the-art methods, i.e., the vocabulary tree (VT) [36] and adaptive vocabulary tree (AVT) [37] 

methods. Then, two-view geometrical verification were performed based on SIFTGPU and 
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RANSAC. Next, in order to access efficiency, completeness, and accuracy of the SfM pipeline, the 

sequential SfM pipeline was used. The proposed method was developed using Visual Studio 2015 

C++. All experiments were conducted on the same machine with a 12-core Intel i7-8700K, 3.7GHz 

CPU, 64GB of RAM, 512GB of SSD, and a 12 GB NVIDIA Titan XP graphics card. 

3.1. Study area 

In order to demonstrate the application of the proposed method, we used UAV image data 

obtained from a large-scale landslide area for experimental and analysis. The study area in Figure 4 

is the Zongling landslide, which is located in the coal mining district of Liupanshui, in the Guizhou 

province in southwest China. The total area of the study area is about 8.72 km2 and the altitude 

difference within the area is 603.16 m. 

 
 

(a) (b) 

Figure 4. The location of the study area: (a) the location of the landslide; (b) the contour 

of the landslide. 

To investigate and analyze the landslide body, we used the DJI phantom 4 Pro UAV to obtain 

nadir images of the entire landslide district and the oblique images of the key area by manually 

controlling the UAV. A total of 2137 high-resolution UAV images were obtained in the Zongling 

landslide. Their distributions are shown in Figure 5. 

 

 

 

(a) (b) (c) 

Figure 5. The distribution of obtained UAV images: (a) the nadir images distribution; (b) 

a nadir image; (c) an oblique image. 
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Figure 5a shows the distribution of UAV images in the dataset and where the oblique images 

were distributed in the green circle area. The nadir images completed most of the Zongling landslide, 

while the oblique images obtained details of the key area of the landslide. 

3.2. Performance evaluation of feature reduction 

To evaluate the performance of the feature reduction for image retrieval, we used PCA to 

convert the original 128-dimensional SIFT features into 112, 96, 80, 64, 48, 32, and 16 and generated 

the vocabulary tree using the VT method. The features of the vocabulary tree were derived from 

randomly selected images in the dataset (10%). The initial clustering center number k of the k-means 

was uniformly set to 42,600, which is about 200 times the number of vocabulary tree images. In 

order to evaluate the image query accuracy at different query depth, the query depth Q was set to 20, 

40, 60, 80, and 100. At the beginning, the EM method was used for image matching and the results 

were used as the ground truth to evaluate the retrieval accuracy of other methods. Figure 6 shows the 

precision and recall curve for different feature dimensions and query depth using the VT method. 

  

(a) (b) 

Figure 6. Comparison of precision and recall curve for the query depth: (a) indicates the 

precision curve of different query depth and feature dimensions; (b) indicates the recall 

curve of different query depth and feature dimensions; Q20 indicates the query depth as 20. 

Figure 6a illustrates the precision curve of image retrieval versus the VT method’s different 

feature dimensional and different query depth. It is shown that as precision decreased, query depth 

increased. Under the same query depth condition, its precision increased first and then decreased as 

the feature dimension decreased, reaching its peak when the feature dimension had a dimension of 64. 

Figure 6b illustrates the recall curve of image retrieval versus the different feature dimensional and 

different query depth by the VT method. In contrast to Figure 6a, the recall decreased when query 

depth increased. Under the same query depth condition, the recall was stable with a dimension of 64. 

The results in Figure 6a,b show that the precision and the recall were mutually restricted, and that the 

feature dimension was reduced to 64 dimensions to obtain better retrieval accuracy. 

In order to express the overall performance of a method, we compare the recognition 

performance in terms of F1-measure [38], which represents the combination of precision and recall. 

The detailed results are shown in Figure 7. 
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Figure 7. Comparison the terms of F1-measure with different query depth. 

The higher the F1-meansure comprehensive term, the better the performance of the method. As 

shown in Figure 7, the curve of F1-meansure shows the similar tendency with five different query 

depth, and the maximum value is obtained when the feature dimension is reduced to 64. Only when 

the query depth is set to 40 and the feature dimension is reduced to 112, the F1-measure value is a 

special case. As the query depth increases, the overall performance of the method tends to be stable, 

and the optimal F1-measure value is about 67%. Experimental results show that the proposed 

method can achieve the best performance when the feature dimension is 64, but the continuous 

increase of query depth cannot further improve the method performance. 

3.3. Performance evaluation of the integrity of image matching 

The integrity of image matching was evaluated using the integrity of the undirected graph, 

which was constructed by initial matching pairs. If the image pairs were selected sufficiently, the 

undirected graph constructed based on the matched pairs should be a connected component. 

Otherwise, the 3D reconstruction would result in a disconnected structure or an incomplete 

component. Thus, we evaluate the integrity of the image pairs selected by the four methods of EM, 

VT, AVT, and the method proposed here. Among these, the EM, VT, and AVT used 

128-dimensional features, while ours used 64-dimensional features. The query depth Q was 

uniformly set to 50. Since both the AVT and our method performed threshold segmentation on the 

query curve, the impact on the image query accuracy was evaluated. The statistical results of the 

thresholds of all query images in the dataset are shown in Figure 8. 
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Figure 8. Statistical results of the threshold of image query using the adaptive 

vocabulary tree (AVT) and the method proposed here. 

In Figure 8, the horizontal axis represents the query image ID and the vertical axis represents 

the threshold of the query image. As shown in Figure 8, the standard deviation of the threshold curve 

obtained by our method is 0.85, while by AVT method is 1.87. The experimental results show that 

the threshold curve obtained by our method was stable and the standard deviation was smaller. In 

order to analyze the threshold curves of different methods, the curves with ID 944 in the dataset are 

shown in Figure 9. 

 

Figure 9. Comparison of threshold segmentation between the AVT and our method for 

image 944. 
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In Figure 9, the valid means that the image pair had overlap regions and the invalid means that 

the image pair did not have overlap regions. The AVT method fit the similarity curve as a power 

function and the threshold calculated based on the mean and standard deviation of the curve scores is 

9. By analyzing the similarity curve obtained by the AVT method, it is found that the similarity curve 

of multi-scale UAV images does not conform to the power function distribution perfectly, which 

results in a large number of valid image pairs being lost. After feature reduction, the threshold 

calculated by Ours method based on the maximum variance is 17, the valid image pairs are more 

concentrated at the front of the curve, and more valid image pairs are obtained. 

According to the image pairs selected by the four methods of EM, VT, AVT and the proposed 

method, the two view image matching completed and the connection relationship network was generated. 

Table 1. Statistics of image selection accuracy of different methods. 

Method No. of Valid Image Pairs No. of Invalid Image Pairs Precision 

(%) 

Recall 

(%) 

No. of CC 

EM 113189 2169127 — 100 2 

VT 48251 56462 79.69 42.63 4 

AVT 12901 11216 95.29 11.40 4 

Ours 18893 28274 91.21 16.69 2 

Table 1 shows the image selection accuracy of four different methods. Compared with our 

method, the VT method obtained the largest number of valid image pairs. The AVT method obtained 

the highest precision, but the connection components of both methods were 4. If the number of CC 

was more than 1, there were isolated CCC in the image connection network and unconnected 

structures in the SfM pipeline. Our method obtained the same number of CC as the EM method and 

achieved a balance between precision and recall. 

3.4. Efficiency and accuracy of the reconstructions 

In order to evaluate the efficiency and accuracy of different 3D reconstruction methods, the 

image pairs selected using EM, VT, and AVT methods, as well as the method proposed here, used the 

sequential SfM pipeline. The statistical results are shown in Table 2. 

Table 2. Statistical results of SfM. 

Method 
Query 

Depth 

Matching 

Time 

(min) 

SfM 

Time 

(min) 

No. of 3D 

Points 

No. of 

Images 

RMS of Reprojection 

Error (pixels) 

EM — 121.38 65.10 309,236 2100 0.72 

VT 
50 26.73 45.80 282,444 1634 0.71 

100 37.41 61.22 317,218 2100 0.72 

AVT 
50 20.78 40.71 323,436 1612 0.71 

100 25.72 48.74 299,552 1634 0.72 

Ours 
50 23.45 49.59 366,199 2100 0.73 

100 25.43 59.37 341,780 2100 0.73 
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As shown in Table 2, SfM time in the EM method was the longest yet had the lowest efficiency. 

Nonetheless, the number of connected images was the largest. When the query depth was set to 50, 

both the VT and the AVT methods had a large number of disconnected images. Due to the incomplete 

reconstruction results, its efficiency and accuracy were not evaluated. When the query depth increased 

to 100, the VT method obtained complete results, and the number of connected images in the AVT 

method also increased by 22. The experimental results show that more complete reconstruction results 

could be obtained by increasing the query depth, because a larger query depth can establish the 

connection relationship between UAV images at different scales. The disadvantage was that the 

efficiency decreased when query depth increased. It is difficult to determine a suitable query depth for 

all UAV image matching. Compared with other methods, our method obtained complete reconstruction 

results when query depth was 50 and 100. Moreover, it obtained the highest efficiency. Compared with 

the EM method, the efficiency improved by 60.8%. Compared with the VT method, which had a query 

depth of 100, its efficiency improved by 25.9%. Based on the comprehensive analysis presented in 

Tables 1 and 2, the EM method can be observed to have the highest recall, but the least number of 3D 

sparse points, thus reducing the SfM efficiency. Therefore, it was unnecessary to obtain the most 

complete recall for UAV image reconstruction. After the bundle adjustment, the root mean square 

reprojection of the four methods was about 0.72 pixels, which shows that the image pairs selected by 

our method were reasonable and that the reconstruction results were reliable. 

4. Conclusions 

In this paper, an image pair selection method based on the BoW retrieval method was designed 

for multi-scale UAV image matching. The sparse reconstruction of a landslide was obtained using a 

sequential SfM pipeline. First, the PCA method was used to reduce high-dimensional features to 

low-dimensional features, which improved the efficiency of vocabulary tree construction. Second, by 

calculating the query depth threshold, a large number of invalid matching image pairs within the 

retrieval depth were discarded, and the accuracy of image retrieval was improved. Third, through 

searching for missing image pairs, some image pairs that connected the parent were connected to the 

component, and the child connected component was automatically identified and matched. Thus, this 

further improved integrity of multi-scale UAV image matching. The experimental results 

demonstrate that the proposed method can be efficient and reliable for multi-scale UAV image 

matching and able to obtain complete reconstruction results. 
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