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Abstract: In this paper we describe a coupled model for flow and microbial growth as well as nutrient
utilization. These processes occur within and outside the biofilm phase formed by the microbes. The
primary challenge is to address the volume constraint of maximum cell density but also to allow some
microbial presence outside the contiguous biofilm phase. Our model derives from the continuum
analogues of the mechanism of cell shoving introduced in discrete biomass models, and in particular
from the models exploiting singular diffusivity as well as from models of variational inequality type
which impose explicit constraints. We blend these approaches and propose a new idea to adapt the
magnitude of the diffusivity automatically so as to ensure the volume constraint without affecting
the reactions; this construction can be implemented in many variants without deteriorating the overall
efficiency. The second challenge is to account for the flow and transport in the bulk fluid phase adjacent
to the biofilm phase. We use the Brinkman flow model with a spatially variable permeability depending
on biomass amount. The fluid flow allows some advection of the nutrient within the biofilm phase as
well as for the flow even when the pores are close to being plugged up. Our entire model is monolithic
and computationally robust even in complex pore-scale geometries, and extends to multiple species.
We provide illustrations of our model and of related approaches. The results of the model can be easily
post—processed to provide Darcy scale properties of the porous medium, e.g., one can predict how the
permeability changes depending on the biomass growth in many realistic scenarios.
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1. Introduction

The main purpose of this paper is to present a new model for biofilm-nutrient-flow dynamics in
porous media at pore-scale. These complex coupled processes are traditionally described in a
staggered way, with biomass-nutrient model and the flow model solved in disparate spatial domains
and at distinct time steps. An alternative is to use various model reductions or model approximations
based on assumptions on the leading process. In contrast, our model is of continuum type, and is a
coupled system of partial differential equations with which we treat the processes monolithically.

The study of microbial communities which are omnipresent in natural and engineered systems is
important for a variety of applications including biofouling and bioremediation in engineering
applications, and in medicine including tissue engineering field, e.g., in artificial regeneration of
articular chondrocytes [1]. In particular, of central interest is the study of biofilms. Biofilms are
complex structures made of gel-like polymeric substance called EPS, and of microbial cells which
produce this EPS. Given access to sufficient nutrient resources, the microbes multiply until their
maximum density is achieved, after which the biofilm domain expands through the interface with the
surrounding liquid. The liquid and biofilm are separated by a sharp or diffuse interface, and together
they form a fluid with very complex properties, such as those studied by phase field models or the
Flory-Huggins theory of mixtures [2–5] or volume averaging [6]. The hypothesized purpose of
biofilms in their various aggregative, architectural and protective types is to promote the growth and
protect the cells, e.g., from the environmental conditions such as desiccation, high temperature and
competing microbes [2, 7, 8]. We refer to review articles [2, 7, 9] for an overview of modeling
challenges, more references, and applications in human engineering systems, e.g., in selective
plugging [10–13].

Next, as stated in [13], “the overwhelming majority of bacteria live in porous environments” such
as “soil-like materials, industrial filters” and medical devices [14]. Thus there is significant interest but
also new challenges in studying biofilm at pore-scale supported by experiments and imaging [11, 12,
15–17]. First, the length scales typical for the processes at the pore-scale involve micrometers [µm]
rather than [mm]; the latter are considered, e.g., in the detailed studies in bulk fluid [2,4,18]. Second, in
addition to the interface between the bulk fluid and the biofilm, at the pore-scale one also has to handle
the interface between the grains and the fluids. In fact, the character itself of the biofilm-nutrient
dynamics coupled to the flow may be distinct from that in an unconfined setting. In particular, [14]
points out the importance and influence of “streamers” (long filamentous structures) on the clogging
of pore-scale in contrast to the surface attached biofilm.

The challenges of disparate length and time scales as well as of the coupled nature of flow motivate
our new model development. We aim for a monolithic adaptive and robust model in its ability to be
extended and simulated. We improve the model we proposed in [17] by blending its biofilm-nutrient
dynamics part with a modified version of singular diffusivity model in [19, 20] extended to a novel
model—adaptive treatment of the free boundary arising at the interface between the biofilm and the
surrounding bulk fluid. We also improve the flow model in [17] by applying a variant of Brinkman flow
model to the entire domain rather than a staggered-in-time treatment. These extensions allow (a) more
complex spreading and growth mechanisms than those we proposed in [17], (b) permeable biofilm
phase, and an easy generalization to (c) multiple microbial species to study scenarios of competition
and cooperation. Our computational model has a fairly simple monolithic structure with which we can
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run simulations of representative elementary volumes in close to real time. We are able to simulate
a variety of practical scenarios in complex geometries by only changing the parameters rather than
an entire model construction. In particular, our model does not explicitly track the domains where
biomass is present, and does not require that it is contiguous, thus it can account for the presence of
streamers which seem to be important [14].

In the end, our model can be used as part of a multiscale study with which we upscale the flow
properties affected by biofilm growth to Darcy scale. The modeling precision we adopt seems adequate
for the Reynolds and Peclet numbers typically encountered in porous media, but our model has some
limitations. While it is more complex than those in [16, 21], it studies fewer details of the bio-gel
than those considered in bulk-flow with phase-field models in [2–4,22]. While our model can simulate
many interesting aspects of competition and cooperation between multiple species, it is less flexible
than individual based [23] or other discrete models. Finally, we do not explicitly address important
modeling components such as quorum sensing, detachment, cell death, abiotic cell decay, metabolic
lag and so on, however we see these as possible straightforward additions which leave substantial
flexibility to a modeller.

To provide context for our work we overview the results from literature and illustrate the new
features with numerical simulations. We do not provide numerical analysis of the approximate model
but we refer to the work on its somewhat simplified form in [24, 25].

The outline of the paper is as follows. We provide notation and define the basic model elements in
Section 2; this material is well known and fairly standard. Our new model discussed in Section 3 is an
adaptive nonsingular version of singular diffusivity models [19, 20] blended with variational
inequality models [17]. The heterogeneous Brinkman flow model is introduced and illustrated in
Section 4, with results of coupled flow and nutrient dynamics given in Section 5. Extensions of the
model to multiple species are described in Section 6. We summarize in Section 7. Section 8 contains
substantial supporting material and in particular additional details on numerical schemes as well as an
extensive discussion of literature models including (i) discrete, (ii) phase-field, and (iii)
osmotic-pressure approaches compared to our new model.

2. Notation and models for biomass-nutrient dynamics

In this section we set up notation for the rest of the paper. Most of the material is fairly standard.
We consider a region Ω ⊂ Rd, t > 0, and x = (xi)d

i=1 ∈ Ω with its Euclidean norm | x |. Partial derivatives
are denoted by ∂t, ∂i,∇ = (∂1, . . . ∂d), for time t and x. We also use δJ

δu for the differential of a functional
J : V → R, but denote by d f

du the derivative of a function f : R → R. The symbol χS denotes the
characteristic function of set S . For functional spaces, we use the Lebesgue spaces Lp(Ω) with the
norm || · || p and the Sobolev spaces Hk(Ω). We denote V = H1(Ω), and use, e.g., L∞(L2) to denote the
space L∞(0,T ; L2(Ω)), with similar notation for other Lebesgue and Sobolev spaces.

In this paper we follow closely the notation from [20] blended with that from [26] and from the
porous media community, i.e., [21, 27].

We consider several microbial species each with concentration Bk together denoted by B = (Bk)k,
with their sum B =

∑
k Bk. The species include the solid phase called EPS. We will use a given fixed

number B∗ > 0 to denote the maximum concentration of biomass, and some 0 < B∗ < B∗, where
B ∈ [B∗, B∗] indicates what we call a “mature” biofilm. In this paper we choose B∗ = 0.9B∗. The
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(a) (b)
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Figure 1. Schematic picture of biofilm domain x ∈ [0, 1] and the cell density B(x) plotted
with a solid blue curve. On the left (a) we show schematically the mechanism of cell growth
and “shoving” when the cell density exceeds the maximum B∗ = 1. On the right (b) we show
the notation from (2.1). In the region Ωb some cells can be very small, and some quite large.
Note that in a continuum model, it is likely that B > 0 everywhere and thus Ω0 = ∅. When
the maximum cell density is reached, the cells redistribute. This mechanism is modeled
differently in various models.

precise definition and units of Bk, B∗, B∗ will be given later.
We also consider nutrient and metabolic product species N = (Nl)l. For simplicity in this paper we

consider only oneN = N, which can be oxygen, carbon, glucose, ammonia, or more generically some
substrate. The diffusivity of N depends on the nutrient type.

2.1. Notation for domains containing microbial species

We will consider the domain Ω and identify the different regions in which the flow and the reaction
processes have different properties; see Figure 1 for illustration.

Ω0(t) = {x : B(x, t) = 0}, no microbes present; bulk fluid (2.1a)
Ωb(t) = {x : B(x, t) > 0}, microbes present (2.1b)
Ω∗(t) = {x : B∗ ≤ B(x, t) ≤ B∗}, mature biofilm (2.1c)
Ω∗(t) = {x : B(x, t) ≥ B∗}, B exceeds the maximum (2.1d)
Ω∗b(t) = Ω∗ ∪Ω∗, biofilm domain. (2.1e)

The definition of regions such as Ωb varies in the literature, where it is used for convenience of notation,
or in reference to the properties observed in experiments. In particular, in [17] we used x-ray micro-
CT tomography imaging to identify the region Ω∗ as the opaque region from which the contrast agent
barium is excluded. With some models, Ωb is assumed contiguous, i.e., simply connected, and only its
boundary is tracked, but with other models including our model not so. In some literature the region
Ω∗ is called the boundary layer in which much growth occurs and which propagates the fastest.

In addition, some authors [9, 13, 18, 28] distinguish

Ωa(t) = {x ∈ Ωb : N(x, t) > N∗}, enough nutrient for active metabolism (2.1f)
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Figure 2. Illustration of pore-scale geometries considered in this paper. Top row: cartoons
of (a) channel with a partially permeable obstacle, (b) channel with biofilm at the walls,
(c) single-pore geometry, (d) many-pore geometry, and (e) converging channels as in [13].
Bottom row shows two images from micro-CT from [17] at resolution 202 × 202. In all
figures Ωn = Ω0 ∪Ωb ∪ Γb0, where Γb0 = ∂Ω0 ∩ ∂Ωb is their interface with Ω0 ≈ Ωw in white,
Ωb in grey, and Ωr in black.

as the “metabolically active” region with N∗ denoting the minimum amount of nutrient needed for
species maintenance. Typically we set N∗ ≈ O(10−2kN) with respect to the Monod half-life constant kN

defined below.
When working with flow coupled to biomass-nutrient dynamics, we need to define the flow

domains. At the pore-scale, we consider an open bounded pore-scale domain Ω = Ωr ∪ Ωn ∪ Γrn

(rock, no-rock, wall interface). We allow Ωr = ∅ and assume that the volume |Ωn |> 0; see Figure 2.
We recognize a fixed rock wall boundary Γrn, and consider the flow of water in Ωn, and Ωr , ∅.
Generally we denote by Ωw the bulk fluid domain, which in our model may or may not coincide with
the domain Ω0 with no microbes present. For the flow, we denote by u the velocity and by p the fluid
pressure. We use Γin and Γout to denote the inlet and outlet boundaries, respectively.

2.2. Notation for microbial species

The many different models we cite in this paper come each with a different system of variables and
units, and use different data, e.g., for rate constants in their examples. For example, the units for B,N
range from [kg/m3], [g/cm3], [ppm], or [g/L], or are non-dimensional, as in [20, 29]. In this paper we
follow closely the non-dimensional notation from [20] blended whenever possible with that from the
porous media community, i.e., [21, 26]. The different symbols we define and typical parameter values
are listed in Table 1.

We denote by ρw the water density, and by µ its viscosity. The water occupying Ω or, more precisely
Ωn, has several suspended microbial components and several dissolved nutrient components. The mass
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and volume contribution of the microbial species compared to that of water is significant; their presence
also changes the properties of the phase, and we address this later. The nutrients are not accounted for
in mass balances.

We consider K microbial species, each with (dry mass) density ρk. If EPS is modeled, we denote it
as the species number k = K. Typically ρk ≈ const = ρ0

B for all live species, and ρEPS ≈ 1/2ρ0
B, but for

simplicity we ignore this distinction here. At the microscopic level at any point x of the small volume
ω(x) surrounding x we have either water, or microbial species present, thus it makes sense to define the
volume occupied by the water w and by the species k by ωk, with ω =

⋃
k ωk. Now we set the volume

fractions

θk =
|ωk |

|ω |
, for k = w, 1, . . . ,K, with

∑
k=w,1...K

θk = 1.

The volume fractions θk(x, t), the total volume fraction θB(x, t) =
∑K

k=1 θk = 1 − θw of biomass, and
the microbial mass density ρB(x, t) = ρ0

BθB(x, t) vary in time and space. (In some literature θw is fixed;
e.g., see θw ≈ 0.9 [21], and thus expresses the “porosity” of biofilm). Since the cells have finite
volume, there is a maximum density of cells allowed, e.g., it is given in [20] as ρ∗B = 24 × 103[g/cm3].
0 ≤ ρB(x, t) ≤ ρ∗B. Equivalently θB ≤

ρ∗B
ρ0

B
, which relates to the minimum possible porosity of biofilm.

The total mass M(t) of fluids and microbial mass in a region Ω at time t is given by

M(t) =

∫
Ω

 ∑
k=w,1,...K

θkρk

 dx = ρw

∫
Ω

θw(x, t)dx +

∫
Ω

ρB(x, t)dx. (2.2)

Finally, as in [20] we set

Bk = θk
ρk

ρ∗B
= θk

ρ0
B

ρ∗B
, (2.3)

which are non-dimensional, and we obtain for the sum B of all species

B =
∑

k

Bk ≤ B∗ = 1. (2.4)

2.3. Notation for nutrient and reactions

We consider nutrient concentration N. We follow [20] where N is nondimensional, with its unit
involving the mass density of nutrient per ρ∗B. We recall the well known Monod functions, with the
nutrient consumption m(N) given by the Monod expression

m(N) = κ
N

N + kN
. (2.5)

The constant kN is called Monod half-life (in the same units as N), and κ is the specific substrate uptake
rate, with a typical value = O([1/h]). The reaction rates to be used in mass balance equations for
non-EPS species k = 1, . . . ,K − 1 involve the growth and utilization rates

rgrowth
k (Bk,N) = κkBkm(N) = κkBkκ

N
N + kN

, (2.6a)
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Table 1. Symbols for the variables and parameters used commonly in the paper, with typical
values adapted from [17, 19, 20, 26] or as indicated.

Symbol Description Value/Units
k Index of microbial species 1 ≤ k ≤ K.
ρk Dry mass density of species k ∼ 1.1 [g/cm3]
ρ∗B Maximum mass density of biomass 24 × 103 [g/cm3]
θk Volume fraction of species k [−]
Bk Concentration of species k, defined by Eq (2.3) [−]
B∗ Maximum total concentration of biomass 1[−]
B∗ Threshold for mature biofilm 0.9B∗[−]
N Concentration of the nutrient relative to ρ∗B [−] ∼ O(10−4) [kg/m3]/ρ∗B
kN Monod half-life [can vary by factor 10s, s ≈ 6; see [30]] same as N
κ Specific substrate uptake rate ∼ O(10s)[1/h], s ∈ [−2, 0]
κk, κB Growth constant incorporating yield coefficient ∼ O(1)[−]
dm Molecular diffusivity 6.84 [mm2/h]
dk, dB Diffusivity of species k ∼ O(1) [mm2/h]
dN Diffusivity of N; see (2.13) ∼ O(1) [mm2/h]
T Time scale ∼ O(101) [h]
µ Viscosity 8.9 × 10−4 [Pa s]
u Velocity in the Brinkman flow model ∼ O(10−1) [mm/h]
p Pressure in the Brinkman flow model [Pa]
kb Resistance term in Brinkman flow model [mm2]
kΩ Darcy permeability ∼ O(10−7) [mm2]
γ(t) Biofilm interface location in 1d models, γ(t) =|Ω∗(t) | ∼ O(10−2) [mm]
a(t) Width of the active layer in 1d models, a(t) =|Ωa(t) | ∼ O(10−2) [mm]
v Local shoving velocity in osmotic pressure models ∼ O(10−5) [mm/h]
h, τ Spatial and time discretization parameters ∼ O(1) [µm],O(1) [h]

ruse,k
N (Bk,N) = −Bkm(N) = −Bkκ

N
N + kN

, (2.6b)

with typical values κk ≈ 0.5, typically incorporating some yield coefficient and maximum uptake rate.
If K = 1, or if all constants κk are identical, we set κk = κB.

2.4. Rate models and transport models

We recall the standard underlying models. A differential equation models the growth of species Bk

and consumption of nutrient N

d
dt Bk = rk(B,N); t > 0, Bk(0) = Bk,init, (2.7a)
d
dt N = rN(B,N); t > 0, N(0) = Ninit. (2.7b)

The specific details of rk, rN for the individual species Bk in B are provided in various ways, e.g.,
by specifying the reaction stoichiometric coefficients as in [31]. These involve the growth rgrowth

k and
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utilization ruse
N rates defined above plus additional terms. When transport is involved, these equations

are expanded to account for advection with velocity u and diffusion with diffusivities dk > 0 in Bk

equations and dN > 0 in the nutrient equations, to be defined later

∂tBk + ∇ · (uBk) − ∇ · (dk∇Bk) = rk(B,N); x ∈ Ω, t > 0, (2.8a)
∂tN + ∇ · (uN) − ∇ · (dN∇N) = rN(B,N); x ∈ Ω, t > 0. (2.8b)

If K = 1, we set dk = dB.
We set up initial and boundary conditions as follows. We set Neumann no-flux conditions on ∂Ω

for each Bk and N. For nutrient for some cases we also allow a Dirichlet boundary ΓD ⊂ ∂Ω through
which nutrient can be supplied.

dk∇Bk · ν|∂Ω = 0, Bk(x, 0) = Bk,init(x), x ∈ Ω, (2.8c)
N |ΓD = Nbd, dN∇N · ν|∂Ω\ΓD = 0, N(x, 0) = Ninit(x), x ∈ Ω. (2.8d)

Here ν is the unit outward normal to ∂Ω. The initial data is denoted by subscript init and the boundary
data with subscript bd.

In general, we may allow non-smooth data, thus (2.8) is posed in the sense of distributions rather
than in the classical sense. We annotate what is known about well-posedness of the models in
appropriate functional spaces in Section 8.1.

2.5. Numerical approximation of reaction–diffusion PDEs

We discuss now the approximation of the PDEs of the form (2.8) for simplicity only for single
species K = 1 and d = 2. We generally follow the established notation, e.g., from [32]. The case of 1d
and 3d domains can be handled analogously.

Spatial discretization. We cover Ω by a general uniform rectangular grid with size (hx, hy). Such
grids are most convenient and efficient when working with voxel data from imaging as indicated in [33,
34]. In fact we typically a refinement of a voxel grid, with h = hx = hy. We denote by M the overall
number of degrees of freedom which for microbial species B we enumerate B j, 1 ≤ j ≤ M and collect
in Bh = (B j) j. For approximation of (2.8) we use mixed finite element method of lowest RT0 type
on hexahedral grids implemented as CCFD (cell centered finite differences) which provide a natural
connection to the flow solution with the MAC scheme given in Section 8.3.2 and are locally mass
conservative [35].

We seek (Bh,Nh) ∈ RM × RM, and calculate the right hand side rB(Bh,Nh), rN(Bh,Nh) by evaluating
them at the degrees of freedom of (Bh,Nh). We denote by AB

h (Bh) the discrete counterpart of −∇ ·
(dB(B)∇), and AB

h (Bh)Bh approximates −∇ · (dB(B)∇B). Similar notation is applied in the nutrient
equation with AN

h (Bh)Nh.
As typical for CCFD, we use harmonic averages to get diffusivities at the cell edges internal to Ωb;

this supports mass conservation [35]. However, due to high degree of degeneracy of dB in (8.3) as
B ↓ 0, we apply arithmetic averaging to encourage diffusion towards the region Ω0.
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Time discretization. We use time steps 0 = t0, t1, t2, . . . tN = T , with uniform τ so that tn = nτ. For
nonlinear terms we use time- or step- or iteration lagging. In other words, our schemes can be called
semi-implicit, with variants as indicated below.

We approximate the solutions to (2.8) by operator splitting [32]; we solve the advection step
explicitly with some transport method

B̃n
h − Bn−1

h

τ
+ ∇h · (uhBn−1

h ) = 0. (2.9)

Here ∇h · (uhBn−1
h ) denotes the explicit upwind fluxes. An analogous model finds Ñn

h .
Next we solve the reaction and diffusion steps. We can solve the reaction step separately as if we

were solving (2.7) itself with the initial condition B̃n
h known after the advection step

B̂n
h − B̃n

h

τ
= rB(B̃n

h, Ñ
n
h ), (2.10a)

N̂n
h − Ñn

h

τ
= rN(B̃n

h, Ñ
n
h ), (2.10b)

followed by the diffusion step with step-lagging of AB
h , A

N
h

(I + τAB
h (B̂n

h))Bn
h = B̂n

h, (2.11a)

(I + τAN
h (B̂n

h))Nn
h = N̂n

h . (2.11b)

Another possibility is to solve the reaction and diffusion steps together,

(I + τAB
h (B̃n

h))Bn
h = GB,n

h = B̃n
h + τrB(B̃n

h, Ñ
n
h ), (2.12a)

(I + τAN
h (B̃n

h))Nn
h = GN,n

h = Ñn
h + τrN(B̃n

h, Ñ
n
h ). (2.12b)

Other schemes and refinements are possible; see, e.g., [32, 36].

2.6. Length scales and data

A typical domain Ω we consider has diameter L = O(10a [mm]) with a ∈ [−2, 0], while the
microbial cells have size ranging in hc ∈ [0.5, 20] [µm] [23, 31]. However, typical pore sizes in
meso-scale or unconsolidated porous media range in O(10s) [µm] with s ∈ [0, 1] [37], while the grain
size in glass-bead packs used for observation can range from O(10s) [µm], with s ∈ [1, 2] [17, 38–40].
The time scale is T = O(10 [h]), and thus the time steps for realistic simulation scenarios should be on
the order of at least seconds. We also aim to use discretization parameter h = O(hc) so the continuum
models apply.

In this paper we do not use explicit non-dimensionalization of PDE models. Even though such a
step provides useful insights and reduces dependence from a multitude of parameters to fewer, it is case
dependent. Rather, our simulations are carried out with codes which use an internal self-consistent unit
system.

The bio-gel is most viscous and the nutrient diffusivity is the smallest in Ω∗b inhibiting nutrient
supply outside the so-called “active layer”. Following [20,28,30] we define dN,w as the diffusivity of N
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in Ωn \ Ωb, dN,b to be its decreased value in Ωb, and RN,bw = dN,b/dN,w, with values RN,bw ≈ 0.4 in [20],
or even RN,bw = 0.01 for some nutrients [28, 30], with dN given

from [28]: dN(x, t) = χΩw(x)dN,w + χΩ∗b
(x)dN,b, (2.13a)

from [20]: dN(x, t) = (B∗ − B(x, t))dN,w + B(x, t)dN,b. (2.13b)

3. New monolithic biofilm model with adaptive singular diffusion and constraints

The biofilm model we propose in this paper addresses several challenges and blends ideas from
literature. The main characteristic of biofilm is that it is a phase distinct from ambient fluid. In the
biofilm phase the cells aggregate, but are subject to volume constraint (2.4), which means that the
region occupied by the phase grows when the cells divide and are “shoved” by their neighbors, and this
in turn requires modeling of the free boundary. The spreading mechanism is accounted for in a variety
of ways; see Table 2 for a summary, and Figure 1 for the basic idea. The approaches in literature handle
these challenges differently, and their particular focus depends on the length scale. For example, one
can make an assumption on whether the biofilm growth is nutrient-limited or diffusion-limited, and
assume appropriate simplifications of (2.8). Additional challenges arise when coupling to ambient
flow in porous domains. We provide extensive literature notes in Section 8.1.

Our model for biomass growth builds on (2.8). In this section we focus on one species, set K = 1,
and do not model the flow or advection, which are handled in the rest of the paper. The main feature we
discuss now is that we apply the reaction–diffusion (2.8) in the entire domain Ω allowing for microbial
mass to grow anywhere, not necessarily only within the biofilm phase. At the same time we account for
aggregation and spreading of biofilm through the interface using the degenerate and singular diffusivity
dB(B), a modification of that used in [19,20,41]; these models can also be related to phase-field models;
see comparisons in Section 8.1.

We pick two ad-hoc parameters α ≥ 2 and B̄∗ > B∗ and define the diffusivity

dB(α; B) =

dB,0

(
B

B̄∗−B

)α
, B ≤ B∗,

dB,0( B∗

B̄∗−B∗ )
α B > B∗.

(3.1)

Here the motility coefficient dB,0 ≈ 7 ×10−9 [m2/day], which is very small (about 10−5 smaller than the
molecular diffusivity dm ≈ 2× 10−4 [m2/day]). This formula modifies dB(B) proposed in [19,20,41] to
be nonsingular on [0, B∗]; see more on dB and the connection to phase-field models in Section 8.1.
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Table 2. Overview of selected model classes and data sources, with a focus on the spatial
scale L, model type, the number K of distinct microbially active species. The model classes
(i)–(v) are discussed in detail in Section 8.1.1–8.1.5, respectively.

Model and reference Scale L # active species # nutrients
Experimental data on |Ωa |= O(10s[µm]), 1 ≤ s ≤ 2.
[28, 30] interface L = O(10[mm]) K = 1 > 1
(i) Discrete (IbM, CA) and hybrid models [23, 31, 42–45]

interface d = 2, 3 L = O(1[mm]) K = 1 1
[23] interface d = 2 L = O(1[mm]) K = 2 > 2
(ii) Phase field models for bio-gel mechanics, and calcite precipitation [2–5]

d = 2 L = O(1[mm]) K = 1 10
(iii) Osmotic pressure with advective motion of interface [21, 26, 46]
[26] interface K >> 1 > 1
[21] pore-scale L = O(1[µm]) K = 1+EPS 1
[46] core-scale L = O(0.1[mm]) 1
(iv) Singular diffusion models
[20] interface, 1d K > 1
(v) Variational inequality models
[17, 25] d = 1, 2, 3 L ∈ [10−2, 1][mm] K = 1 1
Model in this paper any d any L K > 1 1

We present our model in two variants: unconstrained and constrained in Section 3.1. They are
compared in Section 3.2 and blended in an adaptive model presented in Section 3.3 in which the
constrained model serves as an auxiliary practical algorithm. In Section 3.4 we present examples in 2d
pore-scale geometry with focus on length scales.

3.1. Unconstrained and constrained models

Consider a fixed B̄∗ > B∗, and a given α. We state first the unconstrained model which we annotate
with subscript ◦. Its main feature is the fact that the diffusivity dB is singular as B ↑ B̄∗ > B∗ and
degenerate dB ↓ 0 as B ↓ 0, but bounded as long as B ≤ B∗.

P◦: (unconstrained nonsingular): given α, dB(α; B) by (3.1), solve (2.8). (3.2)
Numerical solution: at every tn, solve (2.12) written as F◦(α; Bn

h,N
n
h ) = 0.

The solution B(x, t) spreads fast as B ↑ B̄∗with the strength depending on α, and B cannot increase past
B̄∗. While the model is robust since the diffusivity dB is bounded when B ≈ B∗, there is no mechanism
ensure that the solution B satisfies (2.4).

Introducing a constraint. In [17] we postulated a modification of (2.8) with an explicit constraint
enforcing (2.4) using the operator ∂I(−∞,B∗], the subgradient of the indicator function I(−∞,B∗] which is
zero on (−∞, B∗] and equals ∞ outside this set. The operator ∂I(−∞,B∗] acts as a constraint operator
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which enforces that B(x, t) is in its domain, i.e., that (2.4) holds. Such models are known as parabolic
variational inequalities. With additional coarsening terms these give Allen–Cahn (rather than Cahn–
Hilliard) phase evolution models.

In practice ∂I(−∞,B∗](B) is replaced by a Lagrange multiplier; in a smooth phase field model it can
be replaced by a penalty function. This is a well-known and well-studied construction known as
variational inequality [47–49], and we refer, e.g., to [50] for its numerical analysis. The model reads

∂tB − ∇ · (dB(B)∇B) + ∂I(−∞,B∗](B) = rB(B,N), x ∈ Ω, (3.3a)
∂tN − ∇ · (dN(B)∇N) = rN(B,N), x ∈ Ω. (3.3b)

This model guarantees that the volume constraint (2.4) holds, but it might exclude some reactions that
could take place in the active layer when B ≈ B∗.

The model (3.3) is approximated by a scheme in which we modify (2.12a) to impose a constraint,
and we solve for (Bn

h, λ
n
h,N

n
h ) the stationary problem

(I + τAB
h (Bn

h))Bn
h + τλn

h = GB,n
h = Bn

h + τrB(Bn
h,N

n
h ), (3.4a)

(I + τAN
h (Bn

h))Nn
h = GN,n

h = Nn
h + τrN(Bn

h,N
n
h ). (3.4b)

The additional equation binding λn
h and Bn

h is min(B∗ − Bn
h, λ

n
h) = 0 or pointwise

min(B∗ − Bn
j , λ

n
j) = 0, ∀ j. (3.4c)

The system (3.4) is written in residual form, and is solved with semi-smooth Newton method [51]. Due
to the only piecewise-smooth character of (3.4c), the solver is expected to converge with a less-than
quadratic rate. However, with the typical time steps we use in our model, the solver takes usually
under 3 iterations. We refer to the finite element analysis in [24, 25], with simulations testing different
variants of mildly and fast growing dB(B) other than (3.1).

We summarize the constrained model annotated with the subscript �.

P�: (constrained nonsingular): given α, dB(α; B) by (3.1), solve (3.3). (3.5)
Numerical solution: at every tn, solve (3.4) written as F�(α; Bn

h, λ
n
h,N

n
h ) = 0.

Numerical approximations for P◦ and P� are quite robust; in addition, our tests in Section 8.3 indicate
convergence.

Remark 1. The interpretation of the action of ∂I(−∞,B∗](B) in (3.3a) is similar but not identical to the
a-priori truncation of the source term such as in the model

∂tB − ∇ · (dB(B)∇B) = rB(B,N)χB≤B∗ , x ∈ Ωn. (3.6)

In this equation the source rBχB≤B∗ prevents the growth above B∗, and is discontinuous in B. In
contrast, in (3.3a) the operator ∂I(−∞,B∗](B) acts to ensure B ≤ B∗ for all x. This is a subtle but
important difference. In particular, an implicit solver for (3.6) generally struggles with the
discontinuous character of the forcing, thereby requiring additional care. In contrast, our
approach (3.4) is quite robust.
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Table 3. Parameters and units used in numerical examples, unless stated otherwise. Values
are adapted from [20, 21, 28, 30] are given in the units as in Table 1.

Parameters and units
L [mm], T [h],
dN,w = dm = 6, dB,0 = 10−4, kN = 1.18 × 10−3, κB = 0.44, B̄∗ = 1.01B∗.

Table 4. Parameters for the sensitivity study of advancing biofilm front to model parameters
for single species simulations in Example 3.1 illustrated in Figure 3. In all cases ΓD is at
x = L, Nbd = Ninit, and dN,b follows (2.13b); The units of L [mm] and t [h]. The parameters
for case (A) are adapted from [20, 21, 28]; parameters for (A’–E) are chosen ad-hoc for
sensitivity study.

L T h τ Binit[−] Ninit[−] RN,bw κ α

(A), basic 1 3 0.01 10−3 0.5χ[0,0.1] 1 0.1 2 2
(A’), more singular 1 3 0.01 10−3 0.5χ[0,0.1] 1 0.1 2 2.5
(B), short domain 0.1 3 0.01 10−3 0.5χ[0,0.01] 1 0.1 2 2
(C), nutrient deficient 1 3 0.01 10−3 0.5χ[0,0.1] 0.1 0.1 2 2
(D), slow reaction 1 3 0.01 10−3 0.5χ[0,0.1] 1 0.1 1 2
(E), easy penetration 1 3 0.01 10−3 0.5χ[0,0.1] 1 1 1 2

3.2. Illustration and comparison of nonsingular constrained and unconstrained models

We now illustrate the main features of the nonsingular diffusivity models and sensitivity to
parameters. We start with a 1d example which we call “basic”.

Example 3.1. Let Ω = (0, L) model a “tube”, and imagine am impermeable “wall”at x = 0. The tube
contains a set of microbes initially with B ≈ 0.5B∗ in [0, 0.1] close to x = 0. For B, we use Neumann
no-flux conditions also at x = L, and set B(x, 0) = Binit(x) with Binit depending on a case. For N, we use
Dirichlet condition at ΓD : x = L. We set Ninit(x) = const = Nbd = N |ΓD on ΓD relative to kN ≈ 2×10−3.
In particular, the case Nbd to be 1, 0.1, . . . , with the first for nutrient-rich environment, and the smallest
values for a nutrient-deficient environment. We also set κB = 0.44, but we vary κ = O(1) depending on
the case. The data is in Tables 3 and 4.

We apply both the unconstrained model (3.2) dubbed as “no λ” (without Lagrange multiplier)
and (3.5) dubbed “with λ” (that is, with constraints implemented with Lagrange multiplier λ). In
Figure 3 we present the profile of biomass as well as of the decaying nutrient amount at t = T .

To describe the dynamics of spreading, we also plot γ(t) =|Ω∗(t) |, the thickness of biofilm domain.
We see that γ(t) = 0 until B(x, t) reaches and exceeds B∗.

In (A), the biomass grows until about t ≈ 0.6 when it forms mature biofilm. After this time the
biofilm domain Ω∗ primarily grows through the interface. In the nonsingular unconstrained model (3.2)
B(x, t) grows and spreads but reaches above B∗; this happens because α is fixed and somewhat small.
The constrained model (3.5) prevents this at the expense of cutting off the reaction in Ω∗, resulting in
smaller thickness γ(t) compared to the unconstrained case. The front γ(t) is approximately equal to
the thickness of Ωb, and it propagates essentially linearly in time, i.e., dγ

dt (t) ≈ const, up until about
t ≤ T = 2 when the front reaches about half of the domain and benefits from higher nutrient supply.
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Next we study the dependence of the propagation of the biofilm front to parameters and to the
difference between the constrained and unconstrained models. The basic case (A) is compared to
cases (A’,B,. . . E). In particular, we study the effect of α in A’, the length of the domain i.e., more
nutrient availability in (B), and nutrient deficiency in C. In D we consider slow reaction rate, and in E
we consider effect when diffusivity dN is not altered by the presence of biofilm and thus nutrient can
propagate more into Ωb. With some parameters in cases (A–E) we see that the differences between
(3.2) and (3.5) are small, e.g., for large α, small κ, or small Nbd, or when L is small. The front speed
is not always constant. Overall, the difference between (3.2) and (3.5) can be significant, especially
in nutrient–abundant cases. We discuss the dependence of γ(t) on nutrient availability and the related
reduced models in Section 8.2.

3.3. New model with adaptive singularity

We summarize now the disadvantages of (3.2) and (3.5), and present an adaptive model which
improves on both. Both models use the diffusivity model (8.3) which feature an exponent α of
singularity and parameter B̄∗. To simplify the discussion we assume that the other fixed parameter B̄∗

in (3.1) is fixed and large enough so that B is never close to B̄∗.
The disadvantage of unconstrained model (3.2) illustrated in Figure 3(A) is that its solutions do not

satisfy a-priori the volume constraint (2.4) because biofilm does not spread fast enough (diffusivity is
too small with the chosen α = 2). In turn, in the same illustration we see that (2.4) is enforced as a
hard constraint in (3.5), but the presence of λ ≈ ∂I(−∞,B∗] in (3.5) limits the growth in Ω∗, thus the front
γ(t) is delayed, and (3.5) carries a modeling error whose magnitude depends on the width a(t) of active
layer Ωa. (We explored a(t) and this aspect later in Section 8.2).

At the same time we see that the “speed” of front propagation is ∝ dB(α; B)(B−0) ≤ dB(α; B) which
increases with α. Our Example 3.1 (A’) illustrates well that with larger α = 2.5 the solutions spread
faster. In addition, the solutions to (3.2) and (3.5) essentially coincide, i.e., the constraint in (3.5) is not
active. In other words, the continuum counterpart of the “shoving” of the microorganisms, i.e., of the
front spreading, seems to be in place. However, fixing the parameter α a-priori to be large leads to the
unphysical effect of the microbial mass spreading faster than it grows before it forms the mature state.
The natural question therefore is which α is most appropriate. We explore this first by trial and error in
the next example and eventually adaptively later.

Example 3.2. We follow Example 3.1 (A), but vary α to illustrate the dependence of thickness γ(t)
of the biofilm domain on the parameter α of spreading in the nonsingular unconstrained model (3.2).
We also find α(t) by trial and error at each time step to make sure the solution satisfies the volume
constraint (2.4).

The solutions are shown in Figure 4 which illustrates a very strong influence of α on spreading.
First, with α = 4, the biomass spreads faster than it grows from the initial values Binit = 0.5, thus the
threshold value B∗ is not reached until t ≈ 1.5 [h] and spreading is overpredicted. With smaller α, this
value is reached about t = 0.6 and there is less spreading. Also, for α ≤ 3 the fronts initially coincide
for unconstrained and constrained models with more-or-less constant speed of γ(t) but about t = 2
more vigorous spreading is needed to prevent constraint from being active. In this case α(t) > 2 for
t > 2 is needed.

Main idea. These observations motivate the following. We aim to find the speed of propagation

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2097–2149.



2111

Figure 3. Illustration of sensitivity to parameters of biofilm growth to parameters from
Example 3.1. Left: the biomass B(x, t) and nutrient N(x, t) at t = T , simulated with
unconstrained model (3.2) dubbed “no λ”, and constrained model (3.5) dubbed “with λ”,
for different sets of parameters called (A, A’, B. . . , E). Case A’ is also denoted Ap. On the
right we plot the corresponding thickness γ(t) =|Ω∗(t) | in time. We compare the case A to
cases (A’,B,. . . E). We show the effects of faster front propagation due to larger α in (A’),
smoother but slower front motion due to higher availability of nutrient in a small domain in
(B), and slower front due to smaller nutrient boundary value in (C). In (D) we see slower
front due to slow reaction rate, and in E higher penetration of nutrient into Ωb but without
significant impact on front speed.
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Figure 4. Dependence of thickness γ(t) on α chosen as one of {2, 3, 4}, and comparison with
α chosen adaptively with an algorithm from Section 3.3. The plot also shows the value of
α(t) found adaptively which generally increases in time.

from dB(α; ·) and the corresponding α(t) parameter adaptively “as needed” to keep B ≤ B∗. With
this approach we eliminate the limitations of both models (3.2) and (3.5): the constraint (2.4) holds
automatically for (3.2) and Lagrange multiplier in (3.5) equals 0 and does not inhibit reactions.

While seeking α(t) requires extra computational effort, the adaptive model is quite robust.
Formally, at given t, we consider the problem dubbed (P∗(t)): Find
α∗(t) = min {α(t) : the solution (B(x, t),N(x, t)) to (3.2) satisfies (2.4)}.

In the computational model, we search for the optimal αn
∗ . . . at every time step tn, and we proceed

by iteration. We seek the solution to the stationary problem (2.12a) with the dependence of the discrete
diffusion matrix AB

h = AB
h (α; Bn

h). on α made explicit. Assuming that GB,n
h is known we solve

(PB;h,n
∗ ): find αn

∗ = min(α : Bn
j ≤ B∗,∀ j) where Bn

h solves(I + τAB
h (α; Bn

h))Bn
h = GB,n

h . (3.7)

Two remarks are in order. First, we do not have a proof that the algorithm we will propose for (3.7)
works, but we demonstrate the idea and the algorithm in Section 3.3.1. Second, when GB,n

h depends on
Bn

h and Nn
h , we must iterate further. This iteration along with an efficient use of the constrained model

are discussed later in Section 3.3.2.

3.3.1. Illustration of α–adaptivity on a scalar example

Consider some g ∈ R and someA(α; p) with values in R and an analogue Ps
∗ of (3.7)

(Ps
∗): find α∗ = min{α : p ≤ 1} where p solvesA(α; p) = g, (3.8)

in which p replaces Bn
h. Let α0 ≥ 0 and letA(α; p), α ∈ [α0,∞); p ∈ [0,∞) be a given smooth positive

function strictly increasing in both variables, and such that for a fixed p > 0, limα→∞A(α; p) = ∞. Let
also g > A(α0; 0). From monotonicity of A which implies injectivity, and since g is in its range, the
problemA(α; p) = g is uniquely solvable.

Example 3.3. We pick A(α; p) = p afun(p, α) where afun(p, α) = 1 + 0.05( p
1.3−p )α, and g = 1.5. We

illustrate the problem Ps
∗ in Figure 5.
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Figure 5. Illustration for Example 3.3. We set A(α; p) = p afun(p, α) where afun(p, α) =

1+0.05( p
1.3−p )α, and plot afun(p, α) on the left for a few selected α. We pick g = 1.5 and seek

those α for which the solution p toA(α; p) = g satisfies p ≤ 1, and the black square indicates
the intersection of p = 1 and g = 1.5. From illustration we see α = 2.2 and α = 2.6 work,
but we seek minimum of these α which can be found by algebra to by substituting p = 1
and solving A(α; 1) = 1.5 to get α ≈ 1.912. Right: we proceed by trial and error seeking
p, λ and α using reformulation (3.9) and we find α = 2.07. We illustrate λ(α) = g − A(α; 1)
depending on the guesses α, and the iterates of algorithm α(m) are marked with diamonds in
magenta color. Now the black square indicates the true solution when α = α∗ = 1.912. The
iteration stops when m = 5 and α(m) = 2.074; this α(5) overpredicts α∗.

We discuss now the the algorithm to solve Ps
∗. Let α, g be given and p = p(g;α) solveA(α; p) = g.

From implicit function theorem and monotonicity of A we see that dp
dα < 0. Thus (3.8) has a solution

α∗ characterized by A(α∗; 1) = g. However, finding α∗ directly may not be feasible, and we proceed
by iteration starting with α0. We set up an auxiliary problem for Ps

∗

Find (p, λ): A(α; p) + λ = g, min(1 − p, λ) = 0. (3.9)

Now, for a given α the nonlinear complementarity constraint in (3.9) [51] can be written out as (p, λ) :
p ≤ 1, λ ≥ 0, (1 − p)λ = 0 and its solution is given as λ = max(0, g − A(α; 1)). Thus dλ

dα ≤ 0 as visible
in Figure 5, therefore increasing the guesses α(m) may eventually produce λ = 0. We start with some
initial guess α(1) = α0, and proceed with α(m) for m = 1, . . . until done. In each iteration m we solve
(3.9) as an auxiliary step

Find (p(m), λ(m)): A(α(m), p(m)) + λ(m) = g, min(1 − p(m), λ(m)) = 0. (3.10)

If | λ(m) |< tol at some iteration m = m∗, then we are done and α∗ = α(m∗). If not, we continue with a
new α(m+1) =α(m) + ∆α(m). We set ∆α(m) = ηα(m) with η = 0.2 which works well for this example. The
iterates are shown in Figure 5, along with an illustration of the residual g −A(α(m∗); 1), which matches
λ(m) until we reach convergence. The final iterate α(m∗) overpredicts α∗. To refine the search and iterate
further between α(m∗−1) and α(m∗) one can proceed by binary search (bisection) on g−A(α, p(α)) which
we just bracketed at α = α(m∗−1) and α = α(m∗).
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Figure 6. Illustration from Example 3.4 of finding α(t) adaptively. Top: the value of Λ
(m)
◦ (t1)

depending on α(m) for an artificially contrived example at the first time step, with κ = 20
and Binit = 0.99χ[0,0.1]; note qualitative similarity to that in Figure 4. Middle and bottom:
comparison of finding an adaptive α∗(tn) with the non–singular unconstrained model Ph,n

∗,◦

(3.11) dubbed “no λ”, and with the approximate time–lagged version P̄h,n
∗,� of constrained

problem in (3.12), dubbed “with λ”. Plotted are parameter α (left) and the thickness γ(t)
(right) when starting with α0 = 2 and α0 = 4. We see that the algorithm overpredicts the
front if α0 = 4 but that both algorithms find essentially the same values a(t).
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3.3.2. Algorithms for the α–adaptive biofilm model

The algorithm for Ps
∗ is extended next to solve the biofilm model. For the unconstrained nonsingular

model (3.2) we restate the search for α as follows

(Ph,n
∗,◦) : Find αn

∗,◦ = min{α : F◦(α; Bn
h,N

n
h ) = 0 : (3.11)

so that Λ◦(α; Bn
h) =

∫
Ω

(B∗ − Bn
h(x, t))+dx ≤ tol}.

The auxiliary scalar Λ◦(α; Bn
h) measure the excess of Bn

h above B∗ in the unconstrained model.
Now we find it useful to exploit the constrained nonsingular problem (3.5). Here we want to keep

the Lagrange multiplier as small as possible so that the constraints are not actually active, or are active
only at a few points up to some tolerance, this reactions are active. The search for the best α is thus
stated as

(Ph,n
∗,�) : Find αn

∗,� = min{α : F�(α; Bn
h, λ

n
h,N

n
h ) = 0 (3.12)

so that Λn
� =

∫
Ω

λn
h(x, tn)dx ≤ tol}.

Here the auxiliary scalar Λ�(α; Bn
h) measures the reactions inhibited due to the constraint. The

quantities Λ◦ and Λ� for the same data are qualitatively similar but not identical due to the nonlocality
mentioned earlier.

Now, each Ph,n
∗,◦ and Ph,n

∗,� can be solved by iteration similarly as proposed for (3.10). Using the
common symbol Ph,n

∗ for both, the following iteration tries the value α(m) and finds Λn,(m) (unified
notation of Λn for Λn

◦ and Λn
� and F = 0 in place of F◦ = 0 or F� = 0), with

Given a guess α(m), solve for (Bn,(m)
h ,Nn,(m)

h ) so that F = 0, (3.13a)
Calculate Λn,(m). Check if Λn,(m) ≤ tol. (3.13b)

If Λn,(m) ≤ tol, we are done. Otherwise, we set the new guess α(m+1) = α(m) + ∆α(m) with ∆α(m) based on
Λn,(m). We iterate until we have found the optimal αn,(m∗)

∗ for some m = m∗.
The algorithm works quite well, but requires a few iterations. If this is not practical, one can also use

an approximation (P̄h,n
� ) in which we do not iterate for αn

∗, but rather use a time–lagged value guided
by the previous time step Λn−1

� obtained with the constrained model. We illustrate and compare the
algorithms Ph,n

∗,◦ and P̄h,n
� in the next example.

Example 3.4 (Finding αn
∗ adaptively and ᾱn by time–lagging). First we construct a somewhat contrived

case based on Example 3.2 with Binit = 0.99 and κ = 200. With these, the growth is vigorous and
requires α1

∗ > α0 = 2 already in its first time step. We see that the behavior of Λ◦(α) is similar to that
in the scalar case in Example 3.3 and Figure 5.

Next we revisit Example 3.2 to present the correlation between the variable α(t) and the changes
in the thickness γ(t). We also compare the results from Ph,n

◦ dubbed “no λ” and those for P̄h,n
� dubbed

“with λ”.

As shown in Figure 6 the values αn
∗,◦ found by Ph,n

◦ are not uniformly increasing in time, because with
small time steps even a small α0 suffices until reactions build Bn

h up locally before (2.4) is violated. This
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feature explains the success of the very inexpensive algorithm P̄h,n
� whose results match closely those

of Ph,n
◦ until about t = 2, when the growth becomes very vigorous due to proximity of the Dirichlet

boundary. After t = 2 however, the thickness appears under–predicted with P̄h,n
� . In the future we plan

to improve the update αn → αn+1 based on dΛ�
dt rather than on Λ�, which seems too conservative.

Remark 2. An alternative to Ph,n
∗,◦, Ph,n

∗,�, P̄h,n
∗,� is to solve each of these not as a coupled diffusion–

reaction system, but instead by operator splitting, where each of the biofilm and nutrient parts of (3.4)
is replaced by an appropriately modified reaction–diffusion components (2.10)–(2.11). With the latter,
after B̂n

h is known from advection and reaction steps, we proceed to identify αn
∗ in a loop so as to

guarantee (2.4). This robust algorithm is applied in the multi–component case to avoid solving a large
diagonal diffusion system for K > 1.

3.4. Illustration of biofilm growth at different length scales in 2d pore geometry

In this section we present our first example in d = 2. We demonstrate the growth of biofilm using
our constrained model (3.5), and its regularized version. We choose a realistic one-pore example with
geometry as in Figure 2(c), and consider several length scales L for this geometry to illustrate the
connection between L and the time scales when the pore is filled up.

Example 3.5 (Biofilm growth pattern in a nutrient-rich porous medium). We compare the biofilm
growth patterns in Ω = (0, L)2[mm2] for L = {0.01, 0.1, 1}, with other parameters as below, with
dm = O(1).

B∗ B∗ Binit Ninit = Nbd dB,0 dN,w RN,bw κ α

1 0.9B∗ 0.6B∗χΩb(0) 100 10−4dm dm 0.1 2 2

Figure 7 shows the evolution of biofilm growth. As expected, the micro–pores gets filled up faster
than the macro–pores. Qualitatively, the pattern of formation is independent of L and T .

Next we compare the PVI model (3.5) with its smooth variant motivated by (ii) from Section 8.1.2.
Smooth phase field approximation may be advantageous since there is a large body of literature on
computational schemes and their analyses.

We fix B∗ = 1, and consider a smooth approximation of (3.5) in which we fix N ≈ const >> kN , and
replace the constraint operator ∂I(−∞,B∗] by a smooth penalty term. More precisely, we recall the Allen-
Cahn model ∂tB−∇ · (d∇B) + s(B3 − B) = 0 in which d = const, and s = const together controlling the
width of the interface region between the stable equilibria B = −1 and B = 1. This model is a smooth
approximation to ∂tB−∇ · (d∇B) + ∂I[−1,1] − sB = 0. With nonnegative initial data and under Neumann
boundary conditions, the Allen-Cahn model and the constrained model analogous to (3.5) are expected
to produce solutions which eventually converge to B = 1. Now in the analogous model (3.5), under
the assumption of abundant nutrient we can set the parameter s ≈ κκB ≈ 1, and consider the nonlinear
diffusivity version of Allen–Cahn model given by

∂tB − ∇ · (d̃B(B)∇B) + B3 − B = 0, x ∈ Ωn. (3.14)

(See (8.1) with g(φ) = φ − φ3). This class of methods when dB = d = const is well known [52–54]. We
find that instead of singular and degenerate diffusivity dB given by (8.3), we must use a less degenerate
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L = 0.01; t = 0 L = 0.01; t = 0.06 L = 0.01; t = 0.7 L = 0.01; t = 1.048

L = 0.1; t = 0 L = 0.1; t = 0.2 L = 0.1; t = 0.7 L = 0.1; t = 1.048

L = 1; t = 0 L = 1; t = 0.7 L = 1; t = 1.1 L = 1; t = 1.32

Figure 7. Pore–plugging with biofilm in a nutrient–rich environment for Example 3.5 using
the nonsingular constrained model at the selected time t[h] as shown. Image in the right
column is at the final time shown when the pore is plugged up. (Top) micro-pore L = 0.01,
(middle) meso-pore L = 0.1, and (bottom) macro-pore L = 1, in [mm], as labelled on the
leftmost panel. We see that in the micro-pore the biomass spreads first and then grows, while
the opposite is seen in the macro-pore case, with the meso-pore being intermediate.

version guarding against the unstable equilibrium B = 0 with

d̃B(α; B) =

dB,0

(
1 +

(
B

B̄∗−B

)α)
, B ≤ B∗,

dB,0

(
1 + ( B∗

B̄∗−B∗ )
α
)
, B > B∗.

(3.15)

Example 3.6 (Biofilm growth pattern in a nutrient-rich porous medium using smooth phase field
model). We consider (3.14) discretized as described in section 2.5 using CCFD with harmonic
averages for the diffusivities at cell edges, and use parameters as in Example 3.5.

We compare the biofilm growth pattern from this model given in Figure 8 with that in Figure 7. We
see good qualitative agreement between the models, but also more diffuse profiles, as expected, and
different time scales.

With both models, in the micro–pores L = 0.01 [mm] the biomass growth is dominated by (fast)
diffusion; Ωb spreads until it fills Ωn and then B increases. In the macro-pores L ≥ 1 [mm], the
sequence is almost opposite: B increases fast locally prior to, and during the expansion of Ωb. These
effects are somewhat more pronounced for (3.14) than for the biofilm growth modeled by (3.5).

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2097–2149.



2118

L = 0.01; t = 0 L = 0.01; t = 0.06 L = 0.01; t = 0.7 L = 0.01; t = 2.4

L = 0.1; t = 0 L = 0.1; t = 0.2 L = 0.1; t = 0.7 L = 0.1; t = 2.5

L = 1; t = 0 L = 1; t = 0.7 L = 1; t = 1.4 L = 1; t = 6.7

Figure 8. Solutions of the smooth approximation to the nonsingular constrained model in
one–pore geometry and a nutrient–rich environment using (3.14) for Example 3.6 at selected
times as shown. As in Figure 7, the images in the right column depict the first time when
biofilm fills the pore, i.e., the first time B(x, t) = 1 in all of Ωn. Comparing with Figure 7, we
observe the models used in Examples 3.5 and 3.6 have strong qualitative agreement but differ
slightly on many aspects including the width of the interface and time needed for the biofilm
to fill the pore. Top: micro-pore L = 0.01. Middle: meso-pore L = 0.1. Bottom: macro-pore
L = 1. L in [mm] and t in [h].

4. Modeling flow in porous media with biofilm at the pore–scale and at Darcy scale

Now we consider biofilm growth in porous media at the pore–scale, with the pores filled with
ambient fluid which flows. The simulations of flow at pore–scale, i.e., at complex pore–scale
geometries are important for the qualitative and quantitative prediction of the macro–scale properties
when the geometry changes, e.g., due to precipitation or dissolution, phase transitions, or biomass
growth. We recall the classical connection between the Stokes flow in a periodic pore–scale geometry
and Darcy permeability kΩ, established in [55], as well as the classical formula by Kozeny–Carman
equation [56] which approximates porous medium geometry as a bundle of interconnected tubes, and
gives kΩ = kΩ(φΩ) as a function of the porosity φΩ. With the wide availability of pore images, and
abundant calculations of kΩ from flow using these images, the assumptions on periodicity or
channel–like geometry as in Kozeny–Carman assumptions seem to be less relevant than in the past;
see, e.g., recent analysis in [37] for a variety of granular, volcanic and other porous media which show
that the algebraic correlations for kΩ = kΩ(φΩ) are not universally close approximations.
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The relevant body of literature is now substantial. In a typical workflow one proceeds image
→ DNS → kΩ, where DNS means “Direct Numerical Simulations”, with flow simulations over a
representative elementary volume (REV) extracted out of a voxelized image, followed by a numerical
homogenization or upscaling to the permeability kΩ. A recent systematic study with a review of
scales, geometrical assumptions, and approximations for single–phase flow was undertaken
in [57, 58]. In our work [33, 34, 59, 60] followed by [17, 27, 61] we established techniques to obtain
flow rate dependent anisotropic kΩ for an non–Darcy model for synthetic and for realistic pore
geometries; we also considered numerical accuracy and efficiency as well as reduced models for large
scale evolving pore–scale geometries; see also recent extensions in [62].

In this paper we require a robust and efficient flow model which works well for an essentially
stationary flow at low Reynolds numbers and capable of working in complicated pore–scale geometries
such as that in Figure 2 across the different length scales. We focus on the flow in the presence of
biofilm; see Tables 5 and 6 for overview of models and upscaling. The flow models range from Navier–
Stokes models extended by inclusion of additional stress tensor in [2,3] through Navier–Stokes models
for large velocity in [17] and Stokes and Brinkman flow models in [21, 46]. For biofilm, validation
and experimental insight are difficult due to the numerous challenges of imaging microbial growth in
synthetic or real porous media [17, 34, 39]; sometimes the best one can do is to study the upscaled
properties such as kΩ as in [17] with the flow confined to Ωn \Ω∗b, i.e., an impermeable biofilm. In this
case the flow ceases when some pores are plugged with biofilm, while full clogging is not a universally
realistic scenario.

In this paper we consider partially permeable biofilm phase with a heterogeneous Brinkman flow
model which allows (some) flow through the pores filled with biofilm, and is an “interpolation” between
Stokes flow and Darcy flow. More generally, Brinkman flow is applicable, e.g., for porous media with
large cavities or more generally with large porosity [63, 64].

4.1. Heterogeneous Brinkman flow model at pore–scale

Brinkman model augments the well known Stokes model with the Darcy resistance term [65, 66].
We present its heterogeneous version

−µ∆u + µk−1
bx (x)u + ∇p = f , x ∈ Ωn, (4.1a)

∇ · u = 0, x ∈ Ωn, (4.1b)

where u is the velocity, p is the pressure, and the resistance term ∼ k−1
bx related to the inverse of

permeability is locally defined and kbx(x) = kbχΩ∗b
(x). Of interest are the extreme cases when kb ↓ 0,

i.e., the obstacle region Ωb is impermeable, and when kb ↑ ∞ and the flow in the entire Ωn is essentially
of Stokes type. We note that this means that kbx implicitly depends on B(x, t). One could expand this
dependence to make it vary with B or with the amount of EPS, which would make kbx vary smoothly
with x, but we have not done this. The model (4.1) is stationary but with time–dependent data.

We impose the no–slip condition on Γrn as well as the Dirichlet condition on the inflow Γin, and
natural outflow conditions on Γout, both portions of ∂Ωn, respectively

u|Γrn
= 0, u|Γin

= uD(x), and µ∇u · ν − pν = 0 on Γout. (4.1c)

In the examples we also use uD to denote the average of uD(x) over Γin, and we usually set up a parabolic
inflow profile on Γin.
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Table 5. Overview of mechanisms from literature for the evolution of Ωb, and of coupled
flow models: we indicate maximum modeling capability for each class rather than annotate
all individual papers. See Section 4.1 for overview, Table 2 for other details and references,
and Sections 8.1.1–8.1.5 for more details.

Model Flow in Ωn Free Constraint biomass
and [reference] boundary on B in Ωw

(i) Discrete and hybrid no not explicit inequality
IbM & continuum cell shoving yes
(ii) Phase field models [2] yes, extended N–S diffuse yes no
(iii) Osmotic π, level–set sharp
[26] no advective, with v = −∇π

[21, 46] Brinkman in Ωb sharp equality no
Stokes in Ωw

(iv) Singular diffusion [20] no implicit property yes
(v) Variational inequality [17] N–S in Ωn \Ω∗b implicit inequality yes
Model in this paper Brinkman in Ωn implicit inequality yes

Table 6. Case studies of flow and upscaled permeability.

Reference Geometry and Scale Permeability
[26] channel
[13] channels, many–pore no
[16] thin strip (1d) yes
[21, 46] channel yes
[25] 1d & many–pore
[17] & our model channel, one–pore, many–pore yes

We acknowledge here the important analyses of the influence of shear stress between the Stokes
and Darcy domain discussed, e.g., in [67–70]; these relate to the Beavers-Joseph-Saffman interface
condition imposed at fixed interfaces such as soil–surface water interface. Instead, in our
heterogeneous Brinkman flow (4.1) we allow the permeability kbx to vary, and in which k−1

bx ↓ 0 when
B ↓ 0, such as close to the interface ∂Ωb. This is important because the “interface” between Ωb and
the “bulk fluid” may not be very well defined, and at the length scales involved we believe it is not
critical to resolve the fine details of the fluid flow normal to that interface, see, e.g., the comments
in [21]. In the end, the Brinkman model we use in this paper improves on the use of Stokes flow
outside Ω∗b with no-slip condition as in [17], and we defer a more detailed study to future work.

4.2. Illustration of flow with Brinkman model and upscaling

We describe now the upscaling technique described in [34, 71] in which kΩ is found as a
proportionality constant between the averages of velocity and of pressures and allows to measure how
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kb = 0 kb = 10−5[mm2] kb = 10−4[mm2] |u(L/2, y) |

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 9. Illustration of velocity profiles for Example 4.1 for L ∈ {0.01, 0.1, 1} and kb ∈

{0, 10−5, 10−4,∞}: (Top) L = 0.01. (Middle) L = 0.1. (Bottom) L = 1. See Table 7 for data.
Figures (d), (h), and (l) show the velocity profiles at the center of biofilm obstacle |u(L/2, y) |.

the presence of biofilm may change the macro–scale properties of porous media. The flow and kΩ

depend on the resistance k−1
bx of of the obstacle in (4.1). While kbx could be found experimentally, the

values reported in literature vary. In [21, 46], kb = 10−9 or kb = 10−10 [m2] were used and [72]
consider kb ∈ [10−15, 5 × 10−9][m2]. We illustrate this dependence next in Ω = (0, L)2 [mm2] with the
bio–gel of permeability kb.

Example 4.1. Consider Ω = (0, L)2 [mm2] with bio–gel in the center as in Figure 2(a) with varying
kb. The fluid flows from left to right, with average of the inflow values uD = 36 [mm/hr]. After (u, p)
is found, we compute kΩ of Ω by the volume averaging from [34]. We vary L and kb while fixing other
parameters.

The results are shown in Figure 9 and Table 7. The transition of the flow from inside to the outside
of Ω∗b over a large range of choices of L, kb is smooth which suggests that the model (4.1) and our
implementation are robust, but more analysis is needed (underway).

Furthermore, the flow depends significantly on L and kb, as expected; see, e.g., the plots of
| u(L/2, y) | in Figure 9. In a small pore with L = 0.01 [mm], the flow streamlines and velocity
magnitude appear as if there was no obstacle, but for larger pores the flow is directed partially outside
the obstacle, and with L = 1 [mm] the flow behaves as if the obstacle was impermeable. In Table 7 for
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Table 7. Data and results for Example 4.1. (a–c) micro-pore, (e–g) meso-pore, (i–k) macro-
pore.

Data Results
L[mm] kb[mm2] kΩ[mm2] ‖|u |‖∞ [mm/hr]

(a) 0.01 0 1.75 × 10−7 1.58 × 102

(b) 0.01 10−5 7.8 × 10−6 3.42 × 10−1

(c) 0.01 10−4 5 × 10−6 3.37 × 10−1

(e) 0.1 0 1.75 × 10−5 1.58 × 102

(f) 0.1 10−5 3.17 × 10−5 5.87 × 10−1

(g) 0.1 10−4 1.28 × 10−4 3.08 × 10−1

(i) 1 0 1.75 × 10−3 1.58 × 102

(j) 1 10−5 1.69 × 10−3 9.84 × 10−1

(k) 1 10−4 1.45 × 10−3 8.94 × 10−1

intermediate L = 0.1 [mm] we see that as kb increases, the resulting kΩ → kb, but the effect for the
large pore is less significant for the kb we used.

Another class of approaches direct their focus on thickness of biofilm as an independent variable
rather than on B itself; this is essentially a “model reduction” which we illustrate now.

Example 4.2. Consider flow in a channel Ω = (0, 1.5) × (0, 0.1) [mm2] with biofilm growing next to
the walls; see Figure 2(b). While this study for kb = 0 and kb ↑ ∞ can be reduced to the Poiseuille
flow example [33]. When kb > 0 there is additional flow through the biofilm layer, and we compare the
variation of Darcy permeability kΩ with different kb ∈ {0, 10−6, 5 × 10−6, 10−5, 10−4, 10−3,∞} [mm2],
where w represents the assumed width of one side of biofilm in this channel of height H = 0.1 [mm].

Figure 10 shows that, as expected, kΩ decreases with w/H ↑ for all kb < ∞. As kb ↑, the biofilm
presence affects the flow less, as expected. Our result for the impermeable case aligns well with the
Thullner’s permeability–porosity correlation model [73].

Furthermore, motivated by recent work in [13] we illustrate flow pattern through converging
channels filled with biofilm of different widths; here the flow could be coupled with a reduced model
for γ(t) ≈ w(t) similar to that we explain in Section 8.2. Overall, the reduced models are successful
only within a certain range of parameters.

Example 4.3. We consider flow from left to right through three channels that converge together as
illustrated in Figure 2(e), with Ω embedded in (−L, 2L) × (0, L) [mm2]. The width of two diagonal
channels are 0.18L, the middle channel is 0.09L, and the merged channel is 0.404L thick. Two diagonal
channels are filled with biofilm next to the walls of different widths, 0.045L and 0.043L for top and
bottom channels, respectively; see Figure 2(e). We use L = 1, uD = 3.6 [mm/hr], and solve for flow
without obstacles, i.e., kb = ∞. Then we compare calculated kΩ to the cases with biofilm of kb = 0 or
kb = 10−3 [mm2].

Results for Example 4.3 are shown in Figure 11 and Table 8. Figure 11(a) with kb = ∞ illustrates
symmetric flow behavior with highest flow rate through the wider channels. When partially permeable
biofilm of different widths is present, we lose the symmetric behavior. Since 83% of lower diagonal
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Figure 10. Permeability kΩ = kΩ(kb; w/H) from Example 4.2 depending on the width w
of biofilm layer relative to the channel width H and on the biofilm phase permeability. For
reference we present the match with Thullner’s model from [73], with Thullner parameter
b = 1.81.

(a) (b) (c)
Figure 11. Flow through channels filled with biofilm of different width for Example 4.3 for
(a) kb = ∞, (b) kb = 10−3 [mm2], and (c) kb = 0. The width of the middle channel is about
half of that for other channels.

Table 8. Results for converging channels in Example 4.3: permeability kΩ and maximum
flow rate ‖|u |‖∞ depending on kb.

Parameter/Result Value
kb [mm2] ∞ 10−3 0
kΩ [mm2] 2.6386 × 10−3 1.4765 × 10−3 8.6665 × 10−4

‖|u |‖∞ [mm/hr] 13.82 17.26 32.98
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channel is filled with biofilm while only 50% of upper diagonal channel is filled, we see more flow
goes through upper channel than the lower one. Also, the upper diagonal channel permits more flow
than the middle channel due to the difference in channel widths. With kb = 0, the width of upper
diagonal and middle channels are the same 0.045L, but we see higher flow traffic in the middle than
upper diagonal channel because we set the parabolic inflow condition uD(−L, y). We also confirm that
kΩ ↓ as kb ↓.

After substantial further testing (not shown) we believe our flow model is robust and ready to be
coupled with the full biomass–nutrient dynamics. This will be done in Section 5.

5. Coupled flow and transport with reaction and upscaling

Now we discuss the coupling of the flow model (4.1) and biomass–nutrient model (3.5), both written
in domain Ωn as is done usually in porous media, in every time step

flow→ advection→ reaction–diffusion.

See, e.g., [36, 74] for the workflow.
We choose h to adhere to the voxel resolution of the image, and to ensure reasonable accuracy

of the biofilm layer. In particular, we typically choose h = O(10−2L). We also choose τ to satisfy
at least the CFL condition, as well as to obtain reasonable accuracy and resolution of the nonlinear
reaction–diffusion dynamics. A fully coupled model requires that we solve for the flow at many time
steps. Since calculating u at every time step is computationally expensive, we update the flow u only
every so many time steps. For example, in a complex porous medium Ω = (0, 1)2 [mm2] illustrated in
Figure 2(d) with h = hx = hy = 0.005 [mm], and τ = 10−3 [h] with flow Pe ≈ 30, we observe that
there is little change in the flow pattern for 0.2 [h]. Thus, for our examples we choose τ = 10−2 [h] and
compute u at every 10τ = 0.1 [h], so that u(x, t) = u(x, tn) for t ∈ [tn, tn+10).

Now we move to the coupled flow and transport examples; we aim to improve on those from [17]
by including permeable biofilm and adaptive singularity without inhibiting reactions. We focus now
on whether an enhanced presence of nutrient due to the flow in Ωb enhances the ability to model the
growth and spreading of the biofilm. The answer very much depends on the length and time scales at
which this is evaluated. Since dN,w >> dN,b, the penetration of nutrient depends on the length scale; see
more details in Section 8.2. At large L, the partially permeable biofilm phase allows more nutrient to
penetrate through Ωb through advection. At small L, i.e., in micro-pores, the nutrient penetration in Ωb

is more abundant. The biofilm growth pattern and reaction time depend significantly on the availability
of N.

We start with an example in a small channel (micro–pore) in Example 5.1 and study the coupled
effects of flow and biomass-nutrient. Next we consider a many-pore example.

In a micro–pore with L = O(60 [µm]), in order to see the evolution of nutrient penetration in
Ω∗b, we must consider very small time scale and small τ. At high flow rates some microbes within
x : B(x, t) < B∗ can be carried away by advection before nutrient arrives which may result in limited
biomass growth in that particular pore.
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Initial biomass domain

Velocity profile |u(x, t) |

Evolution of biofilm B(x, t)

Evolution of Nutrient distribution N(x, t)

t = 1.44[s] t = 2.88[s] t = 4.32[s]

Figure 12. Illustration for Example 5.1 in a study of a micro–channel. Top: geometry
of the domain including the initial biomass domain and the information about the
boundaries. Bottom: evolution of velocity, biofilm and nutrient profiles at selected time
t ∈ {1.44, 2.88, 4.32} [s].

Example 5.1 (Coupled flow and biomass–nutrient dynamics, micro–pore geometry). We consider the
biofilm growth and nutrient consumption coupled to the flow in a micro–channel Ω = 65 × 130 [µm2].
We use the following parameters:

ρBB∗ [kg/m3] B∗ Binit Binlet Ninit ρN Ninlet [kg/m3]
10−4 0.9B∗ 0.6B∗χΩb(0) 0 0 10−2

dB,0 [mm2/h] dN,w RN,bw kN , κ, α uD [mm/h] kb [mm2]
0.1 dm 0.1 2 0.5148 10−5

The velocity, biofilm, and nutrient profiles at selected time t ∈ {1.44, 2.88, 4.32} [s] are shown in
Figure 12. We see that since the nutrient enters from the left, there is less microbial growth near the
right boundary, and biomass and biofilm grow initially faster on the left side than on the right side.
This lack of symmetry disappears later.

In our next example we compare biofilm–nutrient dynamics under the conditions when Ωb is
permeable and impermeable. We consider a complex “many–pore” geometry shown in Figure 2(d).

Example 5.2 (Coupled flow and biomass–nutrient dynamics, many–pore geometry). Assume
parameters as follows

B∗ B∗ Binit, Binlet Ninit,Ninlet dB,0 dN,w,RN,bw kN , κ α uD

1 0.9B∗ 0.6B∗χΩb(0), 0 0, 1 3.6 × 10−4 dm, 0.1 2 2 0.1
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with Ω as in Figure 2(d). Consider dynamics of biofilm growth and nutrient consumption when the
nutrient is injected from the left boundary of Ω. Assume the natural outflow boundary conditions for
B and N on the right boundary, and no–flow conditions on top and bottom. Consider two cases when
kb = 0 or when kb = 10−4 [mm2].

t = 0 t = 0.1 t = 1, kb = 0 t = 1, kb = 10−4

Figure 13. Example 5.2 biofilm-nutrient dynamic in complex geometry. Top: B(x, t),
middle: N(x, t), and bottom: | u(x, t) |, as indicated in the leftmost panel. Two simulation
cases are shown when kb = 0 (biofilm is impermeable), and kb = 10−4 (biofilm is partially
permeable). From left to right the columns show the initial condition at t = 0, and the results
at t = 0.1 (essentially identical for impermeable and permeable biofilm), and the results at
t = 1 separately for impermeable and permeable biofilm. The regions indicated with ellipses
at t = 1 show the differences in biofilm growth depending on kb. The units are as usual
L [mm], t [h].

Table 9. Results for Example 5.2 at t = 1 [h].

kb [mm2] kΩ [mm2] ‖|u |‖∞ [mm/hr]
0 3.0059 × 10−5 1.6391
10−4 5.6532 × 10−5 1.2816

From the initial state shown in Figure 13 (left) at t = 0, some of the microbes at low concentrations
are first transported by advection before nutrient arrives, and are transported away before reaching
more mature phase with B ≈ B∗ as you can see in Figure 13 (second column) at t = 0.1, with the
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results almost identical to the case kb = 0 and kb = 10−4. However, once they reach some of the pore
throats with low flow rates |u |, and the nutrient becomes available, they grow and reach mature state.

The results at t = 1 look similar at glance, but they show different biofilm formation patterns. For
example, we focus on two regions as indicated by ellipses and located in the bottom left and top right
in Figure 13 for kb = 0 to kb = 10−4. At t = 1 [h], the nutrient has reached steady state and fully
penetrates the entire domain Ω.

We also show the permeability of this entire volume in Table 9. The flow rates are lower when
kb > 0, but overall the permeability kΩ is higher for the case of partially permeable biofilm.

6. Model for multiple microbial species: cooperation and competition and EPS

Now we generalize the preceeding biomass–nutrient dynamics models to describe multiple
interacting microbial species. We consider several microbial species present in Ωn. Each may have
different roles and rules. We enumerate the species as B1, B2, . . . BK , recall B = (Bk)k and B =

∑
k Bk.

Our model for the growth and spreading is the reaction–diffusion system (2.8) with the nonsingular
diffusivity (3.1) and an adaptive α(t) as in Section 3.3. We recall that the robust model either finds
α(tn) by iteration as in (3.13) with nonsingular unconstrained or constrained model, or uses αn found
by time-lagging.

There is no inherent difficulty in numerical solution with multiple species which follows the
algorithm outlined in Section 2.5. However, the key challenge is to show how to model and
implement volume constraints when K > 1. For large time steps, we find that imposing nonnegativity
constraints is useful.

First we make precise the reaction and growth terms in Section 6.1. Since K > 1, we must specify
how to handle the constraint on the sum of the species

∑
k Bk ≤ B∗ rather than on the individual species;

this is done in Section 6.2. We want to allow for individual variance of “shoving mechanisms” which
are discussed in the literature; this is done by varying the diffusivities and the constraints.

The numerical solutions are denoted by Bn
k,h and Bn

h = (Bn
k,h)k, with Bn

h =
∑

k Bn
k,h. For large K,

the step-lagged or time-lagged operator split version (2.10) followed by (2.11), with inner iteration for
accuracy, is easier to control than a monolithic nonlinear solver for (2.12).

6.1. Multiple species and rates

Several modeling questions arise for multiple species in the literature. Some authors [21, 46]
distinguish between cells that are metabolically active and dead. Additionally, some authors recognize
the “detached cells” which presumably travel as colloids in the water phase. In this paper and in our
model we do not need to distinguish between these categories since Ωb can be equal to Ωn. We follow
the focus of [20, 23, 31, 45] on metabolically active cells, and focus on models for EPS formation as
well as on the mechanism for “shoving”. We also relate the modeling to the efforts in [23] using IbM
and hybrid models.

EPS formation. EPS is an abbreviation for “extracellular matrix component”; which is built with
extracellular polysaccharides; see, e.g., [7] for a thorough review of different type and role of EPS
produces by different microbial species. The production of EPS is important for survival of
biofilms [23, 31, 45]. However, when K > 1 species are present, they may contribute to EPS
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production in different proportion which leads to a competition for resources, and in turn leads to
different survival rates of the individual strains of microbes. This aspect is explored in [13, 23, 31],
with the strands distinguished as cooperative (or altruistic) (EPS+) or noncooperative (or selfish)
(EPS–), and one can pursue the study of social evolution based on some assumed models and
parameters defining the competition.

As an aside, we mention that the biochemical processes which govern the classification as EPS+ or
EPS– include quorum sensing and genetic selection. Further questions include those on whether EPS
continues to form, and whether the cells continue to reproduce when nutrient is depleted, and whether
it is formed by mature cells or by “younger ones”, and whether there is a threshold of “density” of Bk

or B required for EPS production.
We aim now to demonstrate that our model from Section 3 can be extended to multiple species.

As a motivation towards this study we choose the modeling concept of cooperation and competition.
Following [23] the cooperative species is the species who contribute to the production to EPS, since
the EPS benefits all microbes equally. However, production of EPS slows down the ability of species
to reproduce, thus is considered as an “unselfish” action.

We follow the prevailing model for EPS production from species k < K as follows. Assume that
BK denotes the EPS component produced with rate rK , and that B1, B2, . . . BK−1 are the active species
contributing to the EPS formation with rates rK

k

rk = rgrowth
k − rK

k ; 1 ≤ k ≤ K − 1; rK =

K−1∑
k=1

rK
k . (6.1)

In this paper rgrowth
k are the Monod rates given by (2.6), and we follow [20, 23] who assume EPS

production as proportional to cell growth

rK
k = rK

k (Bk) = εkr
growth
k (6.2)

and 0 ≤ εk < 1 is the EPS production factor. Note that if K = 2, one can easily lump (2.8) into one
equation for B = B1 + B2 since the EPS rate r2

1 cancels with −r2
1.

With K = 3 species, [23] set up ε1 +ε2 = 1 and vary ε1, with choices ε1 ∈ {1/6, 1/3, 1}, which helps
to study cooperation and competition. Other models are possible, e.g., where rK

k (Bk) = εkBk.

Rearrangement of biofilm or “shoving” to enforce volume constraint. Concerning the
rearrangement of species, the discrete models recognize different mechanisms of “shoving” including
proportional, or with preferential treatment for some species [23, 31]. In the continuum models (3.2)
and (3.5) the analogy of “shoving” is carried out with the use of singular diffusivity dB(B) (8.3). With
K > 1 in [20] the model dB(B) is extended verbatim to

dk(B) = dB(B), ∀k (6.3)

which applies to each species including the EPS. Note that this means that the sum B =
∑

k Bk diffuses
with dB(B), and that the discrete diffusion operator AB

h applies equally to each of the k component
equations.
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In our models (3.12) and (3.11) we use nonsingular dB(α;B) with α found adaptively. Furthermore,
inspired by [23] we extend (6.3) and allow species to have different diffusivities

dk = δkdB(B), δk ≥ 0, ∀k;
∑

k

δk = K. (6.4)

Here δk are adjustable nonnegative parameters, and we set
∑

k δk = K in (6.4) for consistency with (6.3),
but this is not needed in the α–adaptive models, since the overall diffusivity is adapted automatically.
In the numerical model, (6.4) gives rise to Ak

h = δkAB
h . The choice of δk aims to model the propensity

of some species to be able to “shove” their off-spring more vigorously than others “shove”; this may
be accompanied by larger use of N, and reflected in the parameter κk as in [20].

6.2. Imposing constraints on the sum of species.

We recall now the robust mechanism to impose volume constraint via the constraint operator
∂I(−∞,B∗](B) in Section 8.1.5 which we use in (3.12), and which is replaced in the numerical model by
the Lagrange multiplier λn

h. The extension for multiple species means we require that Bn
j ∈ ∆∗, where

∆∗ = {B ∈ RK : B =
∑

k

Bk ≤ B∗} (6.5)

is below the hyperplane B = B∗ in RK . Furthermore, for robustness when using large time steps we
find it necessary to impose nonnegativity on the variables, with

∆∗+ = ∆∗ ∩ ∆+ ⊂ R
K , ∆+ = (R+)K = [0,∞)K . (6.6)

The convex set ∆∗ is a generalized tetrahedron in RK illustrated in Figure 14 when K = 2. The
nonnegativity constraints in (6.6) are needed to ensure a physically meaningful solution, and
imposing nonnegativity constraints is common when solving for equilibria in chemical reactions [75].
In principle, nonnegativity should be an intrinsic property of solutions to a well–posed ODE or PDE
model, but a numerical solution found with an iterative solver and a fixed time step may need to be
nudged towards this property, or require very small time steps.

To enforce B ∈ ∆∗+ in each of the k’th equations we set ∂I∆∗+(B) = ∂I∆∗(B) + ∂IR+
(Bk). In the

corresponding discrete system each of these is replaced by a separate Lagrange multiplier, respectively,
λn

h and λn
k,h. The system extending (3.4a) is

(I + Ak
h(Bn

h))Bn
k,h + λn

h − λ
n
k,h = GB,nk,h , ∀k (6.7a)

with the additional equations binding λn
h, and the sum Bn

h of species, and λn
k,h and each Bn

k,h, all pointwise
as in (3.4c)

min(B∗ − Bn
h, λ

n
h) = 0; min(Bn

k,h, λ
n
k,h) = 0; ∀k, (6.7b)

Remark 3. It is easy to see that, with time–lagged or iteration–lagged diffusivities Ak
h = Ak

h(Bn−1
h ) and

reaction rates in (6.7), the stationary solution can be found as the unique solution for the associated
constrained quadratic minimization problem calculated with the Lagrange multiplier.
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Figure 14. Constraint set ∆∗+ in Example 6.1 for G = (0, 4, 0.9) and A = (1, 1). The square
indicates the initial guess (0.4, 0.9) which is outside ∆∗+. The diamond indicates the solution
(0.25, 0.75) found with a Lagrange multiplier, at the intersection of B1 + B2 = B∗ = 1 and
of the line orthogonal to B1 + B2 = 1.3 pointing towards the constraint set from the initial
guess. The circle indicates the “proportional” solution (0.3, 0.7). The triangle indicates the
point (0.1, 0.9) found when the constraint is imposed only on the species B1.

However, it is not clear that the Lagrange multiplier solution found by optimization is necessarily
the same as the solution justified from modeling point of view. In particular, multiple species may
have “preference” in deciding which microbial species are subject to more stifled growth and/or more
vigorous shoving than others. In particular, one can always find a “proportional” solution in ∆∗+ as
shown in the next example. We leave the choice as an option in our model, but do not see a significant
difference in results.

Example 6.1. We illustrate now ∆∗+ and solving under constraints when K = 2. Consider the
minimization problem with J(B) = 1

2 (A1B2
1 + A2B2

2) − G1B1 − G2B2, with some given
G1 ≥ 0,G2 ≥ 0, A1 > 0, A2 > 0. The unconstrained solution is clearly Bk = Gk/Ak. The solution under
constraints minB∈∆∗+ J(B) always exists and is unique, and may fall in the interior of ∆∗+ if∑

k Gk/Ak ≤ B∗ = 1. Otherwise, it is found at the intersection of the normal to B1 + B2 =
∑

k Gk/Ak

with the line
∑

k Bk = 1. In turn the proportional solution is that found at the intersection of the line
from the point (G1/A1,G2/A2) to the origin with the boundary of ∆∗+.

These are implemented in the reaction step of the operator split, but could also be incorporated in
the reaction-diffusion step, a modification of P∗ from Section 3.3

∂tBk − ∇ · (dk(α∗(t);B)∇Bk) + ∂I∆∗+(B) = rk(B,N), 1 ≤ k ≤ K (6.8)

with numerical approximation (3.7). We will not dwell on the different variants, but rather present a
few examples.
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δ1 = δ2 = δ3 = 1 δ1 = 1.5, δ2 = 1.49, δ3 = 0.01.

Figure 15. Solution for Example 6.2 illustrating the effect of different models for diffusivities
for multiple species. The model shown on left assumes the species 1 and 2 as well as
EPS have equal diffusivities and spread the same way. The model on right assumes EPS is
stationary, and that species 1 and 2 spread similarly. Reader should observe the solutions at
time T = 5 just before the two “blobs” coalesce, as well as the difference in their propagation
which is limited by the space available to all when EPS does not move.

Example 6.2. We set up an example with K = 3 components as a modification of Example 3.1 with
data modified from Tables 3 and 4(A).

L T h τ Bk,init ΓD and Nbd = Ninit RN,bw, dN,b κ α

3 20 0.01 10−3 in text x = 0, 0.1 0.1; (2.13b) 2 α∗(t)
Mildly competitive case: ε1 = 0.5, ε2 = 0.2, δ1 = δ2 = δ3 = 1.

There are two active microbial species k = 1, 2 and the EPS component k = 3. We set ε1 > ε2 which
makes species 1 the more cooperative or “altruistic” since species 1 contributes more strongly to the
production of EPS from which all species benefit. The initial condition is B1,init = 0.2χ[0.45,0.55]∪[1.45,1.55],
B2,init = 0.2χ[0.85,0.95], and B3,init ≡ 0. The case is somewhat nutrient deficient. We also test the case
when EPS is immobile, and we set δ1 = 1.5; δ2 = 1.49; δ3 = 0.01.
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The time evolution for this example shown in Figure 15 illustrates that the less cooperative species
k = 2 features more vigorous growth. The constraint on B1 + B3 and B2 + B3 becomes active around
t = 4. Around t = 5 the two clusters of B1, B2 coalesce and continue expanding to the left towards the
nutrient supply. The dependence on the nutrient is also evident from the slightly skewed profiles of B2,
as well as the behavior of the right–most cluster of B1 which is growing the slowest.

The evolution when EPS is immobile reveals a slightly different overall dynamics of B(x, t) for
t > 4, and overall much stronger spreading of the active species, eventually leading to the right–most
cluster being overtaken at t = 8, not seen at this time for equal diffusivities.

Example 6.3. In this example we explore the issues of cooperation and competition. We set

L T h τ Bk,init ΓD and Nbd = Ninit RN,bw, dN,b κ α

2 20 0.01 10−3 in text x = 0, x = L, 0.01 vary; (2.13b) 2 α∗(t)
Highly competitive case: ε1 = variable, ε2 = 0, δ1 = 2.98; δ2 = δ3 = 0.01.

We set up the case with identical initial conditions for both microbial species
B1,init = B2,init = 0.45χ[0.95,1.05], and with B3,init = 0.05χ[0.95,1.05]. We assume species 2 does not
contribute to EPS production thus ε2 = 0. We vary the rate of EPS production for the cooperative
species ε1 ∈ [0.05, 0.2] as well as the nutrient penetration parameter RN,bw to assess whether the
cooperative species have the advantage. See Figure 16.

As expected, the species B2 seems to have a clear advantage over B1, since the former does not
spend energy producing EPS and can reproduce faster. However, if species B1 has the ability to shove
its members more vigorously than those of B2, then over long time, the species B1 may regain some
advantage as long as the nutrient has sufficiently poor abilities to penetrate into the mature biofilm
where B2 dominates. This is illustrated in the top rows of Figure 16.

To provide a more concise analysis of this competition, we follow [23] and calculate the dependence
of the total amount Tk(t) =

∫
Ω

Bk(x, t)dt of species k, as well as its fitness wk(t) = log
(
Tk(t)
Tk(0)

)
. With this

quantity we check if there is t ∈ [0, 20] : w1(t) ≥ w2(t), and consider the time t1,win = min{t ∈ [0, 20] :
w1(t) ≥ w2(t)} when species 1 begin to show some advantage. We set t1,win = 21 if this never happens
and if w1(t) < w2(t)),∀t ∈ [0, 20]. The results are plotted at the bottom of Figure 16.

7. Conclusions

In this paper we formulated a model for biofilm-nutrient dynamics which can be coupled to the
flow at pore-scale. The model is continuum and monolithic, i.e., it is written as a system of partial
differential equations for the microbial species and nutrient (B(x, t),N(x, t)), and for fluid flow variables
(u, p) over the entire domain Ω where fluid and microbes and nutrient exist.

Our model improves those known from the literature. For the biomass-nutrient model, it finds
automatically and adaptively the appropriate degree of singularity of diffusivity which guarantees that
the maximum volume constraint on B(x, t) is satisfied. In this sense, it realizes very closely the same
principles as the discrete models of “cell shoving”. In addition, our model does not explicitly track any
interfaces or free boundaries; tracking free boundaries puts an additional burden on the solver and may
require regridding. Instead, the interfaces can be found implicitly in our model by postprocessing the
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ratio RN,bw = 0.01 ratio RN,bw = 0.1

Figure 16. Illustration of Example 6.3 demonstrates that cooperative high-EPS producing
species B1 (with ε1 = 0.1) may win long-term in the nutrient deficient case over species 2
(ε2 = 0), provided they have an ability to displace their cells more vigorously than others.
Top three rows show evolution in time depending on the ability of nutrient to penetrate. On
the left the species 1 “wins” after T > 10. On the right the species does not “win” at lower
availability of nutrient. Bottom row: aggregate plot of fitness wk of species k calculated for
33 simulations with ε1 = 0.005, ε1 = 0.01, ε1 = 0.2 and for ratio RN,bw ∈ [0.01, 0.1]. We seek
t : w1(t) > w2(t). We find no such t ∈ [0, 20] if ε1 > 0.1.
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values of B(x, t). Finally, our model is very easily applied to multiple species and allows a multitude
of extensions towards the study of their cooperation and competition.

For the flow we use a new approach by blending the Brinkman flow in (somewhat) permeable
biofilm domain with that in the bulk fluid: this is done with a Brinkman flow model in which we adapt
the biofilm permeability coefficient kB(x) depending on the microbial concentration B(x, t).

With these two new model developments we can solve the coupled flow and biomass–nutrient
model in complex geometries. We demonstrate robustness of the model and compare it with other
closely related continuum models. The search for adaptively chosen singularity parameter α requires
additional computational effort, but we indicated how one can use its time-lagged form dubbed P̄h,n

∗,� in
which we exploit the non-singular constrained model. Furthermore, the adaptation might not be
practical for large scale simulations in d = 3. For these one can guide the choice of an appropriate
α(t) by studying a sub-problem in d = 1 or d = 2 off-line first.

More work is needed to study, analyze, and extend the model, and some is underway. In particular,
more analysis of the adaptive model for biofilm propagation is desired, including how to improve the
search for optimal α. Further, more numerical analysis is needed to study the fine properties of the
CCFD schemes in the context of degenerate and singular diffusivities. In addition, while we
demonstrated that the heterogeneous Brinkman flow model works well for our purposes, more
analysis is needed to study our model in relation to other coupled models for the bulk fluid-Darcy
flows including the considerations of Beavers-Joseph-Saffman condition.

The challenges remain as length scales are concerned, since we wish to apply the model from the
single micro-pore size of 10 micron size through columns of mm size. The inclusion of modeling
components which describe biofilm adhesiveness to the grains as well as setting thresholds for EPS
production are underway. Finally, the computational complexity of our models is considerable for 3d;
we refer to, e.g., [62] for non-DNS alternatives.

Finally, we wish to make concrete connections to some experimental data across the different length
scales L and for different microbial species. Such studies would guide future work towards improving
and refining the model, as well as towards other applications.

8. Supporting information

In this section we provide additional details. In particular, we provide an extensive discussion of
literature models which motivate our model in Section 3. We also present further details on numerical
schemes and their convergence; see Table 10 for summary.

8.1. Discussion of biofilm models in literature

The discussion here supports the development of our new model in Section 3 which blends (iv) and
(v) models; these in turn draw from (i)–(iii). When comparing models from Table 2, we face a
challenge that each works with a different system of variables and units, and uses different data in
their examples, e.g., a range of rate constants. Thus our comparisons are qualitative only. We divide
our discussion into (i) discrete models, and four different types (ii)–(v) of continuum models for
biomass evolution extending (2.8a). In turn, the evolution of nutrient species N is governed by
advection-reaction-diffusion (2.8b); the species are assumed soluble in water and with density small
enough so that their presence does not affect the flow. The different modeling variants include
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steady-state approximation, and the use of analytical solution, which we connect to the class (iii) of
reduced models.

We start with Eqs (2.2) and (2.4), which express the mass conservation and volume constraint,
respectively. The quantity M(t) increases due to microbial growth: both θk and the volume |Ω | of Ω

may contribute to this increase. Literature provides several ways in which these changes are modeled.
In discrete models (i) one solves a system of ODEs such as (2.7a) governing the growth and

transport of individual cells or their aggregates. The total mass B(t) is a sum of masses of the
individuals. Discrete models allow θk to increase until a threshold is reached and |Ω | must increase.
In (i) discrete models, the cells are subject to “shoving”, a mechanism through which they reallocate
to nearby location as close as possible to the existing phase, thus maintaining a contiguous phase. In
hybrid models EPS can be modeled as a continuum, but the live cells are modeled as individuals.
Nutrient and metabolic products are typically modeled by a coupled transient PDE or by some
simplified variant.

In continuum models (ii)–(v) the biomass amount is represented by a variable such as
concentration B(x, t) with the growth and transport governed by PDE (2.8a). The definitions of the
variables, of the “biofilm domain”, and the assumptions made on the evolution differ substantially
between the modeling variants. The main difference between these models is whether microbial
species are modeled in the entire region Ω or rather only in its subset Ωb, and the definitions of Ωb and
the model of its evolution vary substantially between models. Continuum models achieve the
spreading of biomass via nonlinear diffusion or another mechanism. Several ingenious mechanisms
are proposed to track the boundary of Ωb which can be divided roughly to (ii) Cahn–Hilliard-like
phase field models with focus on detailed local description of the biofilm-water interface, (iii)
level-set type interface tracking models which track the boundary Γb0 of Ωb based on a predefined
model for its velocity, (iv) singular nonlinear diffusion PDEs, and (v) nonlinear diffusion PDEs under
constraints, with the growth only allowed when B < B∗.

8.1.1. (i) Discrete and hybrid models for growth and redistribution of microbial mass

The discrete models such as IbM (Individual based Models) or CA (cellular automata) follow
simple rules on growth and cell division which are appealing and can be motivated entirely by
biological principles. They set up ODE growth models based on (2.7a) for each individual or
aggregate of the microbial species, and account for spatial distribution of N with a PDE such as
(2.8b). The biomass is redistributed, if needed after cell division, based on the volume and whether
the cells overlap. For example, they manage redistribution of cells so that B ≤ B∗ is satisfied by
devising simple rules such as “shoving”, i.e., reallocating cells to the nearest available location
selected randomly (CA), or by disallowing cell overlaps (IbM). Some models such as [44] are
“hybrid” and model the EPS phase with a PDE.

As stated in [44], there are advantages and disadvantages to the discrete treatment of biomass
models, as opposed to continuum models. First, their results are not easy to reproduce or analyse and
are discretization dependent. In addition, while they work well at the interface scale, their
computational complexity seems prohibitive for studies at the scale of the pores or at the core scale.
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8.1.2. (ii) The phase field approaches for aggregation of biofilm phase

The physio-chemical and mechanical processes involved in biofilm growth and deformation at the
interface scale and at the cellular and molecular scales are very complex. Some literature appeals to
the rigorous theory, e.g., Ginzburg–Landau theory of phase transitions, or to the Flory–Huggins theory
of mixtures [2–5] or other theories [6]; these apply to the evolution of the polymer network and the
bio-gel formed by the microbes within the surrounding solvent. We recall the main ideas.

The phase field models constrain the phase variable φ, the volume fraction of the polymer network,
and promote the phase aggregation in a mixture of fluids, i.e., they develop a model which drives φ
to one of the model’s equilibria φ = 1 or φ = 0. Common themes (A) are the constitutive equations
which describe the driving force(s) for motion such as the differential of the osmotic pressure π(φ),
or the differential of chemical potential, itself defined as the differential δ f

δφ
of the free energy density

of mixing f (φ). These definitions are complemented by (B) a momentum equation for the fluid phase
velocity v, similar to Navier–Stokes model or written as a simple potential equation [26]. Finally, (C),
the motion of φ is linked to (A–B) and to the biomass growth Bm(N) in some fashion.

Towards (A), we briefly recall the Flory–Huggins free energy density from [2–5]

fFH(φ) = χφ(1 − φ) +
1

N0
φ ln(φ) + (1 − φ) ln(1 − φ) +

γ0

2
||∇φ || 2.

Typical values are χ ≈ 0.5,N0 = 103 while the distortional energy parameter γ0 might be even 10−10

smaller than χ. Different approximations for d fFH
dφ and the connections to π(φ) are carried out in the

literature. In [2] the authors aim to describe the bio-gel from first principles using a “two-fluid”
approach, with the notion of osmotic or swelling pressure π(φ). In turn, [3, 4] use the “one–fluid”
multicomponent approach and define the chemical potential d fFH

dφ which includes terms similar to π

augmented by −γ0∇
2φ; the latter leads to Cahn-Hilliard equation; see also [3]. Assuming small γ0,

and dropping the term with γ0, one obtains [2] that d fFH
dφ ≈ π ≈ φ2(φ − φre f ), with φre f ≈ 0.6, or

d fFH
dφ ≈ −(log(1 − φ) + φ + χφ2) ≈ −(log(1 − φ) + φ). Setting the formulaic differences aside, π(φ) for

1 > φ >> 0 is an increasing convex function with an asymptote as φ ↑ 1, with dπ
dφ of related properties.

For (B), in [2] the momentum equation of Navier–Stokes type balances the fluid deformation by
−∇π(φ), and in [3] this term is replaced by d fFH

dφ . In turn, the momentum equation in [26] is simplified
to that of potential flow type so that v = −∇π.

(C) The evolution of φ is governed by

∂tφ + ∇ · (λ(φ)vφ) = g(φ), (8.1)

and another version can be obtained by setting γ0 = 0, i.e., ignoring the Cahn–Hilliard terms

∂tφ − ∇ ·

(
λ(φ)

d2 fFH

dφ2 (φ)∇φ
)

= φm(N). (8.2)

In the literature the parameter λ = const, or λ(φ) ∼ φ. The source g(φ) ∼ Bm(N) in [4], but in other
papers this connection is indirect. Furthermore, an equation similar to (8.1) with constant λ can be
written for the solvent phase variable 1 − φ. From this, by summing the evolution equations for φ and
1 − φ one gets a “pressure equation” similar to ∇ · v = g(φ).

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2097–2149.



2137

Remark 4. The model (8.2) is a quasilinear diffusion equation with a singular diffusion coefficient
d(φ) = λ(φ) d2 fFH

dφ2 ; this motivates singular diffusion models (iv) discussed in Section 8.1.4, as well as
nonsmooth phase field models modeled with a variational inequality (v) in Section 8.1.5. In turn, (8.1)
predicts advective motion of phase boundaries, models discussed in Section 8.1.3.

Overall, phase field models are quite challenging in analysis and approximation and difficult to
validate experimentally. The models we discuss next in Section 8.1.3 are their approximations and
lead to even more simplified reduced models. We come back to (8.2) in Section 8.1.4.

8.1.3. (iii) Potential flow with osmotic pressure for the motion of biofilm domain boundary

Following Remark 4 we consider now a class of models [18, 26] and [21, 46] which solve for
advective motion of the biofilm phase boundary as in (8.1). The models are not monolithic, and write
different equations in Ωb(t) ⊂ Ω and in Ω0; here we recall that (2.1b) defines Ωb(t) as the region with
nonzero presence B of microbes, and Ω0 is the “bulk fluid” without microbes. Some authors assume
existence of a sharp boundary between Ωb and Ω\Ωb, and some allow a boundary layer region between
Ω0 and a region similar to what we denoted Ω∗b. This class of models does not allow redistribution
of cells due to motility, and share the following strategy associated with the simplified momentum
equation v = −∇π of potential type for the local “shoving velocity” v as a gradient of osmotic pressure
π with π|Ω0 = 0 from Section 8.1.2 and [26], sometimes referred to as being of “Darcy” type which
seems confusing given the length scale especially in this paper.

Most recently, [21,46] overlay this continuum “local shoving” model over the Brinkman flow model
for some flow velocity in Ωb, and implicitly assume that the microbial growth in the region Ωb is
mature, i.e., that θw = const = 0.9 thus fixing θB =

∑K
k=1 θk = θ0 = 0.1 in Ωb(t) = {x :

∑K
k=1 θk =

θ0}. In these models no microbes exist outside the contiguous phase Ωb, the detached cells cannot
reproduce, and the model prescribes only the expansion of | Ωb(t) | on some finite time scale, rather
than instantaneously as in (i).

We are not aware of well-posedness analysis for the models in the class (iii) and recognize the
challenges which require, e.g., front tracking such as ALE (Arbitrary Lagrangian Eulerian), or level
set approaches for the advective term [26]. Even though these were implemented in [21] for pore-
scale simulations, we find that the approaches that require tracking of ∂Ωb explicitly are less robust
computationally than other continuum models plus require special handling of the front when it reaches
pore walls. The assumption of contiguous Ωb limits the applicability of this reduced model only to
some channel geometries. Nevertheless the osmotic pressure models can be useful for the study of
nutrient dependence in reduced models; see Section 8.2.

8.1.4. (iv) Singular diffusivity models

Now we consider a particular class of models which are directly motivated by the phase field models
such as (8.2) in which we replace φ by B. The model proposed in [19, 20, 41] is (2.8) with degenerate
and singular diffusivity

dα,β;B(B) = dB,0
Bβ

(B∗ − B)α
. (8.3)

We see that limB→B∗ dB(B) = ∞ and limB→0 dB(B) = 0 which features both the aggregation (thanks to
degeneracy of dB as B ↓ 0), and the volume constraint, i.e., (2.4) (thanks to the singularity as B ↑ B∗).
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Table 10. Numerical schemes for continuum models (ii)–(v) explaining discretization in
space, and time, as well as specifics of the flow solver. Here the acronyms mean FD: finite
difference, C-N: Crank–Nicolson, CCFD: cell centered finite difference, FV: finite volume,
FE: finite element, BE: backward Euler, TVD: total variation diminishing, WENO: weighted
essentially non-oscillatory, ALE: Arbitrary-Lagrangian-Eulerian, MAC: marker and cell,
COMSOL: multiphysics simulation software, Fluent: fluid simulation software.

Ref. space time Γbw flow solver
(ii) [4, 5] FD C-N projection
(iii) [26] O(τ3)-TVD level set, WENO none
[21, 46] Galerkin linear FE BE& semi-implicit ALE COMSOL
(iv) [20] FD-based FV semi-implicit implicit none
(v) [17] CCFD BE, semi-smooth Newton staggered in time Fluent
[25] Galerkin FE BE implicit none
Our model CCFD BE& semi-implicit operator split MAC scheme

Here dB,0 is as in (3.1). The location and evolution of Ωb follows implicitly from the model, with
the strength of the singularity controlled by some ad-hoc parameters α, β; in [19, 20, 41] these are
α = β = 4.

Remark 5. The analysis of well-posedness of the model (2.8) with (8.3) involves the primitive D(B) :=∫ B

0
dB(ψ) dψ, 0 ≤ B ≤ 1 of dB(B), with which some of the assumptions on data and some results on the

solutions, are made. With ΓD , ∅, and with smooth and bounded initial data (Binit,Ninit), Theorem 5.1
in ( [29], page 96), states existence of solutions (B,N) which satisfies (2.4) but also is sought in a rather
weak sense (B,N) ∈ L∞(R+×Ω)∩C([0,∞), L2(Ω)) with (D(B),N) ∈ L∞(R+,H1(Ω))∩C([0,∞), L2(Ω)).

The lack of smoothness indicated by the theory means that the model (8.3) is also very hard to work
with numerically. The main disadvantage is that it requires very small time steps, since the discrete
diffusion matrix AB

h (Bn
h) for (8.3) is singular as Bn

j ↑ B∗. More broadly, for problems of fast diffusion
type with singularity d(B) =∼|B |a−1 with 0 < a < 1, the convergence of finite element scheme is of first
order O(τ + h) in a norm close to L2(L2) [76]. In turn, [41] use only time-lagged dB(B) for (8.3) which
does not exactly enforce the volume constraint (2.4), unless very small time steps are used. In our
experiments we found that (8.3) requires time steps of order of milliseconds or less, which increases
the computational complexity by orders of magnitude as well as the accumulated approximation error.
These facts as well as the need for robustness motivate our constrained model discussed next and the
use of nonsingular adaptive diffusivity in Section 3.

8.1.5. (v) Constrained nonsingular model (PVI)

The concerns about the model in Section 8.1.4 motivated our work in [17] for pore-scale modeling,
where we considered

∂tB − ∇ · (dB(B)∇B) + ∂I(−∞,B∗](B) = rB, x ∈ Ω, t > 0, (8.4)

and its extension with advection, complemented by a Navier-Stokes fluid flow model for (u, p) in
Ω \Ω∗. In other words, we assumed that Ω∗ was impermeable to flow.
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Remark 6. For a bounded and uniformly positive dB = dB(x) under mixed boundary conditions (8.4)
has a unique solution B ∈ W1,2(V) ∩ W1,∞(L2) according to ( [48], Theorem 5.2, page 214). The
major difficulty is the lack of smoothness of ∂2

ttB which leads to sub–optimal convergence rates of finite
element approximations [50]. Furthermore, recent work in [77,78] analyzes a model inspired by (8.4)
and similar to a Stefan free boundary problem. With u , 0 given by a coupled Navier-Stokes model and
under Dirichlet boundary conditions for B the solution B exists in a subset of W1,2(V ′)∩L∞(Ω×[0,T ]).

The model (8.4) is quite robust and can be extended from dB(x) to (3.1). However, there is a concern
that it truncates reactions when B = B∗. To understand the significance of the associated modeling
error, we study the size of the active layer Ωa(t) relative to |Ω |; this discussion is blended with that for
reduced models (iii) next.

8.2. Comparison of continuum model (iii) and reduced model to our model

In Example 3.1 we saw that the thickness γ(t) of biofilm domain increases in time in nutrient-
abundant cases. We refine now the study of the width a(t) =| Ωa(t) | of the active layer which is
dependent on the nutrient supply Nbd, the uptake rate κ, factor RN,bw in (2.13a), and domain size L.
This analysis aims to explain the modeling error in the constrained model due to the truncation of
reaction in Ωa in (3.5), and the validity of reduced models in the literature which commonly assume
a(t) = const.

The issue of nutrient “penetration” through Ωb is exploited in the experimental literature [28, 30]
for prediction of the growth of Ωb. The authors approximate a(t) ≈ const and assume Ω∗b = Ωb

and stationary character of (2.8b). Their analytical and numerical calculations for some microbial
species and nutrient pairs predict a(t) ∈ [25, 200] [µm] [28, 30] but can vary widely. Similar formulas
are derived in [18] for large L → ∞ and small Nbd so that a linear limiting approximation to m(N)
is valid. These give a(t) = const = a({Nbd; κ; RN,bw}) and are followed by various stability analyses.
Consequently one can set up a practical reduced model which ties a(t) to the speed of γ(t); see e.g., [13]
without the need for finding B(x, t) pointwise in Ωb. We explain this derivation based on model (iii)
from Section 8.1.3, provide additional estimates of a = a({Nbd; κ; RN,bw; L}) for realistic L << ∞ and
arbitrary Nbd in Section 8.2.3, and compare these formulas to numerical estimates.

Example 8.1. We start with our model (3.5) from Example 3.1 (A) with a fixed α = 2 and Ninit =

Nbd = 1 which we compare with the cases with smaller nutrient supply Ninit = Nbd = 10s, with
s ∈ [−2,−1.5,−1, 0]. We also consider longer domain L = 3. We study the sensitivity of the nutrient
penetration shown by a(t) and correlation with the speed of the front γ(t) depending on Nbd and L.

The results in Figure 17 confirm the intuition that dγ(t)
dt and a(t) are smaller when Nbd is small, or L

is large. However the approximation dγ(t)
dt ≈ const and a(t) = const is not accurate for all parameters.

We compare these results next with those of the osmotic pressure model (iii) and analytical formulas.

8.2.1. Study of the active layer depth with the osmotic pressure model (iii)

The model (iii) [18, 21, 26, 46] assumes that the microbes live only within contiguous domain Ωb ≈

Ω∗, with θ1 = θ0, thus B|Ωb ≈ 1, while Ωb expands due to the local shoving velocity v. Assuming
γ(t) > 0 and N|Ωb are known, at every t we solve for π and v

∇ · v = κBm(N); v = −∇π, x ∈ (0, γ); (8.5a)
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Sensitivity to nutrient availability through the boundary Nbd

Sensitivity to length L of the domain
Plot of B(x, t) and N(x, t) Biofilm front speed γ(t)

Figure 17. Illustration for Example 8.1. Top: biofilm profile (left) and nutrient profile (right)
at t = 3, for different nutrient availability depending on Nbd. On the right we also indicate
the width of inactive layer Ωb \ Ωa for the three lowest nutrient cases, recalling that Ωa is
defined with the criterion in (2.1f) to be that of N∗ = kN . The “corners” of N(x, t) correlate
with the position of biofilm front plotted on the left and with the width of inactive layer.
Bottom: sensitivity to length of the domain with L = 1 and L = 3. Left: B(x, t) and N(x, t) as
indicated. Right: plot of γ(t) =|Ω∗(t) |, which increases linearly in time for L = 3, but which
increases faster for L = 1 thanks to the availability of nutrient.

dπ
dx (0) = 0, π(γ(t)) = 0. (8.5b)

Further we have nutrient model (2.8b) in Ω, which requires γ(t) and uses (2.13a) for dN

∂tN − ∇ · (dN∇N) = −χ(0,γ)m(N), x ∈ (0, L); (8.5c)
dN,b

dN
dx (0, t) = 0, N(L, t) = Nbd. (8.5d)

The velocity of the free boundary x = γ(t) is given by dγ
dt = v

∣∣∣
γ(t)

.
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Figure 18. Results of simulations with the osmotic pressure model which could be compared
to that in Figures 3 and 17 simulated with our model. Shown are simulated values of
B(x, t),N(x, t), and π(x, t) from Example 8.2 at t = 3 [h]. Also shown is the active layer
depth found with analytical and numerical calculations. The interface position γ(t) increased
linearly in time t (not shown).

Example 8.2. We set up an example similar to Example 8.1 adapted to the use of (iii) model. We work
in a small channel L = 0.1 [mm], Binit(x) = 1χ[0,0.05](x) thus γ(0) = L/2; this allows a detailed study
of the thickness of active layer. We use M = 100 with a grid that varies when γ(t) moves, τ = 0.0015,
and other parameters as follows

Binit ΓD Nbd = Ninit [g/cm3] RN,bw kN [g/cm3] κ [h−1] κB

1χ[0,0.05] x = L 10−9 0.01 2 × 10−8 0.072 0.5

In Figure 18 we plot both the solutions B(x, t),N(x, t) as well as the analytically calculated active
layer depth with formulas given in Section 8.2.3. The plots are qualitatively similar to those in
Example 8.1, with the exception of B(x, t) which is piecewise constant in Figure 18, but varies
smoothly when using our new model in Figure 17. This lack of smoothness is a feature of simplified
model which is compensated by its simplicity. Still, the reduced model (iii) can only be applied in the
limited set of circumstances as described in Section 8.1.3.

8.2.2. Validity of reduced model for interface propagation

Continuing with the osmotic pressure model (8.5), we revisit the calculations of M(t) given by (2.2)
to understand the validity of reduced models as in [13]. With B|Ωb = 1, we have M(t) =

∫
Ωb(t)

B(x, t)dx =

γ(t). Also, we have rB = κBm(N(x, t))B(x, t) = κBm(N(x, t))χ[0,γ(t)] is nonzero only for x ∈ Ωb(t). Now
we write the balance d

dt M(t) =
∫

Ω
rBdx =

∫
Ωb(t)

rBdx, which is a limit, as ∆t → 0, of M(t + ∆t) =

M(t) + ∆t
∫ γ(t)

0
κBm(N(x, t))dx.

We consider two extreme cases of the magnitude of N. If N|Ωb is large, then m|Ωb ≈ const = κ, and
we infer exponential motion of the interface

dγ(t)
dt

= κBκγ(t). (8.6)
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However, if Nbd is not large, or if L is large, the assumption m ≈ const is not accurate. In fact, as
shown by Examples 8.1 and 8.2, N(x, t) is depleted in Ωb during vigorous growth of B(x, t), and does
not penetrate well into Ωb with small RN,bw < 1, and may decay in Ωb.

Assuming now that N is small, with support in Ωa, if a(t) ≈ const, we obtain
∫ γ(t)

0
m(N(x, t))dx ≈∫ γ(t)

γ(t)−a(t)
m(N(x, t))dx ≈ m̄a, with some average value m̄, and the linear model for γ(t) follows

dγ(t)
dt

= a(t)m̄ ≈ const. (8.7)

The two cases (8.6) and (8.7) are similar to those postulated in [13] and used in [16, 21].
We see now that this reduced model for γ(t) agrees with the analytical formulas but only for some

values of {L,RN,bw, κ,Nbd}. For small L or intermediate N, the evolution of γ(t) is likely somewhere
between (8.6) and (8.7), and the reduced model and the osmotic pressure models are not accurate.

8.2.3. Analytical and numerical explorations of the reduced model for γ(t) and a(t)

Now we provide additional analytical calculations for (8.5), assuming as in [18] that it is stationary
as confirmed by our numerical simulations (not shown) for L ∼ O(10s)[mm] with s ∈ [−3, 0]. At every
t, assuming known γ(t), we obtain N(γ(t), t) as a solution of the stationary 2–point boundary value
problem. Analytical formulas are available only for simplified m(N) when it can be approximated by
a constant or a term linear in N. We recall that at x = γ(t) we have the transmission conditions of
continuity of N and of its fluxes, and we can calculate the solution as below.

N >> kN =⇒ m(N) ≈ κ, N(x) =

RN,bwκ

2dN,b
(x2 − γ2) + Nc

γ , x ∈ (0, γ),
Nbd−Nc

γ

L−γ (x − γ) + Nc
γ , x ∈ (γ, L),

(8.8a)

Nc
γ =

(
Nbd
L−γ −

R2
N,bwκγ

dN,b

)
(L − γ).

N << kN =⇒ m(N) =
κ

kN
N, N(x) =


Nl
γ

eργ+e−ργ (eρx + e−ρx) , x ∈ (0, γ),

(
Nbd−Nl

γ

L−γ )(x − γ) + N l
γ , x ∈ (γ, L),

(8.8b)

N l
γ =

(
Nbd
L−γ

) (
RN,bwρ tanh (ργ) + 1

L−γ

)−1
, ρ =

√
RN,bwκ

dN,bkN
=

√
κ

dN,wkN
.

A semi–analytical model could find a(t) using (8.8a) or (8.8b) by solving for x∗ ∈ (0, γ(t)) : N(x∗, t) =

N∗, and setting a(t) = γ(t) − x∗. A particularly simple form reported in [18] follows as L→ ∞

a(t) = const =

√
dN,bNbd

m(Nbd) =

√
RN,bwdN,wNbd

m(Nbd) . (8.9)

A separate study of the dependence of a(t) and v =
dγ(t)

dt (not shown here) reveals, e.g., quadratic
dependence of v on Nbd, and linear on κB. It also shows discrepancy with factor ≈ 2–3 between the
predictions of a(t) using (8.9) and our numerical simulations.

8.3. Details on numerical models

To make the presentation self-contained, we describe now studies on convergence of (3.5) and (3.2).
We also provide details on the MAC and CCFD schemes.
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Table 11. Convergence in B and N approximated for (3.2) and (3.5).

Convergence for model (3.2)
h τ ||Berr||1 ||Berr||2 ||Berr||1–order ||Berr||2–order

0.0200 0.0200 2.2841e-02 1.2888e-01
0.0100 0.0100 1.0625e-02 8.4240e-02 1.1041 0.6134
0.0050 0.0050 4.7579e-03 5.2546e-02 1.1591 0.6809
0.0020 0.0020 1.4853e-03 2.3676e-02 1.2706 0.8701

h τ ||Nerr||1 ||Nerr||2 ||Nerr||1–order ||Nerr||2–order
0.0200 0.0200 1.0799e-03 1.2420e-03
0.0100 0.0100 5.2719e-04 6.0268e-04 1.0345 1.0432
0.0050 0.0050 2.6730e-04 3.0657e-04 0.9799 0.9752
0.0020 0.0020 1.0957e-04 1.2733e-04 0.9733 0.9589

Convergence for model (3.5)
h τ ||Berr||1 ||Berr||2 ||Berr||1–order ||Berr||2–order

0.0200 0.0020 2.2599e-02 1.2806e-01
0.0100 0.0010 1.0496e-02 8.3966e-02 1.1064 0.6089
0.0050 0.0005 4.7056e-03 5.2642e-02 1.1574 0.6736
0.0020 0.0002 1.4779e-03 2.4410e-02 1.2639 0.8387

h τ ||Nerr||1 ||Nerr||2 ||Nerr||1–order ||Nerr||2–order
0.0200 0.0020 1.0701e-03 1.2318e-03
0.0100 0.0010 5.1824e-04 6.0381e-04 1.0460 1.0286
0.0050 0.0005 2.5751e-04 2.9023e-04 1.0090 1.0569
0.0020 0.0002 1.0449e-04 1.1946e-04 0.9844 0.9688

8.3.1. Convergence of the numerical model for nonlinear diffusivity models

Earlier we explained that numerical approximation of nonlinear diffusion models is challenging.
However, for validation of numerical models it is important but not straightforward to study their
convergence. Analytical solutions are not available, thus we must use fine grid solutions as a “proxy”.
For the cases here, we use L = 1, h f ine = 2 × 10−4 and τ f ine = 2 × 10−5. We recall that the case is hard
since it is closely related to the problems studied in [25, 76]. The theory predicts less than first order
convergence in L2(L2), which is actually hard to verify. Instead we define, for the error in B,

‖Berr‖p = max
n
||Bn

h − B(·; tn) || p ≈ max
n
||Bn

h − B f ine(tn) || p (8.10)

where B f ine is the numerical solution computed with h f ine, τ f ine.
We start with convergence of the numerical scheme for (3.5) with (3.1). We use parameters as in

Example 3.1(A). The error is shown in Table 11. We test for the corresponding order of convergence
σ denoted by ‖Berr‖p = O(hσ) called ‖Berr‖p–order while varying τ = O(h). We note the convergence
is approximately order 1 in the ‖Berr‖1 norm and approximately order of 0.6 for the ‖Berr‖2 norm. The
nonsmooth nutrient convergence rates are shown in Table 11 with the order for the ‖Nerr‖1 norm and
the ‖Nerr‖2 norm being approximately 1.

Mathematical Biosciences and Engineering Volume 18, Issue 3, 2097–2149.



2144

Figure 19. Staggered grid for CCFD and MAC methods.

8.3.2. MAC scheme and CCFD

To solve the coupled flow and transport model with reaction, we use the operator splitting method
to handle advection term explicitly first by the first-order Godunov method, then the diffusion-reaction
implicitly by CCFD (cell-centered finite difference) method. When we solve for advection, we also
need to resolve the flow. Here we expand the so-called MAC scheme (Marker and Cell) [79] to solve
(4.1) on the staggered grid. A sketch of staggered grid is in Figure 19 with the variables associated
with mass or with pressure defined at the cell centers and velocities and fluxes at the cell edges.

We describe the MAC scheme for the Brinkman equations (4.1). We discretize Ω into
M = Nx × Ny rectangles of size hx × hy. The degrees of freedom are as follows. Let i ∈ {1, 2, . . . ,Nx}

and j ∈ {1, 2, . . . ,Ny}. Pressure Pi, j are defined at the cell centers, x- and y- directional velocities
(Ui±1/2, j,Vi, j±1/2) are defined at the cell edges; see Figure 19. We use the 5–point stencil for ∆U and
∆V and the centered difference for ∇P. We evaluate k−1

b at the cell edges using the harmonic average
and denote cell edge values by k−1

b,i±1/2, j ∈ {kb,u} and kb,i, j±1/2 ∈ {kb,v}.
Under the boundary conditions (4.1c) for the horizontal flow, we have

U1/2, j = uD(y j), V0, j±1/2 = 0, (8.11a)

µ
UNx+3/2, j − UNx+1/2, j

hx
− PNx+1, j = 0, VNx+1, j±1/2 = VNx, j±1/2. (8.11b)

The discrete system for (Uh,Vh; Ph) in the matrix form reads:
Auu + µk−1

b,uIu Aup

Avv + µk−1
b,vIv Avp

AT
up AT

vp




Uh

Vh

Ph

 = F (8.12)

where AuuUh, AvvVh, AupPh, AvpPh are approximations of −µ∆u1,−µ∆u2, px, py, resp., and Iu, Iv are
identity matrices of sizes (Nx + 1)Ny and Nx(Ny + 1), respectively.
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