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Abstract: We propose an uncertainty propagation study and a sensitivity analysis with the Ocular
Mathematical Virtual Simulator, a computational and mathematical model that predicts the hemody-
namics and biomechanics within the human eye. In this contribution, we focus on the effect of intraoc-
ular pressure, retrolaminar tissue pressure and systemic blood pressure on the ocular posterior tissue
vasculature. The combination of a physically-based model with experiments-based stochastic input
allows us to gain a better understanding of the physiological system, accounting both for the driving
mechanisms and the data variability.
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1. Introduction

The interest in patient-specific mathematical models applied to biomedical problems has greatly
increased in the last years. In particular, the need for a better understanding and knowledge of
quantities in the medical context has raised tremendously the complexity of the mathematical models
employed to describe such physical systems. However, a crucial aspect to guarantee that the model and
its numerical solutions are meaningful from the biomedical viewpoint is how inherent uncertainties are
incorporated, as recently discussed for instance in [1]. In this direction, several works that studied the
impact of uncertainties in the domain of cardiovascular disease modelling showed particular promise
for elucidating the complex interplay between hemodynamics, biomechanics, and electrophysiology.
Examples include arterial hemodynamics [2–5], cardiovascular simulations [6–8], electrophysiol-
ogy [9], possibly coupled with electromechanical simulations [10] and/or hemodynamics [11].
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To the best of our knowledge, the eye’s mathematical and computational modelling is still at its
early stages, as recently reviewed in [12]. Biomechanical and fluid-dynamical aspects are of particular
relevance for several clinical conditions [13], but numerous factors influence their complex coupling,
and the underlying mechanisms are still elusive. Also, there is an intrinsic difficulty of isolating these
factors in a clinical setting and measuring their contribution [14]. The present work focuses on the
interaction between the main ocular vessels’ hemodynamics, intraocular pressure and the retrolaminar
tissue pressure, which is directly related to the cerebrospinal fluid pressure. Among several interesting
contributions in this area, we mention those closely related to our work. The first mathematical model
that simultaneously accounts for blood flow in the central retinal vessels, blood flow in the retinal mi-
crovasculature, retinal blood flow autoregulation, biomechanical action of intraocular pressure on the
retinal vasculature, and time-dependent arterial blood pressure was introduced in [15]. A theoretical
model to study the effects of intraocular pressure elevation on the central retinal artery hemodynamics
was proposed in [16] and extended to account for the central retinal venous hemodynamics and the
retinal microcirculation in [17]. However, none of them explicitly accounted for uncertainties and vari-
abilities in the model parameters. Only a few modelling works include a stochastic analysis framework
and focused on the production and drainage of aqueous humour flow [18] and its coupling with ocular
hemodynamics in a simplified manner [19].

With these premises, we present in this contribution an uncertainty quantification and a global sen-
sitivity analysis for the main parameters involved in the mathematical and computational framework
called the Ocular Mathematical Virtual Simulator (OMVS) that we have developed [20,21]. The clini-
cal relevance of results provided by the OMVS is described in [22] or, more extensively, in [20, Chapter
13], and it has been confirmed by an independent population-based study including nearly 10000 in-
dividuals [23]. The reduced version of the OMVS model employed in the present study originates
from [15] for the retinal circulation. It has been extended to include a reduced model for blood flow
perfusion in the lamina cribrosa. Preliminary findings from a simplified uncertain quantification study
were published as a peer-reviewed conference abstract in [24]. As a significant step forward, we present
hereafter a detailed global sensitivity analysis, using the Sobol’ sensitivity indices.

The paper is organized as follows. The mathematical and computational model is described in
section 2.1, the uncertainty quantification and sensitivity analysis approach is presented in section 2.2
and the input data in section 2.3. The results of our study are depicted in section 3 and discussed in
section 4. Finally, conclusions and future perspectives are outlined in section 5.

2. Methodology

In the next two sections we describe the deterministic mathematical and computational foundations
of our study, as well as the uncertainty quantification (UQ) and sensitivity analysis (SA) methods we
incorporated in the OMVS framework to account for the stochastic features of the system.

2.1. Mathematical and computational model

The OMVS is a complex modelling framework that couples hemodynamics, biomechanics, and
fluid dynamics in the eye to visualize and estimate in a non-invasive way ocular biofluids and tissues
characteristics that are difficult or not accessible with standard investigation methods. The contribu-
tions developed within this framework can be subsequently utilized to isolate single risk factors and
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quantify their influence on the multi-factorial disease process.
To achieve this goal, the full OMVS is designed with a multiscale architecture, that aims at pre-

serving the natural systemic features of blood circulation, while providing detailed views on sites of
particular interest from the clinical viewpoint, such as the lamina cribrosa. The lamina cribrosa is a
sponge tissue in the back of the eye that has a crucial role from the hemodynamical and neurological
viewpoints. Specifically, this membrane is thought to help maintain the balance between the pressure
inside the eye (intraocular pressure, hereafter denoted IOP) and behind the eye (the retrolaminar tissue
pressure directly influenced by the intracranial pressure, denoted RLTp), which may influence the oc-
ular blood flow. In addition, the lamina cribrosa acts as a scaffold for the retinal ganglion cell axons
and the central retinal vessels and feeds RGC axons through its vascular network. The IOP is easily
measurable with a Goldmann applanation tonometer. This instrument is based on the Imbert–Fick prin-
ciple, which affirms that the pressure inside a dry thin-walled sphere corresponds to the force required
to flatten the sphere surface divided by the flattening area.

In practice, we developed three model formulations of increasing complexity: we started from a 0-
dimensional reduced-order description of the system, progressively adding the coupling with a porous
media model for the lamina cribrosa and finally incorporating the effects of the deformation of the
ocular tissues. More precisely, the OMVS combines (see Figure 1):

1) System I (Figure 1a): a circuit-based (0D) model for blood flow in the retinal vasculature, central
retinal artery (CRA), and central retinal vein (CRV);

2) System II (Figure 1b): a three-dimensional (3D) porous media model for the perfusion of the lamina
cribrosa;

3) System III (Figure 1c): a 3D isotropic elastic model for the biomechanics of the lamina cribrosa,
retina, choroid, sclera, and cornea.

In the present contribution, UQ and SA analyses require intensive evaluations of the physical-based
model. Therefore, we have employed a reduced version of the OMVS, accounting for the hemodynam-
ical description provided by System I (Figure 1a), coupled to a 0D adaptation of System II (Figure 1b).
For the proposed study, System III (Figure 1c) has not been considered. In this manner, the model (i)
provides a multiscale hemodynamics overview of the overall system, while maintaining a relatively
accessible mathematical complexity and low computational costs; and (ii) combines information on
ocular sites for which quantitative data are available, e.g., blood flow in the central retinal artery, and
crucial ocular areas that are not accessible with clinical images, e.g., lamina cribrosa perfusion.

The 0D reduced version of the OMVS, see Figure 2, exploits the electric analogy to fluid flow in
complex vascular network [25]. In this context, electric potentials correspond to fluid pressure, elec-
tric charges correspond to fluid volumes, and electric currents correspond to volumetric flow rates; the
resistors and capacitors represent hydraulic resistance and wall compliance, respectively. Writing the
constitutive equations characterizing the circuit elements and the Kirchhoff laws of currents and volt-
ages leads to a system of ordinary differential equations whose solution provides the time-dependent
profiles of pressures at the circuit nodes and flow rates through the circuit branches. We emphasize that
IOP plays a crucial role in the description of the vein collapsibility, which is modelled in the OMVS by
Starling resistors [26]. Namely, when the external pressure is higher than the internal blood pressure,
veins collapse, therefore dropping down the blood flow.
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(a) System I: 0D hemodynamics of retinal vasculature.
(b) System II: 0D hemodynamics of retinal vasculature
+ 3D hemodynamics of lamina cribrosa.

(c) System III: 0D hemodynamics of retinal vasculature
+ 3D hemodynamics of lamina cribrosa + 3D biome-
chanics of lamina cribrosa, retina, choroid, sclera, and
cornea.

Figure 1. Schematic of the OMVS multiscale structure. IOP = intraocular pressure, RLTp
= retrolaminar tissue pressure, CRA = Central Retinal Artery, CRV = Central Retinal Vein,
OA = ophthalmic artery, OV = ophthalmic vein, TCPA = temporal posterior ciliary artery,
NPCA = nasal posterior ciliary artery.

The network is constructed as an extension of a previous model for the retinal circulation, proposed
and validated in [15] and [27]. The vasculature is divided into six main compartments: central retinal
artery (cra), arterioles (r,a), capillaries (r,c), venules (r,v), central retinal vein (crv), and the lamina
cribrosa (lc). Each compartment includes resistances (R) and capacitances (C). The intraocular seg-
ments (Rcra,3,Rcra,4,Rr,v1,Rr,v2,Rcrv,1,Rcrv,2) are exposed to the IOP and the retrobulbar segments are
exposed to the RLTp (Rcra,1,Rcra,2,Rcrv,3,Rcrv,4). The explicit conservation and constitutive laws, as
well as parameters involved in the description of the retinal circuit, follow directly from work by [15]
and [27]. To the initial model, we have added a simplified description of the hemodynamics in the
lamina cribrosa, involving two resistors lcRin and lcR, and one capacitor C5, with the following values:
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Figure 2. Schematic of the 0D circuit-based model (System I of the OMVS) employed in
this contribution for UQ and SA. The coloured nodes are the input of the model that can be
inferred from clinical measurements.

lcRin = 78181.9 mmHg s cm−3, lcR = 23988.25 mmHg s cm−3, and C5 = 0.000000753 cm3 mmHg−1.
Also, in the original circuit, the external pressure on the resistances Rcra,3 and Rcrv,2 is the effective
stress exerted by the lamina on these vessels, which has been computed via a simplified fluid-structure
interaction model [16] describing the CRA/CRV interaction with the lamina cribrosa. In the current
version of the model, we do not account for this contribution in a similar manner but rather adopt a
simplified approach, in which the external pressure corresponds to IOP. Further extensions could in-
corporate this dependence, but our choice was dictated by the possibility of computing stresses directly
from the System III component of the OMVS.

The reduced model thus obtained can predict the hemodynamics within the lamina cribrosa, the
retinal vasculature, and the central retinal vessels based on the key inputs described in Table 1 and
displayed as coloured dots in Figure 2. For the proposed study we fixed the value of the pressure at
cavernous sinus (blue node), while we choose as input variables for UQ and SA the systolic and di-
astolic pressure at the ophthalmic artery (SP and DP, red node), the intraocular pressure (IOP, yellow
node) and the retrolaminar tissue pressure (RLTp, green node).

Regarding the outputs, and in light of the clinical application in view, we will focus on the quantities
of interest in the UQ and SA analysis listed in Table 2. Note that these quantities of interest will reflect
the behaviour of the system at different time instants through the cardiac cycle.

The mathematical model previously described has been implemented in OpenModelica [28], an
open-source Modelica-based modelling and simulation environment intended for industrial and aca-
demic studies of complex dynamic systems. Model results have been obtained using DASSL [29] with
a tolerance of 10−6, a time step of 10−3 and total simulation time of 8 s. DASSL (Differential/Algebraic
System Solver) is an implicit, high order, multi-step solver with a step-size control based on backward
differentiation formula (BDF). These features allow it to be stable and fit to be used for a wide range
of models. Its first development can be in found in [29].
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Table 1. Input parameters for the reduced OMVS.

Key name Unit Brief description

DP mmHg Diastolic blood Pressure
SP mmHg Systolic blood Pressure
IOP mmHg IntraOcular Pressure

RLTp mmHg RetroLaminar Tissue pressure

Table 2. Quantities of interest in the UQ and SA analysis.

Key name Unit Brief description

CRA ps µl/min peak systolic CRA blood flow
CRA es µl/min end systolic CRA blood flow
CRA ed µl/min end diastolic CRA blood flow
CRV ps µl/min peak systolic CRV blood flow
CRV es µl/min end systolic CRV blood flow
CRV ed µl/min end diastolic CRV blood flow
LC ps µl/min peak systolic lamina cribrosa blood flow
LC es µl/min end systolic lamina cribrosa blood flow
LC ed µl/min end diastolic lamina cribrosa blood flow

The system reaches a periodic state after the first cardiac cycle. However, we consider our output
the last simulated cardiac cycle. Then, we retrieve the CRA, CRV, and the lamina cribrosa blood flow
at three specific instant during the last cardiac cycle, namely the peak systolic time, the end of the
systole and the end of the diastole (see Figure 3). The choice of these three particular time instant in
the cardiac cycle is driven by their interest from a clinical perspective. Moreover, in view of the model
validation, the measurements of the blood flow is very often taken at peak systole and end diastole [30].

Figure 3. Specific instant during the last cardiac cycle (peak systole, end systole
and end diastole) used to compute the clinical outputs of interest. Image edited from
https://en.wikipedia.org/wiki/Cardiac cycle.
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2.2. Uncertainty quantification and sensitivity analysis approach

2.2.1. Uncertainty propagation

The construction of a reliable model for ocular biofluid dynamics involves several steps with inher-
ent uncertainties, among which: parameter inference from uncertain experimental data, model person-
alization to the same subject data at different time instants or to different individuals, etc. Therefore, a
major challenge is to assess how these sources of uncertainty impact the clinically relevant outputs of
the simulation and ultimately affect the confidence in the model predictions.

In the present contribution, we adopted the following approach: for the set of key inputs of the
reduced version of the OMVS model, the uncertainty is represented by a probability density function
(pdf), which quantifies the probability of a given parameter to reproduce a specific observation. We
next develop a forward uncertainty quantification, also known as uncertainty propagation, to investi-
gate how these input uncertainties are propagated to the outputs via the computational model. Thus,
the combined information between previous modelling knowledge and assumptions on the prior pdfs
allows us to obtain the posterior pdf for the quantities of interest selected from the clinical perspective.

Remark 1. A major challenge that needs to be addressed is the choice and representation of the prior
pdf in light of the quantitative and qualitative information available from generally noisy data, see for
instance [31] and further discussion in section 2.3.

2.2.2. Sensitivity analysis

This part aims to determine synthetic measurements of which key inputs are the most influential
on the quantities of interest selected among the outputs of the computational model without making
assumption on the model and taking into account the continuous nature of the input parameters. To
this end, we adopt the stochastic framework of global sensitivity analysis, which considers the input
parameters {X j} j∈{1,...d} to be random independent variables with uncertainty modelled by a probability
distribution, and employed to compute the random output Y . We have not considered the sensitivity
analysis of the dynamic process Y(t). The methods described hereafter can be adapted to time t, and
we could study the sensitivity indices with respect to time. However, it is more useful—easier to
interpret—to perform sensitivity analysis at important characteristics of the response time series, in
our case, peak systole, end systole, and end diastole, as discussed in section 2.1.

To quantify the influence of the variations of X j on the variations of Y , we compute the so-called
Sobol’ sensitivity indices originally proposed in the seminal paper [32], see also [33]. More precisely,
we define the first-order indices as

S j =
var[E(Y |X j)]

var[Y]
, (2.1)

where (i) var denotes the variance and E the expected value; (ii) var[Y] corresponds to the variability
of Y with respect to the overall uncertainty including non-linear effects; (iii) var[E(Y |X j)], the variance
of the conditional expectation E(Y |X j), corresponds to the main or first order effect of X j; it means that
if Y is sensitive to X j, E(Y |X j) is likely to vary a lot and hence var[E(Y |X j)] as well.

Another useful index is the total Sobol’ index, defined as

S tot
j = 1 −

var[E(Y |X(− j))]
var[Y]

= 1 − S − j, (2.2)
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where X(− j) = (X1, . . . , X j−1, X j+1, . . . , Xd) and S − j denotes the sum of the indices where X j is not
involved. Additionally, the effect due to specific interactions between the jth and the kth factors (k , j)
can be measured by second-order Sobol’ indices, and so on for high-order interactions, see for more
details [33].

Several approaches have been proposed to numerically compute these sensitivity indices, as re-
viewed for instance in [33]. In the present work, we adopted the following two strategies: (i) a Monte
Carlo-type approach and an estimator proposed in [34] on the basis of a combinatoric argument, and
(ii) a Fourier amplitude sensitivity test (FAST) [35], which is a spectral method based upon the Fourier
decomposition of the model response. The computational cost of the first approach for first order and
total order Sobol’ indices is of (d + 2)n model evaluations [34], where d is the input space dimension
and n is the sample size; as for the FAST method the computational cost for first and total order indices
is of d n model evaluations [35].

This variance-based approach implies intensive sampling, but it allows us to explore the input fac-
tors’ full uncertainty ranges. We provide the two strategies as a way to ensure the reliability of our
estimates. Indeed, given a sampling size, they may vary when repeating the estimations, and, in the
Monte-Carlo approach, they can even be negative, although we used an implementation that mitigates
this issue.

All the results on the UQ and SA analysis presented hereafter are carried out exploiting the Python
statistical library OpenTURNS [36].

2.3. Input data

Both mathematical methods described before need as prior knowledge the statistical distribution of
the input. We detail and critically discuss in the sequel the choices we propose, based on assumptions
deduced from the experimental and clinical literature. Recall that the input of our model are systolic
blood pressure (SP), diastolic blood pressure (DP), IOP and RLTp.

2.3.1. Blood pressures

For SP and DP data we refer to the paper of Sesso and co-authors [37] where these two quantities
showed a normal distribution. In particular SP has a mean of 124.1 mmHg and a standard deviation of
11.1 mmHg (Figure 4a), whereas DP has a mean of 77.5 mmHg and a standard deviation of 7.1 mmHg
(Figure 4b).
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(a) Systemic systolic blood pressure

50 60 70 80 90 100 110
DP

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Re
la

tiv
e 

fre
qu

en
cy

(b) Systemic diastolic blood pressure
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(c) Systemic mean arterial pressure

Figure 4. Normal probability density functions of the input blood pressure variables.
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Using SP and DP as input parameters raises an issue for the sensitivity analysis, notably the Sobol’
index study, namely that the inputs have to be assumed independent, see section 2.2. For IOP, RLTp,
we can make this assumption reasonably, however, this is not valid for SP and DP [38]. To overcome
this problem we used Mean Arterial Pressure (MAP) as input variable in the Sobol study that has a
normal distribution with mean 93 mmHg and standard deviation of 7.6 mmHg. In this case we also re-
constructed the MAP distribution starting from the normal distribution of SP and DP and the following
relationship:

MAP =
1
3

S P +
2
3

DP (2.3)

to check its normal distribution assumption (Figure 4c).
From Eq (2.3) and from the correlation assumption between SP and DP made in [38], we can then

reconstruct SP and DP starting from the MAP. Finally, the MAP is independent of the other two inputs
(IOP, RLTp) and can be used as a sensitivity analysis parameter.

2.3.2. Intraocular pressure

There is a considerable discussion about normal and lognormal probability density functions in
literature, and which of the two can better represent biological phenomena [39].

To explain our modelling choices we consider different IOP distributions using the data recovered
from the clinical work of Suh and collaborators [40] (mean µnormal = 14.7 mmHg, standard deviation
σnormal = 2.8 mmHg). Starting from these values, we have computed the mean and the variance both for
Gaussian distribution and for a lognormal behaviour using the following formulas [41] to be consistent
with the data:

µlognormal = log


µnormal√
1 +

σ2
normal
µ2

normal

 σ2
lognormal = log

(
1 +

σ2
normal

µ2
normal

)

We performed a comparative analysis using three different IOP distributions based on the same
clinical data, which have been defined above. In particular, we compare a normal, a truncated normal
and a lognormal distribution.

Figure 5 highlights that the normal probability density (blue) is going beyond some physiological
constraints for healthy patients such as IOP > 5mmHg. The truncated normal probability density
function (green) does not show this issue; however, this IOP distribution presents an abnormal cut in
the left tail, making it ineffective for a sensitivity analysis study. For our simulations, with the data
provided by Suh et al. [40], the lognormal distribution seems to be the more natural one. Our choice is
dictated by the fact that we want to avoid miscalculation due to unphysiological input parameters that
may lead to unrealistic discontinuities in the simulation results. This lognormal assumption has also
been accepted in other works [42]. For this reason we utilized the log normal distribution based on the
population based study operated by Suh et al. [40] (Figure 6).
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Figure 5. Comparison among normal (blue), lognormal (orange) and truncated normal
(green) IOP distributions using the same input data [40].
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Figure 6. Lognormal probability density function of the input intraocular pressure (IOP).

2.3.3. Retrolaminar tissue pressure

For the RLTp we used a normal distribution (Figure 7) with mean µnormal = 9.5 mmHg and standard
deviation σnormal = 2.2 mmHg [43]. In this case, no issues regarding the independence with other input
or the sampling of unphysiological values occur.

Remark 2. Our choices for the input probability density functions are dictated by clinical measure-
ments reported in the literature, in particular [37] for the normal distribution of MAP, [40] for the
lognormal distribution of IOP, and [43] for the normal distribution of RLTp. For the blood pressure
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and the retrolaminar tissue pressure, all the clinical literature refers to a normal probability density
function of these inputs, whereas for what concerns the IOP, the prior knowledge on the uncertainty
distribution is still a matter of debate. The rationale behind our specific choices is that we aim to
avoid unphysiological input values that may lead to unrealistic discontinuities in the simulation re-
sults. It would also be possible in the future to estimate the input probability density functions in a
more patient-specific manner, by using given repeated clinical measurements of patient-specific tar-
gets, such as systolic and diastolic blood pressure, intracranial pressure, intraocular pressure etc.
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Figure 7. Normal probability density function of the input retrolaminar tissue pressure
(RLTp).

3. Results

In this section, we present two virtual studies using the OMVS described in section 2.1 and em-
ploying the two methods described in section 2.2. The input data assumptions have been discussed in
section 2.3. In particular, in the first study, we will use uncertainty propagation, while in the second
one, we will run a sensitivity analysis on the model.

3.1. Uncertainty propagation study

We completed three different sets of N = 10000 evaluations of the model using only the IOP as a
stochastic input distribution. For the RTLp we fixed its value for the three sets at 9.5 mmHg (mean
value provided by [43]). These three sets of evaluations differ from each other by the blood pressure
value imposed; we selected three cases of clinical interest-in the same spirit as in [15]:

1) baseline subjects with a systolic/diastolic blood pressure of 120/80 mmHg;

2) low blood pressure subjects with SP = 100 mmHg and DP = 70 mmHg;

3) high blood pressure subjects with SP/DP = 140/90 mmHg.
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Recall that the outputs on which we focus for the UQ study are listed in Table 2.
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(a) Peak systolic CRA blood flow.
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(b) End systolic CRA blood flow.
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(c) End diastolic CRA blood flow.
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(d) Peak systolic CRV blood flow.
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(e) End systolic CRV blood flow.
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(f) End diastolic CRV blood flow.
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(g) Peak systolic LC blood flow.
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(h) End systolic LC blood flow.
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(i) End diastolic LC blood flow.

Figure 8. Output probability density functions predicted by the OMVS for three virtual
populations: baseline subjects with normal SP and DP values (blue), low blood pressure
subjects (orange), and high blood pressure subjects (green).

Numerical simulations Figure 8 shows the computed probability density functions for the three
different locations we selected (CRA, CRV and LC), for three different time instants (peak systole,
end systole and end diastole), and for the three populations of clinical interest (low, baseline and high
blood pressure). We also report the simulated mean and standard deviation for each computed output
in Table 3. Thus, we highlight that:

• as expected, in each location and for all time instants, blood flow values decrease as we move
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(b) End diastolic LC blood flow.

Figure 9. Boxplots of the end diastolic blood flow in the CRV and the lamina cribrosa
predicted by the OMVS for three virtual populations: baseline subjects with normal SP and
DP values, low blood pressure subjects, and high blood pressure subjects.

from low to baseline and high blood pressure populations;

• for the simulated CRA blood flow, the three populations (baseline, low and high) have distinct
pdfs at all evaluated time instants (peak systolic, end systolic, end diastolic), and present a signif-
icant asymmetry;

• for the simulated CRV blood flow, we have well established different pdfs at peak and end systole.
We remark that within the veins we have a delayed peak of blood flows and CRV es values higher
than CRV ps values (Table 3), in good agreement with experimentally observed patterns in time
velocity curves acquired with Doppler imaging. The CRV blood flow pdf at end diastole exhibits
a peculiar shape: a peak of frequencies for high values and a plateau in the number of realizations
for low values separated by an almost empty frequency area of relatively middle values. Even if
the clinical interpretation of these distributions is difficult, it is interesting to observe that these
results suggest a different repartition of frequencies between the three cases, in particular, for
low blood pressures, the high values peak is narrower and the plateau is wider and with more
realizations than the high blood pressure case. This fact is confirmed by the boxplot in Figure 9a:
the tail of CRV blood flow low values is within the first and third quantile range for the low blood
pressure case, whereas this tail is composed just by outliers for baseline and high blood pressure
populations;

• for the LC blood flow, the OMVS suggests a similar analysis to CRV blood flow. The pdfs at peak,
and end systole are distinct, whereas at end diastole it shows a peak of frequencies at low values
and a more uniform distribution elsewhere. Also, Figure 8i points out that for only for the low
blood pressure virtual population a second peak and a considerable high number of frequencies
can be identified at high values. Similarly to the CRV analysis, we propose the boxplot for the
output LC ed in Figure 9b: as predicted by the pdf. The tail of high values in the low blood
pressure population is within the first and third quantile range. In contrast, the same tail consists
of only outliers for baseline and high blood pressure populations. Finally, the computed LC blood
flow variability is considerably lower than for the other two outputs (CRA and CRV) as reported
in Table 3.
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Table 3. Simulated mean and standard deviation for all the quantities of interest in the
uncertainty propagation study.

[µl/min] CRA ps CRA es CRA ed CRV ps CRV es CRV ed LC ps LC es LC ed

baseline 73.3 ± 1.0 32.8 ± 0.6 21.7 ± 1.7 43.6 ± 1.7 52.1 ± 0.3 31.7 ± 4.6 41.6 ± 0.1 25.5 ± 0.05 15.0 ± 0.5

low 59.6 ± 1.5 26.1 ± 0.9 10.6 ± 3.0 37.0 ± 2.4 42.9 ± 0.3 23.7 ± 6.3 34.6 ± 0.1 21.3 ± 0.08 13.6 ± 0.7

high 87.1 ± 0.8 39.5 ± 0.5 32.1 ± 0.8 51.1 ± 0.9 61.6 ± 0.4 38.3 ± 2.7 48.6 ± 0.07 29.8 ± 0.05 16.5 ± 0.3

3.2. Sobol’ index study

In this study, we utilize as random input variables the IOP, the retrolaminar tissue pressure (RLTp),
and the SP and DP to compute the Sobol’ indices using the distribution introduced in section 2.3. We
compute the Sobol’ first and total indices using the Saltelli algorithm [34] and the FAST first and total
indices [35]. We performed 5 analysis with increasing N = [1000, 2000, 5000, 7500, 10000]. The
stopping criteria is based on the absolute iterative error:

max
∀o∈O
{|idxn − idxn∗ |} (3.1)

where O = CRAps,es,ed, CRVps,es,ed, LCps,es,ed, idx are the first or total index for two consecutive choices
(n > n∗) in N . The final figures proposed have been obtained with n = 10000 where the error was less
than 4 · 10−2 for all input indices and using both algorithms to compute the results (see Table 4).

Table 4. Error based on Eq (3.1) computed between two consecutive choices of n ∈ N .

Input Monte-Carlo approach [34] FAST method [35]
first order index total order index first order index total order index

n = 2000, n∗ = 1000
IOP 0.332 0.009 0.012 0.012

RLTp 0.056 0.007 0.0004 0.006
MAP 0.092 0.090 0.032 0.0192

n = 5000, n∗ = 2000
IOP 0.129 0.017 0.035 0.017

RLTp 0.058 0.006 0.0004 0.008
MAP 0.076 0.063 0.031 0.012

n = 7500, n∗ = 5000
IOP 0.038 0.029 0.034 0.016

RLTp 0.028 0.003 0.0003 0.013
MAP 0.046 0.039 0.004 0.004

n = 10000, n∗ = 7500
IOP 0.037 0.014 0.006 0.005

RLTp 0.025 0.01 0.0002 0.006
MAP 0.02 0.017 0.007 0.007
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Numerical simulations Figure 10 report the Sobol indices using the Saltelli algorithm, while Figure
11 report the FAST indices.

(a) Peak systolic CRA blood flow. (b) End systolic CRA blood flow. (c) End diastolic CRA blood flow.

(d) Peak systolic CRV blood flow. (e) End systolic CRV blood flow. (f) End diastolic CRV blood flow.

(g) Peak systolic LC blood flow. (h) End systolic LC blood flow. (i) End diastolic LC blood flow.

Figure 10. Estimation of Sobol’ indices using the Monte-Carlo approach [34]. Red squares
represent first order indices, while blue squares represent total order indices.

For what concerns the Sobol’ indices, Figure 10a,b point out that the CRA blood flow at peak and
end systole is highly dependent on the value of the MAP, whereas the influence of IOP and RTLp
remains minimal. In Figure 10c, the results provided by the OMVS suggest that the CRA blood flow
at end diastole is highly influenced by the IOP, moderately by the MAP, and almost negligibly by the
RLTp. Moreover, in this case, we notice that the total order and first order, especially for the MAP,
are significantly different, meaning that high order interactions among parameters contribute to the
variance of this output.

For the CRV blood flow, Figure 10d illustrates that there is a high dependency of CRV ps on MAP
and only a moderate one from IOP. CRV es depends mainly on MAP (Figure 10e), and CRV ed is
highly dependent on the IOP and only mildly on the other two inputs (Figure 10f). Also, for CRV
blood flow at end diastole, we notice that high order interactions occur, especially for MAP and IOP.
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For the lamina cribrosa blood flow, the results provided by the OMVS sensitivity analysis suggest that
the MAP is the dominant factor with a moderate influence of the IOP only at end diastole (Figure
10g–i).

(a) Peak systolic CRA blood flow. (b) End systolic CRA blood flow. (c) End diastolic CRA blood flow.

(d) Peak systolic CRV blood flow. (e) End systolic CRV blood flow. (f) End diastolic CRV blood flow.

(g) Peak systolic LC blood flow. (h) End systolic LC blood flow. (i) End diastolic CRV blood flow.

Figure 11. Estimation of first and total Sobol’ indices using the FAST method [35]. Red
squares represent first order indices, while blue squares represent total order indices.

The FAST indices (Figure 11) suggest that CRA ps (Figure 11a), CRA es (Figure 11b) and LC ed
(Figure 11i) depend mainly on MAP and mildly on IOP and RLTp.

For what concerns the CRA ed (Figure 11c) and CRV ed (Figure 11f), they are highly influenced by
the IOP, moderately by MAP and negligibly little by the RLTp. In this case the first and total order—
especially for the IOP—are very different, implying that high order interactions are quite relevant to
explain the variability of the output.

Figure 11d suggests that CRV ps has a high dependency on MAP and a moderate one on IOP.
For CRV es (Figure 11e), LC ps (Figure 11g) and LC es (Figure 11h), the sensitivity analysis

results show that their variability is almost solely due to changes in MAP.
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4. Discussion

Hemodynamics in the ocular posterior tissue vasculature results from the combined effects of dif-
ferent factors. Specifically, ocular blood flow is driven by the difference between arterial and venous
blood pressure, is impeded by IOP and RTLp (directly related to cerebrospinal fluid pressure) and is
modulated by vascular regulation. Understanding these complex interrelated effects represents a major
challenge when interpreting results from various clinical studies in ophthalmology. The current contri-
bution introduces a network-based model in the framework of the Ocular Mathematical Simulator, that
couples retinal blood circulation with a simplified description of the LC hemodynamics. Further on,
the model is employed to theoretically assess the relative contribution of IOP, RTLp and MAP stochas-
tic variations on several clinically meaningful outputs characterizing hemodynamics in the CRA, CRV
and LC, by means of uncertainty propagation methods and variance-based sensitivity indexes.

The results suggest that the hemodynamic response of the CRA, CRV and LC vasculature to vari-
ations in IOP and RTLp presents noticeable differences among individuals with different blood pres-
sures, that strongly influences all the computed outputs. These model predictions are in good agreement
with the experimental findings in [23] and several theoretical studies [15–17], designed to elucidate
how and to which extent blood pressure is influencing the distribution of ocular hemodynamics. Note
that in a clinical setting, there is an intrinsic difficulty of evaluating the contribution of each factor and
the complex relationships among them.

The use of a lognormal distribution for the IOP translates into a non trivial interpretation of the
output, especially at the level of the CRV and LC due to the non-linear character of the model and the
complex interplay between factors (as pointed out in section 3.2). In this context, mathematical models
are crucial to reproduce these mechanisms and help to unveil their interpretation.

We have compared the CRA blood flow simulated results to other data in the literature. Our
results—Table3, in particular baseline where CRA ps = 73.3±1.0 µl/min, CRA es = 32.8±0.6 µl/min,
CRA ed = 21.7±1.7 µl/min—are in agreement with the experimental results of Dorner et al. [44] (CRA
mean blood flow of 38.1±9.1 µl/min) and Riva et al. [45,46] (CRA mean blood flow of 33±9.6 µl/min).

To compare our results with other clinical and mathematical studies that are more focused on the
CRA blood velocities, we set the hypothesis of CRA diameter of about 160 µm [44,47]. Using this as-
sumption, our simulations provide similar values for CRA blood flows than the one measured by Harris
et al. [30] (CRA ps = 120.6 µl/min, CRA ed = 30.1 µl/min) and the three virtual populations simulated
by Guidoboni et al. [15] (baseline: CRA ps = 119.4 µl/min, CRA ed = 33.7 µl/min; low: CRA ps
= 95.3 µl/min, CRA ed = 28.9 µl/min; high: CRA ps = 142.3 µl/min, CRA ed = 41.0 µl/min). This
comparison shows the quality of the results, albeit the simplicity of the model we have employed for
our study.

From the SA (section 3.2) we evince that, as expected, the CRA blood flow depends mainly by the
MAP, and only at end diastole—when the arterial pressure is at minimum—the IOP is affecting the
CRA results.

For the CRV, we compared the output CRV es results (Table 3) with total venous blood flow mea-
surements reported in the literature. The simulated baseline mean value (= 52.1 µl/min) agrees with
the experiments performed by Garcia et al. [48] (64.9±12.8 µl/min) and Feke et al. [49] (80±12 µl/min
for age 25–38 group, 73 ± 13 µl/min for age 54–58 group).

From a qualitative viewpoint, the analysis of the low values tail proposed in the numerical results
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paragraph may have an interesting physiological interpretation.
As described in section 2.1, IOP has a non-linear effect on the retinal vasculature, particularly on the

venous part. Following this reason, the CRV high values peak may represent the natural state when the
IOP is lower than the venous blood pressure, whereas the low values plateau denotes the collapse state.
This statement is consistent with the previous analysis where we found a uniform distribution for low
blood pressures and an important frequency in the peak for high blood pressures. The SA supports this
prediction: the dependency to IOP is significant not only at end diastole, but also at peak systole. In
contrast with the CRA, the CRV is a venous vessel, which blood pressure is lower therefore more easily
influenced by external pressures (e.g., IOP). These indices show also significant differences between
the first-order and the total-order index, which means that there are high-order interactions between
these parameters. This fact is not surprising but it appears as a consequence of incorporating the Star-
ling resistor effect [26], which is a crucial requirement to retrieve clinical data, as reviewed in [12].

For the lamina cribrosa hemodynamics, we highlight the fact that all mathematical results are cru-
cial in the investigation of disease because non-invasive measurements are not available nowadays for
this tissue. Following similar consideration made for the CRV, we notice an interesting physiological
interpretation following the uncertainty propagation study (section 3.1). For the low blood pressure
population, which is notably the most at risk for ocular neuropathies, the results may suggest that an
overperfusion of the lamina—with respect to the mean values of that population—occurs in more cases
than for the other two population. The simplicity of the model, as confirmed by the low variability in
the LC blood flows, does not allow us to clarify this fact. The SA (section 2.2) supports this analysis.
Sobol and FAST indices show a high dependency only due to the MAP, which can be not so intuitive
as for the CRA or the CRV, indeed we know that the pressure gradient across the LC (IOP − RLT p)
may influence the hemodynamics [50]. Further analysis by adding a three-dimensional hemodynami-
cal and biomechanical description of the lamina would certainly help in this investigation, in particular
to notice the impact of IOP and RLTp on LC blood flow.

Finally we discuss the estimates of the first and total indices using the Monte-Carlo and FAST ap-
proaches. For all considered quantities of interest, the two indices are suggesting similar outcomes,
which allows us also to cross-validate the results of our analysis. The main differences concern CRA ed
(Figures 10c and 11c) and CRV ed (Figures 10f and 11f), in particular on the high order interactions
between IOP and MAP - more emphasized for the FAST estimates. We privilege the results provided
by the Monte-Carlo estimates which are unbiased compared to the FAST method. Also, the latter has
the initial advantage of being more computationally efficient, but at the cost of extra assumptions of
smoothness in the model [51] that we are not currently able to verify for the OMVS.

5. Conclusions

Thanks to its special connection to the brain and its accessibility to measurements, the eye provides
a unique window on the brain, thereby offering non-invasive access to a large set of potential biomark-
ers that might help in the early diagnosis and clinical care of Neuro-Degenerative Diseases [52]. The
OMVS has already shown great potentiality to reproduce the ocular biomechanics and the hemody-
namics [20].

Pursuing this concept, in this contribution, we have proposed an uncertainty propagation study and
a sensitivity analysis to evaluate the impact of uncertainties on this ophthalmological virtual laboratory.
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First, we have set up a framework to perform a forward UQ analysis, which allowed us to evaluate the
effects of the propagation of uncertainty from input to output. Second, we completed a SA study based
on Sobol’ indices to capture the interplay between the different model parameters and their relative
importance. Finally, we have assessed qualitatively and quantitatively this computational framework
in view of clinical applications.

In the context of computational models, a coupled UQ/SA analysis is crucial for the scientific re-
search, especially in biology and medicine. The use of such mathematical framework may be employed
in the process of product development or diseases understanding, decreasing the number of physical
tests necessary and therefore the economic cost. The low fidelity model employed already provided
useful information for analysis, however this study must be pursued with higher fidelity models such
as System II and System III, see Figure 1b,1c respectively. The current methodology could thus be
further improved, in particular by (i) using a multilevel multifidelity estimator, as for instance the one
developed in Dakota toolkit, see [6, 53]; (ii) devising a reduced order modelling approach for the 3D
elastic and poroelastic models, following the reduced basis framework [54, 55], developed in the open
source software Feel++ [56, 57]. Finally, considering sensitivity indices over time, as in [11], as well
as characteristics instants, provides a promising perspective of the present work.
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