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Abstract: Accurate prediction of particulate matter (PM) using time series data is a challenging 

task. The recent advancements in sensor technology, computing devices, nonlinear computational 

tools, and machine learning (ML) approaches provide new opportunities for robust prediction of 

PM concentrations. In this study, we develop a hybrid model for forecasting PM10 and PM2.5 based 

on the multiscale characterization and ML techniques. At first, we use the empirical mode 

decomposition (EMD) algorithm for multiscale characterization of PM10 and PM2.5 by 

decomposing the original time series into numerous intrinsic mode functions (IMFs). Different 

individual ML algorithms such as random forest (RF), support vector regressor (SVR), k-nearest 

neighbors (kNN), feed forward neural network (FFNN), and AdaBoost are then used to develop 

EMD-ML models. The air quality time series data from Masfalah air station Makkah, Saudi Arabia 

are utilized for validating the EMD-ML models, and results are compared with non-hybrid ML 

models. The PMs (PM10 and PM2.5) concentrations data of Dehli, India are also utilized for 

validating the EMD-ML models. The performance of each model is evaluated using root mean 

square error (RMSE) and mean absolute error (MAE). The average bias in the predictive model is 

estimated using mean bias error (MBE). Obtained results reveal that EMD-FFNN model provides 

the lowest error rate for both PM10 (RMSE = 12.25 and MAE = 7.43) and PM2.5 (RMSE = 4.81 

and MAE = 3.02) using Misfalah, Makkah data whereas EMD-kNN model provides the lowest 

error rate for PM10 (RMSE = 20.56 and MAE = 12.87) and EMD-AdaBoost provides the lowest 

error rate for PM2.5 (RMSE = 15.29 and MAE = 9.45) using Dehli, India data. The findings also 

reveal that EMD-ML models can be effectively used in forecasting PM mass concentrations and 

to develop rapid air quality warning systems. 
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1. Introduction 

Atmospheric pollution is continuously increasing due to natural phenomena (volcanic activities, 

desert storms etc.) and immense anthropogenic (smoke of vehicles, industrial activities, fossil fuels for 

energy requirements etc.) pollution generating activities [1–3]. Air pollution has both short and long 

term health hazards. Irritation in the nose, eye, throat, allergic reactions, cough, and upper respiratory 

infections are examples of short term effects of air pollution. Cardiovascular dysfunctions, respiratory 

tract infections, and cancer are some of the widely putative long term effects of air pollution [4–6]. 

These diseases are correlated with millions of deaths globally each year [7,8]. Approximately 7 million 

people die due to household and environmental air pollution, 94% of which die in low and middle-

income countries [9]. The maximum burden of these deaths is observed in South East Asia (2.4 million) 

followed by Western Pacific (2.2 million) [9]. 

The impact of particles within the human respiratory system and in the atmosphere is largely 

governed by their size and generally by their other physical properties. Their size may vary from 

nanometers to tens of micrometers. Based on their size, particles may be categorized as fine particles 

(PM2.5 having a diameter of 2.5 micrometers (μm) or less) and coarse particles (PM10 having a diameter 

between 2.5 μm and 10 μm). Fine particles may further be categorized into ultrafine/nuclei mode (with 

a diameter from 0.01 μm to 0.1 μm) and accumulation mode (diameter from 0.1 μm to 1.0 μm). PM2.5 

is the most hazardous ambient air pollutant for human health [10]. High PM10 concentrations can cause 

premature death in older people with respiratory diseases and heart problems [11]. 

Air pollutants forecasting is an efficient way of protecting public health, as it provides an early 

warning against hazardous air pollutants [12]. Forecasting the levels of pollutants may be helpful to 

minimize the adverse health implications by reducing the exposure of these particles through timely 

alerts for the general public to take preventive measures. The atmospheric systems are inherently 

nonlinear, and pollutants are dynamically complex in nature [13], which makes the prediction of 

atmospheric pollutants a challenging task. The advances in digital electronics, computing, and sensor 

technologies led to accurate spatio-temporal monitoring and effective forecasting of atmospheric 

pollutants. Numerous techniques have been developed to forecast PM concentrations such as time 

series analysis, artificial intelligence (AI), linear or nonlinear regression, and chemical transport 

models [14]. However, hybrid forecasting models are more accurate and robust when compared to 

single forecasting models [14]. Chelani and Devotta [15] developed a hybrid model by combining the 

autoregressive integrated moving average model, which deals with linear patterns. The mass 

concentration time series data of atmospheric pollutants is an outcome of complex natural and 

anthropogenic activities evolving with time, which operate on multiple time scales [13]. Shah et al. [13] 

proposed a hybrid forecasting model based on the multiscale characterization of reconstructed phase space 

and machine learning (ML) techniques for the prediction of PM2.5 and PM10.0. Huang et al. [16] proposed 

empirical mode decomposition (EMD), to address the non-stationary and nonlinear behaviors present in 

the data which motivates practitioners and researchers to use it as an effective tool. The EMD is based 

on statistical modeling, which is another technique used for multiscale characterization and forecasting 

of nonlinear and nonstationary time series data [17–26]. In a study conducted at Xingtai in China, Zhu 

et al. [27] proposed two EMD based hybrid models (EMD-SVR-Hybrid and EMD-IMFs-Hybrid) to 

forecast air quality index (AQI) data. They compared the performance of proposed models with single 

forecasting models based separately on support vector regression (SVR), generalized regression neural 
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network (GRNN), autoregressive integrated moving average models (ARIMA), EMD-GRNN, 

Wavelet-SVR, and Wavelet-GRNN. They found that proposed hybrid models were superior and can 

be used for the forecasting of air pollution. In a study by [28], road traffic prediction was performed 

using EMD based convolution neural network (CNN) model. The results of the study show that 

prediction results of EMD based CNN model are more accurate than Lasso-BP, PCA-BP, and standard 

CNN models. Zhou et al. [29] developed a hybrid model (EEMD-GRENN) by utilizing ensemble 

EMD in combination with a regression neural network for the forecasting of PM2.5 in Xi’an, China. 

They compared the proposed model (EEMD-GRNN) with ARIMA, principal component regression 

(PCR), multiple linear regression (MLR), and GRNN and found that the performance of the EEMD-

GRNN model was much better than other models. In another study [30] proposed a novel hybrid 

decomposition and ensemble model by incorporating grey wolf optimizer (GWO), complementary 

ensemble EMD (CEEMD), and support vector regression (SVR). They compared the results of the 

proposed model with single AI models, hybrid decomposition ensemble model optimized by using 

different algorithms, and hybrid decomposition ensemble model with different decomposition methods. 

They achieved high prediction accuracy for PM2.5 concentrations using the proposed model. 

In this study, the EMD algorithm is combined with ML algorithms (random forest (RF), support 

vector regressor (SVR) with linear and radial kernels, k-nearest neighbors (kNN), feed forward neural 

network (FFNN), and AdaBoost) to develop EMD-ML models (EMD-RF, EMD-SVR-L, EMD-SVR-

R, EMD-kNN, EMD-FFNN, and EMD-AdaBoost) to forecast two types of PMs (PM10 and PM2.5) 

concentrations. To evaluate and compare the algorithms, monthly PM concentrations (PM10 and PM2.5) 

have been predicted. In EMD-ML models, EMD is employed to decompose original PMs time series 

data into several intrinsic mode functions (IMFs). Then the spearman coefficient correlation is used to 

select the IMFs having a strong correlation with the original time series and finally, ML algorithms are 

used to forecast monthly PMs concentrations using selected IMFs. Hourly averaged data from 

Masfalah air quality monitoring station of duration from January 2014 to September 2015 and hourly 

averaged data from Dehli city, India of duration from January 2018 to December 2019 have been used. 

Single forecasting models using simple RF, SVR-L, SVR-R, kNN, FFNN, and AdaBoost algorithms 

alone are also developed to forecast monthly PM (PM10 and PM2.5) concentrations of Masfalah air 

quality monitoring station using input data of pollutants (CO, NO2, and CO2) and meteorological 

parameters (temperature (Temp), wind speed (WS), and relative humidity (RH)). The results indicate 

that the EMD-ML models outperform the single models. EMD-FFNN model provides the lowest error 

rate for both PM10 (RMSE = 12.25 and MAE = 7.43) and PM2.5 (RMSE = 4.81 and MAE = 3.02) using 

Misfalah, Makkah data whereas EMD-kNN model provides the lowest error rate for PM10 (RMSE = 20.56 

and MAE = 12.87) and EMD-AdaBoost provides the lowest error rate for PM2.5 (RMSE = 15.29 and 

MAE = 9.45) using Dehli, India data. Therefore, EMD-ML models can be used in forecasting complex 

time series and to develop rapid air quality warning systems. 

The rest of the paper is organized as follows: First, we describe in detail the datasets used in this 

study along with the EMD-ML models’ flowchart and algorithm and other ML algorithms. Then the 

results of the study are presented and discussed followed by the conclusion section. 

2. Materials and method 

2.1. Data set 

The datasets used in this study were collected from the Masfalah air quality monitoring station 

(AQMS111) and were previously used by researchers [31]. The monitoring station is situated in the 

Holy city of Makkah, Saudi Arabia. The reason for selecting the Masfalah site is that it is very near to 
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the Holy Mosque (Al-Haram), a very busy area surrounded by shops and residential houses. The road 

near the monitoring station is very busy which emits almost all sorts of air pollutants. High levels of 

air pollutants pose a potential risk to the local residents, workers, and visitors. Therefore, it is important 

to monitor air quality in this area and carry out air quality health risk assessment. Hourly data from 

January 2014 to September 2015 monitored using Aeroqual AQM60 environmental station are used in 

this study. The data includes air pollutants (nitrogen dioxide (NO2) (μg/m3), carbon monoxide (CO) 

(mg/m3), and carbon dioxide (CO2) (PPM)), particulate matters (PM10 (μg/m3) and PM2.5 (μg/m3)) 

and meteorological parameters (temperature (Temp) (°C), wind speed (WS) (m/s) and relative 

humidity (RH) (%)).  

Strict quality assurance and quality control (QA/QC) measures are taken to ensure data quality [31]. 

The QA measures comprise a selection of monitoring site, correct instrument deployment, instrument 

selection, design of sample system, and appropriate training of operators. QC is maintained by steps 

such as calibration of the instrument and its response, routine site visits, monitoring calibration gases, 

data review, data testing, and authorization. 

Missing values and extreme pollutant cases (outliers) have been screened. According to [32] 

missing data can be handled by modeling the data as a distribution for its estimation, by deletion, and 

by imputation estimates. If data contains missing values < 5%, then any method can be used for the 

identification and correction of data [33]. Datasets used in this study contain missing values < 2%, and 

the deletion method has been used for handling missing data. Outliers present in the data are replaced 

with the mean value of specific month data. The outliers were identified by computing the z-score. The 

data values having a z-score greater than 2 standard deviation from the mean position were considered 

outliers. We use mean for imputing new value to handle extreme pollutant cases. 

The second datasets used in this study were obtained from an online source [34] and is collected 

from Dehli city, India. The datasets contain PMs (PM10 and PM2.5) concentrations data of duration 

from January 2018 to December 2019 and are utilized for validating the EMD-ML models. 

Figure 1. Air quality and meteorological monitoring sites map in Makkah, Saudi Arabia, 

AQMS 111 represents the site where the data used in this study were collected [35]. 

2.2. Empirical mode decomposition 

Huang et al. [16] proposed the EMD method to decompose non-linear and non-stationary signals 
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into various IMFs and a residual. Each IMF component of the original signal must satisfy two 

conditions. (a) The total number of zero-crossing and extrema must be equal or vary at most by one. 

(b) At all points, the envelope mean value defined by both local minima and local maxima must be 

zero. The steps involved in the EMD algorithm are as follows. 

Step 1: Identify all local minima and maxima of input time series data 𝑋(𝑇). By using cubic spline 

interpolation, generate lower envelop 𝐸𝑚𝑖𝑛(𝑇) using local minima and upper envelope 𝐸𝑚𝑎𝑥(𝑇) using 

local maxima. 

Step 2: Compute the mean of lower and upper envelopes 𝑀(𝑇) = ( 𝐸𝑚𝑖𝑛(𝑇)  +  𝐸𝑚𝑎𝑥(𝑇))/2.  

Step 3: Compute the candidate IMF 𝐺(𝑇)  by subtracting envelopes mean 𝑀(𝑇)  from original 

input time series data 𝑋(𝑇) . If 𝐺(𝑇)  satisfied the above mentioned conditions of IMF, 𝐺(𝑇)  is 

considered as ith IMF and residual 𝑅(𝑇) is substituted for the original time series data 𝑋(𝑇) as 𝑅(𝑇) =
𝑋(𝑇) –  𝐺(𝑇). 

Step 4: If candidate IMF 𝐺(𝑇) does not meet the above mentioned conditions of IMF, replace the 

original input time series data 𝑋(𝑇) with 𝐺(𝑇).  

Step 5: Repeat step (1–4) until the residual 𝑅(𝑇) becomes a constant value or monotonic function, 

or there is no more IMF to extract from residual 𝑅(𝑇). 

2.2.1. Hybrid EMD-ML models 

Hybrid EMD-ML models are developed by incorporating traditional EMD, correlated IMFs, and 

ML algorithms (RF, SVR-L, SVR-R, kNN, FFNN, and AdaBoost) for improved forecasting. For this 

purpose IMF components (generated through EMD) selected using the spearman correlation 

coefficient are used to predict each original time series. The whole process in the development of each 

EMD-ML model (EMD-RF, EMD-SVR-L, EMD-SVR-R, EMD-kNN, EMD-FFNN, and EMD-

AdaBoost) is illustrated in Figure 2. 

2.3. Learning algorithms 

In this section, five learning algorithms used in this study are explained. 

2.3.1. Feed-forward neural network (FFNN) 

The artificial neural network (ANN) concept is based on a biological neural network of the human 

brain. The ANN is a computer model used to recognize relations or patterns among data [36]. Two 

main components of the ANN are a set of nodes and node links.  

The feed forward neural network (FFNN) is the simplest form of ANN. In FFNN, data/input flow 

in one direction only. The FFNN has multiple processing elements (neurons). The neurons are linked 

to each other through weights. The FFNN comprises of input, hidden, and output layer(s). At the input 

layer, various input parameters are passed, also the aggregated weighted values are applied to hidden 

layer neurons. The hidden layer(s) is the intermediated layer between the input and output layers. It 

performs intermediate calculations. The aggregated weighted values computed at the hidden layer are 

applied to the output layers. The output layer produces the final output. The output Y obtained (at the 

output layer) is given as: 

𝑌 = 𝜔{𝛽0 + ∑ 𝛽𝑖
𝑗
𝑖=1 𝛷(𝛼𝑖0 + ∑ 𝛼𝑖𝑘

𝑙
𝑘=1 𝐴𝑘))}   (1) 

where (𝛽0, 𝛽1, … … … , 𝛽j, α10, … … … , α𝑗𝑙)  are weight and bias parameters, respectively. 𝛷  and ω 

represent the activation functions that are applied at the hidden layer as well as the output layer. 𝐴𝑘 are 
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the input values for each input neuron 𝑘. We used 100 neurons in the hidden layer with the logistic 

activation function to develop the FFNN model. 

2.3.2. Adaptive boosting (AdaBoost) 

Adaptive boosting (AdaBoost) is the first effective boosting algorithm proposed by [37]. 

AdaBoost produces weak learners by adjusting each weak learner’s weights adaptively. AdaBoost 

raises the weight of misclassified samples after training a weak learner such that these samples 

contribute more in the next weak learner training set. The AdaBoost predictions are made by majority 

voting of the weak learners’ outcomes. Therefore, AdaBoost mainly works by generating expanding 

diversity that can enhance prediction performance. 

Figure 2. Block diagram of the EMD-ML forecasting model. 

2.3.3. Random forest (RF) 

Random forest (RF) is a type of ensemble learning algorithm, proposed by [38]. The RF algorithm 

depends on the classification and regression trees (CART) model. The aim of CART is to learn the 

relation between a dependent (X) and a series of predictor (Y) variables. The RF algorithm is built on 

a multitude of decision trees, which are then aggregated into a forest. First, each tree is constructed 
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according to the bagging method on a random sample of the observations. Secondly, a random 

collection of features is chosen to separate nodes for each forest tree (feature sampling). Eventually, 

the trees are aggregated in order to use the model for prediction. This is achieved by averaging the 

results. In this study 10 number of trees are used to construct RF predictive model. 

2.3.4. k-nearest neighbor (kNN) 

k-Nearest Neighbor (kNN) [39] algorithm is based on distance function (e.g. Euclidean distance) 

and is used to classify data with respect to their 𝑘 nearest neighbor. Let [(𝑥1, 𝑦1), … , (𝑥𝑙 , 𝑦𝑙)], be a 

training set, the kNN regression model prediction is defined as 𝑓k𝑁𝑁(𝑥′) =
1

𝑘
∑ 𝑦𝑖𝑖∈𝑁𝑘(𝑥′)  . 𝑁𝑘(𝑥′) 

contains k-nearest neighbors indices of 𝑥′. Bailey and AJ [40] introduces a distance-weighted variant 

method to smooth down the prediction function by weighting the prediction with the similarity 

∆(𝑥′, 𝑥𝑖) of the nearest patterns 𝑥𝑖with 𝑖 ∈ 𝑁𝑘(𝑥′) to the target 𝑥′ as 

𝑓wk𝑁𝑁(𝑥′) = ∑
∆(𝑥′,𝑥𝑖)

∑ ∆(𝑥′,𝑥𝑖)
𝑗∈𝑁𝑘(𝑥′)

𝑦𝑖𝑖∈𝑁𝑘(𝑥′)    (2) 

where the model 𝑓wk𝑁𝑁 introduces a continuous output. The contribution of patterns closer to the target 

in the prediction should be more than other patterns. The similarity in term of the distance between 

patterns can be defined as: 

∆(𝑥′, 𝑥𝑖) =
1

||𝑥′−𝑥𝑖||2      (3) 

In this study, k = 3 is used to construct the kNN model. 

2.3.5. Support vector regressor (SVR) 

Let [(𝑥1, 𝑦1), … , (𝑥𝑙 , 𝑦𝑙)] be a set of training data, where each 𝑥𝑖 ⊂ 𝑅𝑛 denotes the input samples 

along with conforming target value 𝑦𝑖 ⊂ 𝑅  for 𝑖 = 1, … , 𝑙  (𝑙  is the size of training data) [41]. The 

generic form of SVR estimating function is: 

𝑓 (𝑥)  =  (𝑤 ⋅ 𝛷(𝑥))  +  𝑏     (4) 

In the above equation, 𝑤 ⊂ 𝑅𝑛, 𝑏 ⊂ 𝑅 and 𝛷 represents the non-linear transformation from 𝑅𝑛 

to high dimensional space. The objective is to identify the 𝑤 and 𝑏 in order to determine the values of 

𝑥 by minimizing the regression risk. 

𝑅𝑟𝑒𝑔 (𝑓) = 𝐶 ∑ 𝛤𝑙
𝑖=0 (𝑓(𝑥𝑖) − 𝑦𝑖) +

1

2
||𝑤||2   (5) 

𝐶 is a constant, 𝛤 represents a cost function. In terms of data points, vector 𝑤 can be written as: 

𝑤 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝛷(𝑥𝑖)𝑙

𝑖=1      (6) 

The generic equation using Eqs 4 and 6 can be rewritten as: 

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)(𝛷(𝑥𝑖). 𝛷(𝑥)) + 𝑏𝑙

𝑖=1    (7) 

= ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝑥𝑖 , 𝑥) + 𝑏𝑙

𝑖=1      (8) 

𝑘(𝑥𝑖 , 𝑥) indicates the kernel function. 

The dot product in Eq (7) can be replaced with kernel function 𝑘(𝑥𝑖 , 𝑥) . The mathematical 

representations of kernel functions used in this study are as follows. 

Linear:  𝑘(𝑥1, 𝑥2)= 𝑥1
𝑇𝑥2    (9) 
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Radial:  𝑘(𝑥1, 𝑥2) = 𝑒−𝛾||𝑥1−𝑥2||2
           (10) 

SVR with a linear kernel is termed as SVR-L and SVR with the radial kernel is termed as SVR-R. 

2.4. Evaluation measures 

The root mean square error (RMSE) and mean absolute error (MAE) is the most commonly used 

measures for evaluating the performance of predictive models. The range of both measures is from 0 

to ∞, lowest values show that the predicted model's performance is better. The RMSE can be 

determined by taking the square root of mean square error (MSE) and can provide a complete error 

distribution scenario. MAE is the average of absolute differences between the actual and predicted 

values. Mean bias error (MBE) is also used to estimate the average bias in the model or average 

forecasting error. MBE represents the systematic error of the forecasting model to over or under 

forecast. The positive value of MBE represents the over-forecast of the model whereas the negative 

value represents the under-forecast of the model. The mathematical equations used for computing 

RMSE, MAE, and MBE are given below. 

𝑅𝑀𝑆𝐸 =  √
1

𝑇
∑ (𝑋𝑇 − 𝑃𝑇)2𝑇

𝑖=1      (11) 

𝑀𝐴𝐸 =  
1

𝑇
∑ (|𝑋𝑇 − 𝑃𝑇|)𝑇

𝑖=1      (12) 

𝑀𝐵𝐸 =  
1

𝑇
∑ (𝑃𝑇 − 𝑋𝑇)𝑇

𝑖=1      (13) 

where 𝑋𝑇 represents the target (expected) values and 𝑃𝑇 is the model’s predicted values. 

3. Results 

In the first phase of each of the EMD-ML models, EMD is used to extract the data 

characteristics of PM10 and PM2.5 time series by decomposing the historical data as presented in 

Figure 2 and discussed before. EMD algorithm is applied on both PMs (PM10 and PM2.5) time-

series data of Misfalah, Makkah, and 14 IMFs along-with a single residual has been generated for 

each of the time-series data. Similarly, the EMD algorithm is applied on both PMs (PM10 and PM2.5) 

time-series data of Dehli, India, and 11 IMFs along-with a single residual for PM10 and 12 IMFs 

along-with a single residual for PM2.5 have been generated. Figure 3(a) plots the decomposed IMFs 

and residuals of original PMs time series data of Misfalah, Makkah, and Figure 3(b) plots the 

decomposed IMFs and residuals of original PMs time series data of Dehli, India. IMF1 (with the 

highest frequency), represents the high time variant of the original data, and the residual (with the 

lowest frequency) represents the trend of the original data. 

IMF components of each time series data might have a strong or weak correlation with the 

original data. To find out the correlation between IMF components and original data, Spearman 

correlation coefficient is computed and coefficient values of both PMs (PM10 and PM2.5) IMFs and 

residual are summarized in Table 1. The bold values in the table indicate a weak correlation (values 

less than 0.15). 
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Figure 3(a). Decomposed IMFs and residuals of original PM10 and PM2.5 time series data 

of Misfalah, Makkah. 

Table 1 shows that for PM10 time series data of Misfalah, Makkah, IMF3-IMF11 and IMF13-

IMF14 have a strong correlation with original data and for PM2.5 data of Misfalah, Makkah, 

IMF2-IMF14 and residual have a strong correlation with original data. For PM10 data of Dehli, 

India, IMF2-IMF8, and IMF10-IMF11 have a strong correlation with original data and for PM2.5 

data of Dehli, India, IMF3-IMF4, and IMF6-IMF12 have a strong correlation with original data.  

Therefore, in the second phase of EMD-ML models, only these IMFs are given to ML 

algorithms for the prediction of each time-series data. 
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Figure 3(b). Decomposed IMFs and residuals of original PM10 and PM2.5 time series 

data of Dehli, India. 

To forecast both PM10 and PM2.5 time series of Misfalah, Makkah, selected IMFs data (length of each 

IMF is the same as the original data) and original data are organized according to the following settings. 

Setting 1: The selected IMFs and original data are divided into two sets namely the train-set and the 

test-set. The train-set consists of the selected IMFs and original data from January 2014 to August 2015, 

while the test-set comprises of selected IMFs and original data from September 2015.  
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Setting 2: The selected IMFs and original data are organized in 10-fold cross-validation (CV) 

fashion. In 10-fold CV the samples are randomly partitioned into 10 equal portions; nine of which 

are used as train-set and one as test-set. The procedure is repeated 10 times so each portion is used 

once for validation. 

The design of the ML algorithms (RF, SVR-L, SVR-R, kNN, FFNN, and AdaBoost) follows 

the configurations detailed in the section learning algorithms and hybrid EMD-ML models. RMSE, 

MAE, and MBE measures are computed to evaluate the performances of learning algorithms used 

for forecasting PM10 and PM2.5 time series. The exemplary plots of actual and predicted values of 

PM10 and PM2.5 using EMD-ML models and single forecasting models (RF, SVR-L, SVR-R, kNN, 

FFNN, and AdaBoost) according to both settings of data mentioned above are illustrated in Figure 4. 

The prediction curve produced by each of the EMD-ML models using setting 1 fits better at many 

points and followed the trend of actual values in a quite better way for both PM10 and PM2.5 

concentration as compared to single forecasting models. As the trend of predicted values using 

each of the EMD-ML models is quite closer to actual values which clearly showed that the hybrid  

EMD-ML models can better forecast PMs concentrations. Among all EMD-ML models, EMD-

FFNN model using setting 1 provides better prediction of both PMs. 

Similarly for forecasting both PM10 and PM2.5 time series of Dehli, India, selected IMFs data 

(length of each IMF is the same as the original data) and original data are organized according to 

setting 1 and setting 2, but in setting 1 the train-set consists of the selected IMFs and original data 

from January 2018 to November 2019, while the test-set comprises of selected IMFs and original 

data of December 2019.  

The design of the ML algorithms (RF, SVR-L, SVR-R, kNN, FFNN, and AdaBoost) follows 

the configurations detailed in the section learning algorithms and hybrid EMD-ML models. RMSE, 

MAE, and MBE measures are computed to evaluate the performances of learning algorithms used 

for forecasting PM10 and PM2.5 time series. The exemplary plots of actual and predicted values of 

PM10 and PM2.5 using EMD-ML models according to both setting 1 and setting 2 are illustrated in 

Figure 5. The prediction curve produced by each of the EMD-ML models using setting 2 fits better 

Table 1. Spearman correlation coefficient values of IMFs and residuals for both PMs. 

IMFs 
Misfalah, Makkah Data Dehli, India Data 

PM10 PM2.5 PM10 PM2.5 

IMF1 0.11 0.14 0.06 0.04 

IMF2 0.07 0.17 0.19 0.13 

IMF3 0.16 0.19 0.26 0.27 

IMF4 0.25 0.32 0.19 0.18 

IMF5 0.29 0.26 0.19 0.14 

IMF6 0.21 0.20 0.26 0.18 

IMF7 0.19 0.23 0.31 0.22 

IMF8 0.17 0.26 0.20 0.17 

IMF9 0.22 0.24 0.14 0.17 

IMF10 0.22 0.24 0.58 0.22 

IMF11 0.21 0.27 0.47 0.53 

IMF12 0.09 0.15 ------- 0.63 

IMF13 0.18 0.18 ------- ------- 

IMF14 0.35 0.22 ------- ------- 

Res. 0.09 0.16 -0.04 -0.07 
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at many points and followed the trend of actual values in a quite better way for both PM 10 and 

PM2.5 concentrations. As the trend of predicted values using each of the EMD-ML models is quite.  

The scatter plot of observed and predicted values (prediction has been done using EMD-ML  

closer to actual values which clearly showed that the hybrid EMD-ML models can better forecast 

PMs concentrations. Among all EMD-ML models, the EMD-kNN model using setting 2 for PM10 

and EMD-AdaBoost model using setting 2 for PM2.5 provides better prediction.models) of both 

PM10 and PM2.5 concentrations are presented in Figure 6. The figure shows a good agreement 

between observed and predicted values.  

In Table 2, prediction results of both PM10 and PM2.5 using setting 1 and setting 2 in terms of 

RMSE, MAE, and MBE based on EMD-ML models and single forecasting models are presented 

for Misfalah, Makkah. It is clear from the table that EMD-ML models using setting 1 produced 

lower errors against forecasted values of both PM10 and PM2.5 as compared to setting 2 and 

traditional single forecasting models. The lowest error rate in terms of RMSE and MAE for both 

PM10 (RMSE = 12.26 and MAE = 7.43) and PM2.5 (RMSE = 4.81 and MAE = 3.02) have been 

achieved using the EMD-FFNN model. In the case of single models the lowest error rate in terms 

of RMSE and MAE for PM10 (RMSE = 22.18 and MAE = 11.98) has been achieved using the RF 

model and setting 1 and for PM2.5 (RMSE = 11.88 and MAE = 8.28) has been achieved using FFNN 

model and setting 1. The results clearly show that hybrid models with setting 1 of data are the 

robust choice for the prediction of PM concentrations of Misfalah, Makkah.  

MBE represents the systematic error of the forecasting model to over or under forecast.  The 

positive value of MBE represents that the predictive model is overestimated and vice versa. The 

MBE values present in Table 2 are considerably better showing no bias for models RF, kNN, FFNN, 

and AdaBoost. The SVR-L and SVR-R models exhibited the highest MBE values showing model 

bias which needs to be filtered out. 

In Table 3, EMD-ML models based prediction results of both PM10 and PM2.5 using setting 1 

and setting 2 in terms of RMSE, MAE, and MBE are presented for Dehli, India. It is clear from 

the table that EMD-ML models using setting 2 produced lower errors against forecasted values of 

both PM10 and PM2.5 as compared to setting 1. The lowest error rate in terms of RMSE and MAE 

for PM10 (RMSE = 20.56 and MAE = 12.87) and PM2.5 (RMSE = 15.29 and MAE = 9.45) have 

been achieved using EMD-kNN and EMD-AdaBoost models respectively. The results clearly show 

that hybrid models with setting 2 of data are the robust choice for the prediction of PM 

concentrations of Dehli, India data. 

MBE represents the systematic error of the forecasting model to over or under forecast. The 

positive value of MBE represents that the predictive model is overestimated and vice versa. The 

MBE values present in Table 3 are considerably better showing no bias for models each model 

against setting 2. Various EMD-ML models for PM10 and PM2.5 using setting 1, exhibited the 

highest MBE values showing model bias which needs to be filtered out.  

The feasibility of EMD-ML models (EMD-RF, EMD-SVR-L, EMD-SVR-R, EMD-kNN, 

EMD-FFNN, EMD-AdaBoost) lies in the following two points. First, the PMs (PM10 and PM2.5) 

concentrations, which are non-stationary and non-linear, can be decomposed into various IMFs 

using the EMD algorithm. Thus, IMFs having a strong correlation with original data can be used 
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Table 2. Performance of the predictive models using Misfalah, Makkah data in terms of 

RMSE, MAE, and MBE. 

Model 
setting 1 setting 2 

RMSE MAE MBE RMSE MAE MBE 

PM10 using EMD-ML models 

RF 13.89 9.64 2.34 19.30 8.20 -1.91 

SVR-R 58.99 57.73 56.21 52.75 49.09 71.89 

kNN 14.29 9.78 -0.72 20.39 7.70 -3.13 

FFNN 12.26 7.43 2.36 17.91 8.38 -2.65 

AdaBoost 13.49 8.75 0.96 21.54 7.74 -3.51 

PM2.5 using EMD-ML models 

RF 8.88 6.48 -0.51 6.77 4.08 -0.44 

SVR-L 19.63 18.49 -40.79 18.18 14.15 18.75 

SVR-R 10.44 8.54 31.04 10.81 7.24 103.65 

kNN 9.66 6.95 -16.20 5.89 3.46 -0.57 

FFNN 4.81 3.02 -0.96 5.28 3.10 0.22 

AdaBoost 7.84 5.99 4.49 6.35 3.59 -0.61 

PM10 using single forecasting models 

RF 22.18 11.98 0.12 27.74 11.93 -0.02 

SVR-L 66.19 64.49 -49.29 63.03 58.69 -3.30 

SVR-R 75.66 73.83 28.21 75.56 72.43 3.43 

kNN 22.65 12.47 -0.24 29.82 12.24 -0.18 

FFNN 22.74 11.57 0.30 28.05 12.97 0.04 

AdaBoost 23.11 11.79 -0.69 27.21 9.94 -0.29 

PM2.5 using single forecasting models 

RF 14.44 9.50 -1.32 11.88 7.13 4.34 

SVR-L 48.69 46.63 -18.48 56.30 50.50 -46.26 

SVR-R 42.01 37.38 7.85 38.11 33.55 36.26 

kNN 13.75 9.52 1.72 13.23 7.57 2.63 

FFNN 11.88 8.28 0.13 13.45 8.48 3.30 

AdaBoost 12.87 8.84 -1.89 11.91 6.28 3.57 

Table 3. Performance of the predictive models using Dehli, India data in terms of RMSE, MAE, and MBE.  

Model 
setting 1 setting 2 

RMSE MAE MBE RMSE MAE MBE 

PM10 using EMD-ML models 

RF 74.97 60.89 35.53 28.93 19.40 0.20 

SVM-L 63.10 54.40 52.47 58.34 46.57 0.57 

SVM-R 121.82 103.66 66.64 163.47 142.88 3.55 

kNN 82.45 69.46 57.73 20.56 12.87 0.13 

FNN 95.03 88.84 88.79 37.89 28.37 0.31 

AdaBoost 83.38 67.13 50.61 23.27 15.47 0.16 

PM2.5 using EMD-ML models 

RF 68.02 53.04 0.57 17.48 10.89 0.05 

SVM-L 59.62 48.51 53.65 51.06 43.22 -0.39 

SVM-R 70.97 60.02 67.47 126.00 116.08 44.50 

kNN 65.61 50.52 -0.86 16.00 9.02 -0.25 

FNN 45.64 32.61 0.12 27.69 17.66 0.21 

AdaBoost 67.59 53.57 -2.97 15.29 9.45 -0.76 
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as input for EMD-ML models. Second, the EMD-ML models are well suited for time-series data 

prediction and have achieved significant results in various fields like wind speed forecasting [19], 

Chinese currency exchange rates forecasting [20], energy time series forecasting [21], rotating 

machinery structural faults detection [24], sudden cardiac death (SCD) prediction [26], and air quality 

index forecasting [27]. In comparison with the study of [27] which suggests EMD-SVR-Hybrid as an 

optimal predictive model for the forecasting of daily AQI with RMSE = 24.46 and MAE = 18.10, the 

performance of EMD-ML models used in this study is quite better (optimal predictive model is EMD-

FFNN with RMSE = 12.26 and MAE = 7.43 for forecasting PM10 and RMSE = 4.81 and MAE = 3.02 

for forecasting PM2.5). Similarly, in comparison with [29] study which utilizes ensemble EMD in 

combination with regression neural network (EEMD-GRNN) for the forecasting of PM2.5, with 

RMSE = 29.41 and MAE = 19.80, the performance of EMD-ML models used in this study is quite 

better for forecasting both PM10 and PM2.5. 

In general, EMD-ML models can be better than single forecasting models for the prediction of 

PMs (PM10 and PM2.5) concentrations. The results of the current study verify the validity and feasibility 

of EMD-ML models.  

Figure 4. Comparison of actual and predicted curves for predicting A) PM10 time series 

data using each of EMD-ML model and setting 1, B) PM10 time series data using each 

single forecasting models and setting 1, C) PM10 time series data using each of EMD-ML 

model and setting 2, D) PM10 time series data using each single forecasting models and 

setting 2, E) PM2.5 time series data using each of EMD-ML model and setting 1, F) PM2.5 

time series data using each single forecasting models and setting 1, G) PM2.5 time series 

data using each of EMD-ML model and setting 2, H) PM2.5 time series data using each 

single forecasting models and setting 2. 
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Figure 5. Comparison of actual and predicted curves for predicting A) PM10 time series 

data using each of EMD-ML models and setting 1, B) PM10 time series data using each of 

EMD-ML models and setting 2, C) PM2.5 time series data using each of EMD-ML models 

and setting 1, D) PM2.5 time series data using each of EMD-ML models and setting 2. 

Figure 6. A) Scatter plot of observed and predicted values of Misfalah, Makkah PM10 time 

series, B) Scatter plot of observed and predicted values of Misfalah, Makkah PM2.5 time 

series, C) Scatter plot of observed and predicted values of Dehli, India PM10 time series, 

D) Scatter plot of observed and predicted values of Dehli, India PM2.5 time series. 

A B 

C D 
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4. Conclusions 

In this study, the EMD algorithm was applied to address the trends and random behavior of time 

series data to enhance the accuracy of PM forecasting. This study attempted to improve ML model 

prediction by coupling them with the EMD procedure. The EMD algorithm is used for multiscale 

characterization of PM10 and PM2.5 by decomposing the original time series into numerous IMFs. We 

used Spearman’s correlation coefficient to select strong correlated IMFs of PM10 and PM2.5 to build a 

predictive model. The air quality time series data from Masfalah air station Makkah, Saudi Arabia, 

and Dehli city, India are utilized for the validation of the developed hybrid model. Firstly, the EMD 

based predictive models are applied to predict monthly PMs (PM10 and PM2.5). For the hybridized 

models, the original time series data are decomposed into fourteen IMFs and one residual for the PMs 

modeling process. The non-hybridized RF, SVR-L, SVR-R, kNN, FFNN, and AdaBoost models are 

also applied to forecast monthly PM (PM10 and PM2.5) using input data of pollutants (CO, NO2, and 

CO2), PMs (PM10 and PM2.5), and meteorological factors (Temp, WS, and RH). The results 

demonstrated that correlated IMFs incorporated in EMD-ML models provide more prediction abilities 

of PMs and should be recommended to forecast PMs concentrations. 

The EMD-ML models have accomplished good predictive performance and can be applied for 

the prediction of other pollutants present in the air as well as for other time-series data such as 

biological signals, financial time series, and energy time series. Other versions of EMD such as 

ensemble EMD (EEMD), complete ensemble empirical mode decomposition with adaptive noise 

(CEEMDAN), and multivariate EMD (MEMD) can also be used instead of EMD in EMD-ML models. 
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