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Abstract: As a typical fine-grained image recognition task, flower category recognition is one of 
the most popular research topics in the field of computer vision and forestry informatization. 
Although the image recognition method based on Deep Convolutional Neural Network (DCNNs) 
has achieved acceptable performance on natural scene image, there are still shortcomings such as 
lack of training samples, intra-class similarity and low accuracy in flowers category recognition. In 
this paper, we study deep learning-based flowers’ category recognition problem, and propose a 
novel attention-driven deep learning model to solve it. Specifically, since training the deep learning 
model usually requires massive training samples, we perform image augmentation for the training 
sample by using image rotation and cropping. The augmented images and the original image are 
merged as a training set. Then, inspired by the mechanism of human visual attention, we propose a 
visual attention-driven deep residual neural network, which is composed of multiple weighted 
visual attention learning blocks. Each visual attention learning block is composed by a residual 
connection and an attention connection to enhance the learning ability and discriminating ability of 
the whole network. Finally, the model is training in the fusion training set and recognize flowers in 
the testing set. We verify the performance of our new method on public Flowers 17 dataset and it 
achieves the recognition accuracy of 85.7%. 
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1. Introduction  

The main purpose of flower recognition is to make judgments of flower category though some 
flower attributes, such as color, texture and semantics, which plays an important role in the fields of 
forestry informatization and plant medicine [1]. Different from classical image recognition [2–4], 
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flower category recognition is a typical fine-grained image recognition task, which requires model 
have strong inter-class and intra class discrimination capabilities, and also is a popular research topic 
in the fields of computer vision, pattern recognition and forestry informatization. 

In recent years, deep learning [5] has achieved great success in computer vision, multimedia 
signal processing and natural language processing [6]. Although there are many classification 
methods in the literature [7–9], Deep Convolutional network (DCCN), as the most outstanding 
representative of deep learning, has been widely used in image classification, scene recognition, 
semantic information extraction, and still maintains the current best results [10,11]. In the view of 
this, some researchers have applied DCNN to the problem of flower category recognition and 
achieved good performance [12,13]. Although the methods based on DCNN can improve the 
accuracy and speed of flower category recognition, it still has 3 main problems: 1) The number of 
training samples is insufficient. DCNN always contains a lot of parameters, and training deep 
models in a small dataset is much challenging due to the over-fitting problem. Unfortunately, there 
have no public dataset with sufficient types and quantities at the same time in flower category 
recognition task, which directly limits the performance of the model. Even if the problem can be 
mitigated by data augmentation or fine-tuning on ImageNet, the useful information contained in 
the dataset is not increased. 2) Low recognition accuracy. Flower category recognition is a 
fine-grained image recognition task and has the characteristics such as high similarity between 
heterogeneous flowers. In addition, due to the complexity and variability of the natural 
environment, the pose and view angle of flowers may change unpredictably, which makes model 
difficult to train and the performance poor. 3) The background of image is complicated. Flower 
images collected from nature always have complex backgrounds and contain many noise, which 
may limit the recognition performance of deep learning models. 

To enable deep learning quickly focus on the key points of the input data, self-attention 
mechanism-based model has been developed and successfully applied to many tasks, such as natural 
language processing and human-machine dialogue [14]. Human can quickly scan the visual 
information and obtain the attention target area. Not only that, but people pay more attention to the 
target area to get more detailed information and suppress other useless things, which is a survival 
mechanism formed by humans over a long period of evolution. Therefore, we proposed a novel 
flower recognition method based on attention mechanism (Visual Attentional-driven DCNNs, 
VA-DCNNs), which can effectively identify flower species accurately. The model is mainly divided 
into four-fold. Firstly, due to deep learning method always need massive training data to guarantee 
the performance, we adopt data augmentation techniques to increase samples. We rotate the picture 
in a clockwise angle and clip along the middle, which will be fuse with original samples as the 
training set for the experiments. Secondly, a Visual Attentional Learning (VAL) block are constructed 
for the vanilla DCNNs (we use ResNet14 and ResNet50 as the baseline in this paper), which makes 
VA-DCNNs have strong discriminative learning ability. Thirdly, the layer weights of the model are 
obtained by using dataset training. And finally, we get the recognition accuracy of the model on 
testing set. The experimental on the Flowers 17 public dataset prove the effectiveness of VA-DCNNs, 
which can achieve an accuracy of up to 85.7%. Compared with other recognition methods, 
VA-DCNNs can achieve better results, and has strong practicability and generalization. 
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2. Data augmentation  

2.1. Flowers 17 dataset 

The experimental dataset is the Flowers 17 [15], which contains 17 common flowers in the UK. 
The flowers including sunflowers, hyacinths, daffodils and chrysanthemums, etc., and each category 
have 80 images with different pose, size and perspective. Figure 1 have shown some examples in 
Flowers 17 dataset. So far the dataset has been widely used in flower recognition and organ 
segmentation, which is one of the most representative dataset in this field. 

Sunflower 

 
a-1 a-2 a-3 a-4 

Snowdrop 

 
b-1 b-2 b-3 b-4 

Tiger lily 

 
c-1 c-2 c-3 c-4 

Figure 1. Some samples in Flowers 17 dataset. 

2.2. Data augmentation 

Deep convolutional neural network always composed by multiple blocks, and each block 
contains several convolutional layers, batch normalization layers, activation layers, and pooling 
layers. The data flows and gradient transfer between blocks through convolution kernels and back 
propagation algorithm. A DCNNs model always contains a large number of parameters need to be 
trained, which can make DCNNs fitting the data well. Although sufficient training samples can make 
the model fine-training, augmenting the training set to increase the number of training samples is one 
of the most common techniques used in deep learning models to further enhance the generality and 
robustness of the model [16]. In this paper, we augment the original flower image by using rotating 
and forward cropping. Specifically, for each original 224 × 224 pixel flower image, we rotate it 
clockwise, perform forward cropping every 30° and save it as 224 × 224 pixel size. The rotate 
operation totally perform 4 times (30°, 60°, 90°, 120°), and obtain a new dataset with five times than 
original set in quantity. The new dataset is divided into 70% training set, 20% validation set and 10% 
testing set, randomly. Since this data augmentation technique has been widely used in several papers, 
we don’t repeat it here, but more details can be found in [11]. 
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3. Block definition and model structure 

3.1. Attentional-driven residual block 

The traditional DCNNs module extracts features by using stacking convolutional, dropout, 
batch normalization and activation layers (as shown in Figure 2(a)). Although the effectiveness of 
this structure has been verified in many DCNNs models, single stack the block easily causes 
“gradient explosion” or “gradient disappearance” during training when network depth further 
increase. Deep layer blocks cannot take the input information or gradient is lost in the 
back-propagation process, resulting in the model cannot be trained [17]. Therefore, deep residual 
network (as shown in Figure 2(b)) has been proposed in [18] to improve the trainability of the 
DCNNs. This model adopts residual connection to connect different layer, which can ignore some 
unimportant blocks in training automatically. This technique can solve some problems in traditional 
DCNNs. In order to make the DCNNs quickly locate the focal area of the image, inspired by the 
human visual mechanism, we propose a Visual Attentional Learning (VAL) block (shown in Figure 
2(c)) based on the attentional mechanism. Specifically, we obtain the weight of channel and spatial 
position of the convolution feature by performing batch normalization on the feature map. This 
process can be expressed as:  

 ∅  (1) 

where ∈  means C -dimensional  feature map. In this paper, we adopt the 
features from last convolutional layer in each stage. The height of each feature is  and width is ; 
∅ ∙ 	 means batch normalization function.	  is learned feature weight. Batch normalization function 
∅ ∙  can be defined as:  

 ∅ | ,
,

∑ ,
,

 (2) 

 ∅ | ,
,

∑ ,
 (3) 

 ∅ | , ,  (4) 

where ,  means the location in the feature map ;  is the channel index of feature 
map;	 ∅  is the attentional-driven block on spatial, which is used to learn feature weight on the 
spatial position; σ ∙  is sigmoid function. 	 ∅  is the attentional-driven block on channel, 
which is used to learn feature weight of different channel dimension; ∅  is the attention 
learning block that combines ∅  and ∅ , which considers both spatial location information 
and channel information. In order to retain the advantages of the residual technique, we add the 
output of the attention strategy and the residual strategy as the final output of the block after 
weighting the convolution features. The process can be written as: 

 ∅ ∗ +O+F(O) (5) 

 ∅ ∗ +O+F(O) (6) 
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 ∅ ∗ +O+F(O) (7) 

where F(∙) denotes residual connection. Based on the block defined above, the model not only can 
actively skip some unimportant features in the training process, but also can quickly locate some 
important channels and spatial positions by using attention mechanism. Therefore, the model can 
effectively alleviate the problems of insufficient training samples and small differences between 
samples of the same type in the flower Recognition task 

  
(a) Tandem block (b) Residual block (c) Attentional-driven residual block 

Figure 2. Block in different DCNNs models, (C) is our proposed block. 

3.2. Attentional-driven residual network 

We can structure any depth DCNNs models based on Attentional-driven residual block, but 
consider the local hardware and the scale of the dataset, we adopt ResNet14 and ResNet50 as the 
basic frameworks to construct Attentional-driven residual based version. The network structure is 
shown in Table 1. In this paper, we propose two novel methods, named VA-ResNet14 and 
VA-ResNet50, respectively. The input of two different depth model are both 224 224 3 color 
jpg images, and then connected to the first deep learning block (convolution layer 1+), which 
consists by a 7 × 7 convolutional layer, a batch normalization layer, an activation layer and a 
maximum pooling layer. Then, we add the Attentional-driven residual block in the last layer of 
second (convolutional layer 2+), third (convolutional layer 3+), fourth (convolutional layer 4+) and 
fifth (convolutional layer 5+) stage. Not only that, but we retain the residual connection structure in 
the model (as shown in Figure 2 (c)). Finally, the model realizes the flower classification task though 
global average pooling and fully connected layer. The improved model is structurally identical to the 
original residual network. Since attentional-driven block has few parameters, the improved network 
will not increase the training burden. In addition, attentional-driven learning with residual connection 
can prove the performance of the model will not roll back. Even in the worst case, the residual 
connection can jump over the attentional learning block to make it down. 

4. Experiments 

4.1. Experiment setting 

Based on the Attentional-driven residual network proposed above, we use Flowers 17 dataset to 
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evaluate its performance. By randomly dividing the augmented dataset according to proportion, we 
have 4760 images in training set with 280 images per class; 1360 images in validation set with 80 
images per class and 680 images in testing set with 40 images per class. All of the flower images are 
two-dimensional color image in JPG format. The data for input need normalized by subtracting the 
mean value. The training process adopts Stochastic Gradient Descent (SGD) algorithm [15] to optimize 
the hinge loss function. The batch size is set to 128. The learning rate starts with 0.01, decreases to its 
1/10 every 10,000 iterations, stops at 50,000 iterations. The weight decay parameter is 0.0005. 

Table 1. Network structure of the attention learning model based ResNet. 

Layer 
output 

size 
ResNet14 VA-ResNet14 ResNet50 VA-ResNet50 

Conv 1+ 112

112

64 

Conv, 7 7, 

stride 2 

Conv, 7 7, stride 2 Conv, 7 7, 

stride 2 

Conv, 7 7, stride 2 

Conv 2+ 
56 56

256 

Pool, 3 3, 

stride 2 

Pool, 3 3, stride 2 Pool, 3 3, 

stride 2 

Pool, 3 3, stride 2 

Res block Attentional Res block [Res block] × 3 [Attentional Res 

block]×3 

Conv 3+ 
28 28

512 
Res block
stride	 2

2 

Res block
stride 2

Attention connect

2 

Res block
stride 2

4 

Res	 block
stride 2

Attention connect

4 

Conv 4+ 
14 14

1024 
Res block
stride	 2

2 

Res block
stride 2

Attention connect

2 

Res block
stride 2

6 

Res	 block
stride 2

Attention connect

6 

Conv 5+ 
7 7

2048 
Res block
stride	 2

2 

Res block
stride 2

Attention connect

2 

Res block
stride 2

3 

Res	 block
stride 2

Attention connect

3 

Pool 
1 1

2048 
Global average pool 

Output 17 FC 

The experiment environment is Pytorch based on Python programming language. Pytorch as 
one of the most widely used framework in deep learning, has good scalability, modularity and high 
efficiency, which is very popular in the academic and industrial circles [19]. We implement all the 
algorithms in Think Station P320 workstation with 4 GTX 1080 Ti GPU to speed up image 
processing [20]. 

4.2. Results analysis 

Based on experiment setting proposed above, we training the AL-ResNet14 and AL-ResNet50, 
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respectively. Figure 3 shows the curve of accuracy and objective loss in validation set, where the blue 
curve indicates the result in VA-ResNet14 and the green curve indicates the result in VA-ResNet50. We 
can find that the curve become placid after about 40,000 iterations, indicating that the algorithm has 
been converged. In addition, the accuracy on VA-ResNet50 is high that VA-ResNet14, but the objective 
loss is small, means VA-ResNet50 can fitting the data better. Besides, VA-ResNet14 is volatility higher 
that VA-ResNet50 in Figure 3, which is due to the number of VA-ResNet14 is less. In the case of same 
input data, the model with less parameters are hard to find the local optimal solution [21]. 

(a) accuracy on validation set (b) objective loss on validation set 

Figure 3. Accuracy and loss of the validation in the training process. 

To show the performance of Attentional-driven residual block, we provide the focus areas of 
flower images obtained by the attention learning in the first layer. As shown in the Figure 4, the 
brightly area is the model to focus on. We can see some interesting points as follow: 1) the focus area 
of attention is not continuous, but scattered into several bright spots.  

     

a-1 b-1 c-1 d-1 e-1 

     

a-2 b-2 c-2 d-2 e-2 

Figure 4. Focus areas of different varieties of flowers. 

The brighter the area, the greater the role it plays in the classification, and the higher wright it 
corresponding to. It indicates that not all part of flowers plays an important role in flower recognition 
task. 2) Compare to original input image, the focus areas of flower are always corresponding to more 
colorful part in flower, indicating that the color information is the key point to discriminate the 
flower. Besides, since the attention mechanism puts more effort on flower, the noise in background 



1988 

Mathematical Biosciences and Engineering  Volume 18, Issue 3, 1981–1991. 

has no effect on flower recognition task, which bring robustness to model. Further, we visualize the 
convolution features from first to third layers of some flowers. Figure 5 shows the features 
visualization results of sunflower, snowdrop and tiger lily, respectively. From Figure 5 we can see the 
following conclusions. Firstly, the convolutional features learned by the shallow network are mainly 
understandable features such as texture and color, while the features learned by deep layers are more 
abstract, like outline or shape. 3) The feature from shallow layers are often high-resolution 
information, while the deep layers are more likely to extract some semantic information. Therefore, 
the resolution of images is gradually decreasing with the layer deep. In the classification process, the 
semantic information determines the image “what is”, while the shallow features determine the 
discriminative information “where as” in the image. 

   

   

   

(a) (b) First Layer (c) Second Layer (e) Third Layer 

Figure 5. Feature visualization results of different flowers. 

4.3. Method comparison 

In order to further verify the effectiveness of the methods proposed in this paper, we compare 
our methods to some popular image classification techniques. We ensure all the parameters are 
consistent with the original text to guarantee the algorithms optimization. The results on the testing 
set are shown in Table 2.  

Table 2．Accuracy comparison of different network models. 

Method VGGNet(16) NIN GoogLeNet Inception V3 ResNet14 ResNet50 VA-ResNet14 VA-ResNet50

Accuacy 63.1% 64.2% 65.8% 66.9% 67.7% 81.3% 69.4% 85.7% 

Comparing our method with VGGNet [22], Network In Network [23], GoogLeNet [24], and 
Inception V3 [25], we can find that the method proposed in this paper has higher accuracy. 
Specifically, VA-ResNet14 and VA-ResNet50 have accuracy improvement of 1.7 and 3.6% than 
ResNet14 [18] and ResNet50 [18], respectively. This indicates that the proposed method has good 
universality. VA can still improve the model performance, even on the DCNN model with a strong 



1989 

Mathematical Biosciences and Engineering  Volume 18, Issue 3, 1981–1991. 

presentation ability. Also, it can be found that ResNet with VA blocks shares very higher accuracy as 
compared to VGGNet [22], Network In Network [23], GoogLeNet [24], and Inception V3 [25]. 

5. Conclusions 

In this paper, we propose a novel Attentional-driven residual network model for flower 
recognition. By adding an attention connection to each residual block, the model can learn from 
different channel features and different spatial dimensions, and at the same time, can maintain the 
capability of few-shot learning to compensate training samples insufficient. In order to verify the 
feasibility and effectiveness of the methods proposed in this paper, we take the experiments on 
Flowers 17 dataset. The experiments show that our method can achieve the accuracy of 85.7%, 
which is higher than the existing image classification methods without introducing additional 
training parameters. Although the methods proposed in this paper is initially designed for flower 
recognition, it has strong scalability and practicability that can be easily applied to other object 
recognition tasks, such as terrain recognition, farmland recognition, and forest recognition on remote 
sensing images. 

In addition, our future work will focus on the following aspects. 1) Expand the flower database. 
Not only we expand the number of flower varieties, but also expand the number of images in each 
species. 2) Since our methods are supervised learning model, which need using a lot of labeled data 
in training process, one of our future projects is to combine with some advanced technique, like 
semi-supervised learning, one/few-shot learning. 3) Another project will focus on the transfer 
learning and data generation technique based on natural image datasets to improve the generalization 
ability and robustness of the model. 

Acknowledgments 

This work was supported by Startup Foundation for Introducing Talent of Nanjing University of 
Information Science and Technology (Grant No.2019r030). 

Conflict of interest 

The authors declared that they have no conflicts of interest to this work. We declare that we do 
not have any commercial or associative interest that represents a conflict of interest in connection 
with the work submitted 

References 

1. D. R. Pereira, J. P. Papa, G. F. R. Saraiva, G. M. Souza, Automatic classification of plant 
electrophysiological responses to environmental stimuli using machine learning and interval 
arithmetic, Comput. Electron. Agric., 145 (2018), 35–42. 

2. Q. L. Ye, Z. Li, L. Fu, Z. Zhang, W. Yang, G. Yang, Nonpeaked Discriminant Analysis Data 
Representation, IEEE Trans. Neural Networks Learn. Syst., 30 (2019), 3818–3832. 



1990 

Mathematical Biosciences and Engineering  Volume 18, Issue 3, 1981–1991. 

3. Q. L. Ye, J. Yang, F. Liu, C. Zhao, N. Ye, T. Yin, L1-Norm Distance Linear Discriminant 
Analysis Based on an Effective Iterative Algorithm, IEEE Trans. Circuits Syst. Video Technol., 
28 (2018), 114–129. 

4. L. Fu, Z. Li, Q. L. Ye, H. Yin, Q. Liu, X. Chen, et al., Learning Robust Discriminant Subspace 
Based on Joint L2,p- and L2,s-Norm Distance Metrics, IEEE Trans. Neural Networks Learn. 
Syst., 2020, forthcoming. 

5. L. Fu, D. Zhang, Q. L. Ye, Recurrent Thrifty Attention Network for Remote Sensing Scene 
Recognition, IEEE Trans. Geosci. Remote Sens., 2020, forthcoming. 

6. C. Wachinger, M. Reuter, T. Klein, DeepNAT: Deep convolutional neural network for 
segmenting neuroanatomy, NeuroImage, 170 (2018), 434–445. 

7. Y. Cheng, L. Fu, P. Luo, Q. Ye, F. Liu, W. Zhu, Multi-view generalized support vector machine 
via mining the inherent relationship between views with applications to face and fire smoke 
recognition, Knowl. Based Syst., 210 (2020), 106488. 

8. Y. Chen, H. Yin, Q. L. Ye, P. Huang, L. Fu, Z. Yang, Improved multi-view GEPSVM via 
Inter-View Difference Maximization and Intra-view Agreement Minimization, Neural Networks, 
125 (2020), 313–329. 

9. Q. L. Ye, H. Zhao, Z. Li, X. Yang, S. Gao, T. Yin, et al., L1-norm Distance Minimization Based 
Fast Robust Twin Support Vector k-plane clustering, IEEE Trans. Neural Networks Learn. Syst., 
29 (2018), 4494–4503. 

10. H. Zhu, Q. Liu, Y. Qi, X. Huang, F. Jiang, S. Zhang, Plant identification based on very deep 
convolutional neural networks, Multimedia Tools Appl., 77 (2018), 29779–29797. 

11. Q. Ye, D. Xu, D. Zhang, Remote sensing image classification based on deep learning features 
and support vector machine, J. For. Eng., 4 (2019), 20961359. 

12. Y. Liu, X. Zhou, Z. Hu, Y. Yu, Y. Yang, C. Xu, Wood defect recognition based on optimized 
convolution neural network algorithm, J. For. Eng., 4 (2019), 115–120. 

13. M. Cıbuk, U. Budak, Y. Guo, M. C. Ince, A. Sengur, Efficient deep features selections and 
classification for flower species recognition, Measurement, 137 (2019), 7–13. 

14. S. Zhang, J. Yang, B. Schiele, Occluded Pedestrian Detection Through Guided Attention in 
CNNs, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. 

15. M. E. Nilsback, A. Zisserman, A Visual Vocabulary for Flower Classification, 2006 IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 
2006. 

16. J. Zhang, K. Shao, X. Luo, Small sample image recognition using improved Convolutional 
Neural Network, J. Visual Commun. Image Representation, 55 (2018), 640–647. 

17. K. Li, M. Zhang, Z. Yang, B. Lyu, Classification for decorative papers of wood-based panels 
using color and glossiness parameters in combination with neural network method, J. For. Eng., 
3 (2018), 16–20. 

18. K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, Proceedings 
of the IEEE conference on computer vision and pattern recognition, 2016. 

19. M. Ravanelli, T. Parcollet, Y. Bengio, The PyTorch-Kaldi Speech Recognition Toolkit, ICASSP 
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), IEEE, 2019. 

20. B. Kim, C. Oh, Y. Yi, D. Kim, GPU-Accelerated Boussinesq Model Using Compute Unified 
Device Architecture FORTRAN, J. Coastal Res., 85 (2018), 1176–1180. 



1991 

Mathematical Biosciences and Engineering  Volume 18, Issue 3, 1981–1991. 

21. G. Cheng, Z. Li, J. Han, X. Yao, L. Gao, Exploring hierarchical convolutional features for 
hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., 56 (2018), 6712–6722. 

22. T. Sercu, C. Puhrsch, B. Kingsbury, Y. LeCun, Very Deep Multilingual Convolutional Neural 
Networks for LVCSR, 2016 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), IEEE, 2016. 

23. M. Lin, Q. Chen, S. Yan, Network in network, preprint, arXiv:1312.4400,  
24. K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into Rectifiers: Surpassing Human-level 

Performance on Imagenet Classification, Proceedings of the IEEE international conference on 
computer vision, 2015. 

25. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the Inception Architecture 
for Computer Vision, Proceedings of the IEEE conference on computer vision and pattern 
recognition, 2016. 

©2021 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


