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Abstract: In this paper, a three-dimensional nonlinear delay differential system including Tumour
cells, cytotoxic-T lymphocytes, T-helper cells is constructed to investigate the effects of intrinsic re-
cruitment delay and chemotherapy. It is found that the introduction of chemotherapy and time delay
can generate richer dynamics in tumor-immune system. In particular, there exists bistable phenomenon
and the tumour cells would be cleared if the effect of chemotherapy on depletion of the tumour cells
is strong enough or the side effect of chemotherapy on the hunting predator cells is under a threshold.
It is also shown that a branch of stable periodic solutions bifurcates from the coexistence equilibrium
when the intrinsic recruitment delay of tumor crosses the threshold which is new mechanism, which
can help understand the short-term oscillations in tumour sizes as well as long-term tumour relapse.
Numerical simulations are presented to illustrate that larger intrinsic recruitment delay of tumor leads
to larger amplitude and longer period of the bifurcated periodic solution, which indicates that there
exists longer relapse time and then contributes to the control of tumour growth.

Keywords: bistable phenomenon; tumor relapse; intrinsic recruitment delay; chemotherapy; Hopf
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1. Introduction

Cancer or malignant tumor results from uncontrolled growth of normal cells [1]. According to the
report of World Health Organization, there are about 14.1 million new cancer cases and 8.2 million
deaths in the world and it is expected that annual cancer cases will rise from 14 million in 2012 up to
22 million in the following two decades [2].

The immune system can monitor and protect the host from tumor evasion. However, the mecha-
nisms of tumor evasion and immune response are still not completely understood. One of the adaptive
immune responses is cell-mediated immunity(CMI). Cell-mediated immunity involves the production
of cytotoxic T-lymphocytes (CTLs) and release of various cytokines in response to an antigen mediated
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by T-lymphocytes. CTLs are able to recognize and destroy tumor cells. The immune system can be
classified into two subclasses, namely, the hunting cells (cytotoxic T lymphocytes) and the resting cells
(T Helper cells). Most CTLs require cytokines from helper (resting) T-cells in order to be activated
efficiently [3, 4].

Different mathematical models have been constructed to understand the complex interaction be-
tween tumor and anti-tumor elements [5–11]. Kuznetsov et al. [12] proposed a classical tumor-immune
model to explain the phenomena of ”sneaking through” of the tumor and formation of a tumor ”dor-
mant state”. Letellier et al. [13] found there exist chaotic attractor in a simple model of three compet-
ing cell populations (host, immune and tumour cells). Assia and Wang [14] investigated the effects of
stochastic noises on tumors dynamics under treatment.

In [3], Sarkar et al. classified the immune system into two subclasses and proposed the following
system 

dM
dt = q + r1M(1 − M

k1
) − αMN,

dN
dt = βNZ − dN,
dZ
dt = r2Z(1 − Z

k2
) − βNZ.

(1.1)

Here M, N and Z represent the densities of tumor cells, hunting predator cells (cytotoxic T-
lymphocytes) and resting predator cells (T-Helper cells), respectively; q is the conversion of normal
cells to malignant ones (fixed input), r1 is the growth rate of tumor cells, k1 and k2 are the maximum
capacity of tumor cells and resting cells, respectively; α is the predation/destruction rate of tumor cells
by the hunting cells, β is the conversion rate of resting cells to hunting cells, d is the natural death rate
of hunting cells. The authors obtained some thresholds to control the malignant tumor growth.

In order to prolong the survival of patients it is essential to initiate a specific treatment regimen such
as surgery, radiotherapy and chemotherapy [15–20]. Among various treatment methods, chemotherapy
is very important and widely used in practice. However chemotherapy also has some side effects and it
may kill the normal cells and immune cells [21, 22]. Some mathematical models have been proposed
to evaluate the effects of chemotherapy on tumor-immune dynamical behavior [23, 24]. We also refer
to [25] and the references therein for related works.

To derive more realistic models, recent papers [26–33] focus on delayed-induced oscillations in
tumor-immune system dynamics to explain the short-term oscillations as well as long-term tumour
relapse during the progress of the disease. Particularly, following [3], Subhas et al. [4] proposed the
following tumor-immune competitive system with time delay

dM
dt = r1M(1 − M

k1
) − αMN,

dN
dt = β1N(t − τ)Z(t − τ) − d1N,
dZ
dt = r2Z(1 − Z

k2
) − β2N(t − τ)Z(t − τ) − d2Z.

(1.2)

They neglect the fixed input term q of tumor in original Eq (1.1) by assuming that the tumour cells
are not benign but malignant. Another modification to original Eq (1.1) is that a discrete time delay is
added to prescribe the convention time from resting predator cells to hunting predator cells. It is found
in Eq (1.2) that the introduction of time delay can lead to appearance of periodic solution. Some other
tumor immune models with time delay were investigated in [34, 35].
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Considering the necessary times for molecule production and proliferation, the authors of [36–39]
introduced the intrinsic recruitment delay of tumor. In fact, as a type of special population, the growth
of tumor also need supply of nutrition and food and thus there exist intrinsic recruitment delay. In this
paper, based on the models of Sarkar et al. [3], when considering the intrinsic recruitment delay and the
effects of chemotherapy, we propose a new deterministic model describing tumor-immune responses
as 

dM
dt = r1M(1 − M(t−τ)

k1
) − α1MN − c1M,

dN
dt = β1NZ − dN − α2MN − c2N,
dZ
dt = r2Z(1 − Z

k2
) − β2NZ − c3Z.

(1.3)

Here c1 reflects the chemotherapy effect on the depletion rate of tumour cells, c2 and c3 represent the
side effect of chemotherapy on the hunting predator cells and resting predator cells, respectively. The
term r1M(1− M(t−τ)

k1
) describes the intrinsic recruitment of tumor and the positive time delay constant τ

describes the necessary times for molecule production, proliferation, etc. We also modify the Eq (1.1)
by adding the term −α2MN in the second equation, which represents the loss of hunting predator
cells due to competition and destructive influence of tumour cells and is an important characteristic of
cancer[12].

In order to simplify the analysis, we non-dimensionalize the Eq (1.3) by using the following re-
scaling

x = M
k1
, y = N

k1
, z = Z

k2
, t̄ = k1α1t, m1 = c1

α1k1
, m2 = c2

α1k1
, m3 = c3

α1k1
,

α = α2
α1
, µ1 = r1

α1k1
, µ2 = r2

α1k1
, ρ =

β1k2
α1k1

, k = d
α1k1

, γ =
β2
α1

.

After dropping the over bar notation for notational clarity, we obtain the following renormalization
model


dx
dt = µ1x(1 − x(t − τ)) − xy − m1x,
dy
dt = ρyz − ky − αxy − m2y,
dz
dt = µ2z(1 − z) − γyz − m3z.

(1.4)

The rest of this paper is organized as follows. In Section 2, we obtain the non-negativity and
boundeness of solutions of Eq (1.4). In Section 3, we study the existence and stability of possible
steady states of the model. In Section 4, we study the changes in the stability of positive equilibrium
though the Hopf bifurcation analysis. The direction and stability of the bifurcated periodic solution
is also obtained. In Section 5, we carry out some numerical simulations and provide some biological
interpretations. Conclusions and discussions are then presented in Section 6.

2. Non-negativity and boundeness

In this section, we discuss the non-negativity and boundedness of the solutions of Eq (1.4). For
τ > 0, let C = C([−τ, 0],R3

+) denote the Banach space of continuous function mapping the interval
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[−τ, 0] into R3
+ with the topology of uniform convergence. The initial conditions are given by

x(ξ) = φ1(ξ), y(ξ) = φ2(ξ), z(ξ) = φ3(ξ) (2.1)

with φi(ξ) ≥ 0, ξ ∈ [−τ, 0] and φi(0) > 0 (i = 1, 2, 3).

Theorem 2.1. The solutions of Eq (1.4) satisfying the initial conditions Eq (2.1) are non-negative and
ultimately bounded.

Proof. We first define the right-hand side function of Eq (1.4) as

G(t,K(t)) =


µ1x(1 − x(t − τ)) − xy − m1x

ρyz − ky − αxy − m2y
µ2z(1 − z) − γyz − m3z

 ,
where K(t) = (K1(t),K2(t),K3(t))T and K1(t) = x, K2(t) = y, K3(t) = z. It is obvious that the function
G(t,K(t)) is locally Lipschitz and by the standard theory of functional differential equation, we know
that there exists a unique solution for a given initial conditions. To prove the non-negativity of solutions
of Eq (1.4), we first prove the non-negativity over the time interval [0, τ]. Considering the right-hand
side functions of Eq (1.4) over the time interval [0, τ], we have

G(t,K(t)) =


G1(t,K(t))
G2(t,K(t))
G3(t,K(t))


Ki(t)=0

=


0
0
0

 .
It follows that the solutions of Eq (1.4) remain nonnegative in [0, τ]. Similarly, we can repeat the
process over [τ, 2τ] and so on by using the method of steps, it can be proved that for any finite interval
[0, t], the solutions of Eq (1.4) remains non-negative.

Now we consider the boundeness of the solutions. It follows from the non-negativity of the solutions
and the first equation of Eq (1.4) that

dx
dt
≤ µ1x(1 − x(t − τ)). (2.2)

Note that the solution is bounded for delay-logistic equation (refer to [41]). We know from Eq (2.2)
and the comparison principle that x(t) is ultimately bounded for any nonnegative initial conditions.
Define a new variable U(t) = y(t) +

ρ

γ
z(t), and let d = min{k + m2,m3}. By the non-negativity of the

solutions of Eq (1.4), we have

dU
dt

= −ky − αxy − m2y +
ρµ2

γ
z(1 − z) −

ρm3

γ
z

≤
ρµ2

4γ
− (k + m2)y −

ρm3

γ
z

≤
ρµ2

4γ
− dU. (2.3)

Taking Q =
ρµ2
4γ , we know from Eq (2.3) and comparison principle that lim sup

t→∞
U(t) ≤

Q
d

. So the

solutions of Eq (1.4) are ultimately bounded.
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3. Existence and stability of equilibria

In this section, we investigate the existence and stability of equilibria for Eq (1.4) as delay is absent,
that is 

dx
dt = µ1x(1 − x) − xy − m1x,
dy
dt = ρyz − ky − αxy − m2y,
dz
dt = µ2z(1 − z) − γyz − m3z.

(3.1)

Clearly, some of equilibria of Eq (3.1) can be obtained easily as follows:

• There always exists extinction equilibrium Exyz
0 (0, 0, 0).

• If m1 < µ1, the Eq (3.1) exists immunity-free equilibrium Eyz
0 (µ1−m1

µ1
, 0, 0).

• If m3 < µ2, the Eq (3.1) exists axial equilibrium Exy
0 (0, 0, µ2−m3

µ2
).

• If m1 > µ1 and m3 < µ2, the Eq (3.1) exists equilibrium Ey
0(µ1−m1

µ1
, 0, µ2−m3

µ2
).

• If µ2m2 + ρm3 < µ2(ρ − k), the Eq (3.1) exists tumor-free equilibrium Ex
0(0, y1, z1), where

y1 =
µ2ρ − µ2k − µ2m2 − ρm3

ργ
, z1 =

k + m2

ρ
.

For the existence of coexistence equilibrium, we have the following theorem.

Theorem 3.1. If Eqs (3.6) and (3.7) hold, the Eq (3.1) exists a unique coexistence equilibrium
E∗(x∗, y∗, z∗).

Proof. The coexistence equilibrium E∗(x∗, y∗, z∗) of Eq (3.1) satisfies the following equations:
µ1(1 − x∗) − y∗ − m1 = 0,

ρz∗ − k − αx∗ − m2 = 0,

µ2(1 − z∗) − γy∗ − m3 = 0.

(3.2)

From the first equation of (3.2), we have

y∗ = µ1 − m1 − µ1x∗. (3.3)

Substituting Eq (3.3) into the third equation of (3.2) comes to

z∗ =
γµ1x∗ + µ2 + γm1 − γµ1 − m3

µ2
. (3.4)

Substituting Eqs (3.3) and (3.4) into the second equation of (3.2) yields

x∗ =
µ2m2 + ρm3 + µ1γρ + kµ2 − ρµ2 − γρm1

µ1ργ − αµ2
. (3.5)

It is easy to see from Eqs (3.3) and (3.4) that y∗ > 0, z∗ > 0 if and only if

µ1x∗ < µ1 − m1 < µ1x∗ +
µ2 − m3

γ
, (3.6)
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which indicates that
µ1 − m1 > 0, µ2 − m3 > 0.

It follows from Eq (3.5) that x∗ > 0 if and only if

(µ2m2 + ρm3 − µ2(ρ − k) + γρ(µ1 − m1))(µ1γρ − µ2α) > 0. (3.7)

To study the stability of the equilibria above when τ = 0, we evaluate the Jacobian matrix of
Equation (3.1) to get

J =


µ1 − 2µ1x − y − m1 −x 0

−αy ρz − k − αx − m2 ρy
0 −γz µ2 − 2µ2z − γy − m3

 . (3.8)

Theorem 3.2. If m1 > µ1 and m3 > µ2, then Exyz
0 (0, 0, 0) is globally asymptotically stable.

Proof. It follows from Eq (3.8) that the characteristic equation of (3.1) at extinction equilibrium
Exyz

0 (0, 0, 0) is
(λ − µ1 + m1)(λ + k + m2)(λ − µ2 + m3) = 0.

It is easy to see that the eigenvalues are

λ1 = µ1 − m1, λ2 = −k − m2 < 0, λ3 = µ2 − m3.

So if m1 > µ1, and m3 > µ2, equilibrium Exyz
0 (0, 0, 0) is locally asymptotically stable.

Now we prove the global stability of Exyz
0 (0, 0, 0). Note that m1 > µ1 and m3 > µ2. It follows that

dx
dt < 0, dz

dt < 0, which implies that

lim
t→∞

x(t)→ 0, lim
t→∞

z(t)→ 0. (3.9)

Then from Eq (3.9) and the second equation of (3.1) we have

lim
t→∞

y(t)→ 0. (3.10)

It follows from Eqs (3.9) and (3.10) that Exyz
0 (0, 0, 0) is globally attractive. The proof is completed.

Theorem 3.3. Assume that m1 < µ1. If m3 > µ2, then Eyz
0 (µ1−m1

µ1
, 0, 0) is globally asymptotically stable.

Proof. It follows from Eq (3.8) that the characteristic equation of (3.1) at Eyz
0 (µ1−m1

µ1
, 0, 0) is

(
λ − m1 + µ1

)(
λ + k + m2 +

α(µ1 − m1)
µ1

)(
λ − µ2 + m3

)
= 0.

Clearly the eigenvalues

λ1 = m1 − µ1 < 0, λ2 = −k − m2 −
α(µ1 − m1)

µ1
< 0.
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So if µ2 < m3, we have λ3 = µ2−m3 < 0. We know that Eyz
0 (µ1−m1

µ1
, 0, 0) is locally asymptotically stable.

Now we prove the global stability of Eyz
0 (µ1−m1

µ1
, 0, 0). It follows from m3 > µ2 that dz

dt < 0, which
implies that

z(t)→ 0 as t → ∞. (3.11)

Then from Eq (3.11) and the second equation of (3.1), we have dz
dt < 0 for large t, which indicates that

y(t)→ 0 as t → ∞. (3.12)

There exists T1(ε) > 0 such that 0 ≤ y(t) ≤ ε as t > T1(ε). Then from the first equation of (3.1), we
have

(µ1 − m1 − ε)x − µ1x2 ≤
dx
dt
≤ (µ1 − m1)x − µ1x2. (3.13)

It follow from Eq (3.13), comparison principle and the arbitrariness of ε that

lim
t→∞

x(t) =
µ1 − m1

µ1
. (3.14)

We know from Eqs (3.11), (3.12) and (3.14) that Eyz
0 (µ1−m1

µ1
, 0, 0) is globally attractive. The proof is

completed.

Theorem 3.4. Assume that m3 < µ2. If m1 > µ1 and µ2m2 + ρm3 > µ2(ρ − k), then Exy
0 (0, 0, µ2−m3

µ2
) is

globally asymptotically stable.

Proof. It follows from Eq (3.8) that the characteristic equation of (3.1) at equilibrium Exy
0 is

(
λ − m3 + µ2

)(
λ − µ1 + m1

)(
λ −

ρµ2 − ρm3 − µ2k − µ2m2

µ2

)
= 0.

The eigenvalues are

λ1 = m3 − µ2, λ2 = µ1 − m1 λ3 =
ρµ2 − ρm3 − µ2k − µ2m2

µ2
.

So if m1 > µ1 and µ2m2 + ρm3 > µ2(ρ − k), Exy
0 is locally asymptotically stable.

Now we prove the global stability of Exy
0 (0, 0, µ2−m3

µ2
). It follows from m1 > µ1 that dx

dt < 0, which
implies that

lim
t→∞

x(t) = 0. (3.15)

From the third equation of (3.1) we have

dz
dt
≤ (µ2 − m3)z − µ2z2,

which indicates that
lim sup

t→∞
z(t) ≤

µ2 − m3

µ2
. (3.16)
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Then from the second equation of (3.1) we have

dy
dt
≤ (ρz − k − m2)y ≤

(
ρ(µ2 − m3)

µ2
− k − m2

)
y

for large t. Since µ2m2 + ρm3 > µ2(ρ − k), we have dy
dt < 0, which indicates that

lim
t→∞

y(t) = 0. (3.17)

There exists T2(ε) > 0 such that 0 ≤ y(t) ≤ ε as t > T2(ε). It follows from the third equation of (3.1)
that

dz
dt
≥ (µ2 − m3 − ε)z − µ2z2,

which implies that

lim inf
t→∞

z(t) ≥
µ2 − m3 − ε

µ2
. (3.18)

It follow from Eqs (3.16) and (3.18), the arbitrariness of ε that

lim
t 7→∞

z(t) =
µ2 − m3

µ2
. (3.19)

Then from Eqs (3.15), (3.17) and (3.19), we know that Exy
0 (0, 0, µ2−m3

µ2
) is globally attractive. The proof

is completed.

Theorem 3.5. Assume that m1 < µ1 and m3 < µ2. If µ2m2 + ρm3 > µ2(ρ − k) +
µ2α

u1
(m1 − µ1),

Ey
0(µ1−m1

µ1
, 0, µ2−m3

µ2
) is locally asymptotically stable.

Proof. It follow from Eq (3.8) that the characteristic equation of (3.1) at equilibrium Ey
0 is

(
λ − m3 + µ2

)(
λ − m1 + µ1

)(
λ −

A
µ1µ2

)
= 0,

where
A = µ2(ρ − k) +

µ2α

µ1
(m1 − µ1) − µ2m2 − ρm3.

Note that eigenvalues
λ1 = m3 − µ2 < 0, λ2 = m1 − µ1 < 0

since m1 < µ1 and m3 < µ2. Thus if eigenvalue λ3 = A
µ1µ2

< 0, that is

µ2m2 + ρm3 > µ2(ρ − k) +
µ2α

u1
(m1 − µ1),

the equilibrium Ey
0 is locally asymptotically stable.

Theorem 3.6. Assume that µ2m2 + ρm3 < µ2(ρ − k). If µ2m2 + ρm3 < µ2(ρ − k) + ργ(m1 − µ1), then
Ex

0(0, y1, z1) is locally asymptotically stable.
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Proof. It follows from Eq (3.8) that the characteristic equation of (3.1) at tumor-free equilibrium
Ex

0(0, y1, z1) is (
λ − µ1 + m1 + y1

)(
λ2 + µ2z1λ + γρy1z1) = 0.

One of the eigenvalues is

λ1 = µ1 − m1 − y1 = µ1 − m1 −
µ2ρ − µ2k − µ2m2 − ρm3

ργ
.

The other two eigenvalues λ2 and λ3 are determined by the following equation

λ2 + µ2z1λ + γρy1z1 = 0.

Note that
λ2 + λ3 = −µ2z1 < 0, λ2λ3 = γρy1z1 > 0.

Then the real parts of eigenvalues λ2 and λ3 are negative. So if λ1 < 0, that is

µ2m2 + ρm3 < µ2(ρ − k) + ργ(m1 − µ1),

the tumor-free equilibrium Ex
0(0, y1, z1) is locally asymptotically stable.

Remark 3.7. It can be seen from Theorem 3.5 and Theorem 3.6 that there exist bistable phenomenon
in the Eq (3.1). Both Ex

0 and Ey
0 are locally asymptotically stable if m1 < µ1, m3 < µ2 and

(A1) µ2(ρ − k) +
µ2

µ1
α(m1 − µ1) < µ2m2 + ρm3 < µ2(ρ − k) + ργ(m1 − µ1),

which indicates that if the tumor can be cleared or not depends on the initial densities of different types
of cells.

Theorem 3.8. Assume that Eqs (3.6) and (3.7) hold. The coexistence equilibrium E∗ is locally asymp-
totically stable if and only if the following conditions hold:

(H1) µ1γρ − µ2α > 0;
(H2) µ2γρy∗(z∗)2 + µ1(µ2)2x∗(z∗)2 + µ1(x∗)2(µ1µ2z∗ − αy∗) > 0.

Proof. It follows from Eq (3.8) that the characteristic equation of (3.1) at coexistence equilibrium E∗

is
λ3 + a1λ

2 + a2λ + a3 = 0,

where

a1 = µ1x∗ + µ2z∗,

a2 = µ1µ2x∗z∗ + ργy∗z∗ − αx∗y∗,

a3 = (µ1γρ − αµ2)x∗y∗z∗.

Clearly a1 > 0. Then by Routh-Hurwitz Criterion, if a3 > 0 and a1a2 − a3 > 0, that is the conditions
(H1) and (H2) hold, E∗ is locally asymptotically stable.
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Remark 3.9. It can be seen from Theorem 3.8 that if the destructive influence of tumor cells is small,
that is α is small enough, the conditions (H1) and (H2) hold, and the coexistence equilibrium E∗ is
locally asymptotically stable.

Theorem 3.10. If the coexistence equilibrium E∗ is asymptotically stable, all the other boundary equi-
libria are unstable.

Proof. If E∗ exist, we have µ1 > m1, µ2 > m3, which indicates that equilibria Exyz
0 , Exy

0 and Exy
0 can not

be stable. It follows from Eq (3.6) that

µ2(ρ − k) +
µ2α

µ1
(m1 − µ1) −

µ2 − m3

γµ1
(µ1ργ − µ2α) < µ2m2 + ρm3 < µ2(ρ − k) +

µ2α

µ1
(m1 − µ1),

which indicates that Ey
0 can not be stable. It follows from the stability of E∗ and Eq (3.7) that

µ2m2 + ρm3 > µ2(ρ − k) + ργ(m1 − µ1),

which indicates that Ex
0 can not be stable.

Remark 3.11. It is believed that, although it is difficulty to complete the proof, the coexistence equi-
librium E∗ is globally asymptotically stable when it is locally asymptotically stable. However, we can
obtain the result about uniform persistence of Eq (3.1), which indicates that three types of cells can
coexist.

Theorem 3.12. If the axial and planer singular points exist and
(a)m1 < µ1,

(b)m3 < µ2,
(c)µ2(ρ − k) + ργ(m1 − µ1) < µ2m2 + ρm3 < µ2(ρ − k) +

µ2α

µ1
(m1 − µ1),

then the Eq (3.1) is uniformly persistent.

Proof. In order to prove the theorem we shall employ the method of average Lyapunov function [42].
Let us consider the following average Lyapunov function for the Eq (3.1)

ψ(x, y, z) = xξ11yξ22zξ33 ,

where ξ11, ξ22, ξ33 are all nonnegative constants to be chosen suitably in the subsequent steps. It can be
noted that ψ(x, y, z) is a positive continuous function defined in the positive quadrant R3

+. Taking the
time derivative along the solution of Eq (3.1), we have

Γ(x, y, z) =
ψ̇(x, y, z)
ψ(x, y, z)

= ξ11
ẋ
x

+ ξ22
ẏ
y

+ ξ33
ż
z

= ξ11[µ1(1 − x) − y − m1] + ξ22[ρz − k − αx − m2] + ξ33[µ2(1 − z) − γy − m3].

It is easy to show that the ω-limit sets for Eq (3.1) on the boundary of the positive cone consists of
fixed points. Thus to prove the uniform persistence of the Eq (3.1), it is sufficient to verify that Γ(x, y, z)
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is positive for all singular points and the suitable choice of ξ11, ξ22, ξ33 > 0, that is, the following
conditions must be satisfied:

Γ(Exyz
0 ) = ξ11(µ1 − m1) + ξ22(−k − m2) + ξ33(µ2 − m3) > 0, (3.20)

Γ(Eyz
0 ) = ξ22(−k − m2 − α

µ1 − m1

µ1
) + ξ33(µ2 − m3) > 0, (3.21)

Γ(Exy
0 ) = ξ11(µ1 − m1) + ξ22(ρ

µ2 − m3

µ2
− k − m2) > 0, (3.22)

Γ(Ey
0) = ξ22(ρ

µ2 − m3

µ2
− α

µ1 − m1

µ1
− k − m2) > 0, (3.23)

and

Γ(Ex
0) = ξ11(µ1 − m1 −

µ2ρ − µ2k − µ2m2 − ρm3

ργ
) > 0. (3.24)

Noting µ1 − m1 > 0 and µ2 − m3 > 0, we can take large ξ11 and ξ33 and small ξ22 such that
Eqs (3.20), (3.21) and (3.22) are satisfied. It follows that if

µ2(ρ − k) + ργ(m1 − µ1) < µ2m2 + ρm3 < µ2(ρ − k) +
µ2α

µ1
(m1 − µ1),

Equations (3.23) and (3.24) hold. The proof is completed.

Remark 3.13. It is found that if the effect of chemotherapy on depletion of tumor cells is strong enough
(m1 > µ1), tumor cells would be cleared. While if the effect of chemotherapy is relatively weak
(m1 < µ1), the dynamics of Eq (3.1) rely on the side effects of chemotherapy on the hunting predator
cells (m2) and resting predator cells (m3), respectively. Then to control or clear the tumor, it is important
to increase the effect of chemotherapy on tumor cells and let the side effect of chemotherapy on the
predator cells be under a threshold.

4. Hopf bifurcation

In this section, we take the discrete time delay τ as a bifurcation parameter and show that when E∗

loses its stability and a Hopf bifurcation occurs when the time delay passes through a critical value.

4.1. Existence of Hopf bifurcation

In order to study the stability of the coexistence equilibrium E∗ of Eq (1.4), we first compute the
Jacobian matrix as following

J(E∗) =


−µ1x∗e−λτ −x∗ 0
−αy∗ 0 ρy∗

0 −γz∗ −µ2z∗

.
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Then the characteristic equation at E∗ is

λ3 + b1λ
2 + b2λ + b3 + (b4λ

2 + b5λ + b6)e−λτ = 0, (4.1)

where
b1 = µ2z∗, b2 = γρy∗z∗ − αx∗y∗, b3 = −αµ2x∗y∗z∗,

b4 = µ1x∗, b5 = µ1µ2x∗z∗, b6 = µ1ργx∗y∗z∗.

Putting λ = iω into the characteristic Eq (4.1) and separating the real and imaginary parts, we have

ω3 − b2ω = b5ω cos(ωτ) + (b4ω
2 − b6) sin(ωτ) (4.2)

and
b1ω

2 − b3 = b5ω sin(ωτ) + (−b4ω
2 + b6) cos(ωτ). (4.3)

Adding up the squares of the corresponding sides of Eqs (4.2) and (4.3) yields the following algebra
equation with respect to ω

ω6 + p1ω
4 + p2ω

2 + p3 = 0, (4.4)

where
p1 =b2

1 − 2b2 − b2
4,

p2 =b2
2 − 2b1b3 + 2b4b6 − b2

5,

p3 =b2
3 − b2

6.

Let u = ω2. Then Eq (4.4) becomes

Q(u) ≡ u3 + p1u2 + p2u + p3 = 0. (4.5)

If Eq (4.5) has a positive real root u, the characteristic Eq (4.1) has a purely imaginary root iω =
√

u;
otherwise, Eq (4.1) has no purely imaginary root.

Note that
p3 = b2

3 − b2
6 = (αµ2 − µ1ργ)(αµ2 + µ1ργ)x∗2y∗2z∗2.

We have p3 < 0 if and only if (H1) is satisfied. We know that the stability of coexistence equilibrium
E∗ as τ = 0 implies that Eq (4.5) has at least one positive real root. If we further assume that p2 < 0,
by Descartes sign rule, we know that Eq (4.5) has a unique positive real root u0. In addition it can be
shown that Q′(u0) > 0.

Let ω0 =
√

u0. It follows from Eqs (4.2) and (4.3) that

τ j =
1
ω0

arccos
( (b4ω

2
0 − b6)(ω3

0 − b2ω0) + b5ω0(b1ω
2
0 − b3)

(b4ω
2
0 − b6)2 + (b5ω0)2

)
+

2πn
ω0

, j = 0, 1, 2, ..... (4.6)

Then at increasing sequences of τ values,

τ0 < τ1 < τ2 < · · · < τ j · ··,

Equation (4.1) has a pair of purely imaginary roots ±iω0.
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Now, it remain to check the transversality condition required by the Hopf bifurcation theorem.
Substituting λ(τ) into Eq (4.1) and differentiating the resulting equation in τ, we obtain[

3λ2 + 2b1λ + b2 + (2b4λ + b5)e−λτ + (b4λ
2 + b5λ + b6) · (−τ)e−λτ

]dλ
dτ

= λe−λτ(b4λ
2 + b5λ + b6).

Then we have(dλ
dτ

)−1
=

3λ2 + 2b1λ + b2 + (2b4λ + b5)e−λτ + (b4λ
2 + b5λ + b6) · (−τ)e−λτ

λe−λτ(b4λ2 + b5λ + b6)

=
(3λ2 + 2b1λ + b2)eλτ

λ(b4λ2 + b5λ + b6)
+

2b4λ + b5

λ(b4λ2 + b5λ + b6)
−
τ

λ
,

which indicates that

sign
{d(Reλ)

dτ

}∣∣∣∣
λ=iω0

= sign
{
Re

(dλ
dτ

)−1
}∣∣∣∣
λ=iω0

= sign
{3ω4

0 + 2(b2
1 − 2b2 − b2

4)ω2
0 + (b2

2 + 2b4b6 − b2
5 − 2b1b3)

(b6 − b4ω
2
0)2 + b2

5ω
2
0

}
= sign

{ Q
′

(ω2
0)

(b6 − b4ω
2
0)2 + b2

5ω
2
0

}
.

Since Q′(u0) > 0, then for j = 0, 1, 2, ..., we have

sign
{d(Reλ)

dτ

∣∣∣∣
τ=τ j

}
= sign

{
Re

(dλ
dτ

)−1∣∣∣∣
τ=τ j

}
> 0.

We know that at each τ j, j = 0, 1, 2, ···, a pair of characteristic roots of Eq (4.1) cross the imaginary axis
to the right. Then the transversality condition required by the Hopf bifurcation theorem is satisfied.
We thus obtain the following result.

Theorem 4.1. Assume that the conditions in Theorem 3.8 hold.
(i) If p2 > 0, E∗ is locally asymptotically stable for τ ∈ [0, τ0] and unstable for τ > τ0.
(ii) Equation (1.4) undergoes a Hopf bifurcation at E∗ when τ = τ0. That is, Eq (1.4) has a branch of
nonconstant periodic solutions bifurcating from E∗ near τ = τ0.

4.2. Direction and stability of the Hopf bifurcation

In the previous section, we studied the stability of the coexistence equilibrium E∗ of Eq (1.4) and the
existence of Hopf bifurcations. We know Eq (1.4) has a branch of nonconstant periodic solutions bi-
furcating from E∗ near τ = τ0. It is interesting to further determine the direction, stability of bifurcated
periodic solutions.

Let µ = τ − τ0 and then µ = 0 is the Hopf bifurcation value of Eq (1.4) at E∗. Introduce the change
of variables

x1(t) = x − x∗, x2(t) = y − y∗, x3(t) = z − z∗.

Let x̄i(t) = xi(τt) and drop the bars for simplicity of notation. Define operators L(µ) : C −→ R3 and
F(µ, φ) : R ×C −→ R3 by
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L(µ)φ = (µ + τ0)


0 −x∗ 0
−αy∗ 0 ρy∗

0 −γz∗ −µ2z∗



φ1(0)
φ2(0)
φ3(0)

 + (µ + τ0)


−µ1x∗ 0 0

0 0 0
0 0 0



φ1(−1)
φ2(−1)
φ3(−1)

,
and

F(µ, φ) = (µ + τ0)


−µ1φ1(0)φ1(−τ) − φ1(0)φ2(0)
ρφ2(0)φ3(0) − αφ1(0)φ2(0)
−µ2φ

2
3(0) − γφ2(0)φ3(0)


respectively, where φ(θ) = (φ1(θ), φ2(θ), φ3(θ))T ∈ C. Then Eq (1.4) may be transformed into a FDE in
C = C([−1, 0],R3) as

Ẋ(t) = L(µ)Xt + F(µ, Xt(·)), (4.7)

where
X(t) = (x1(t), x2(t), x3(t))T , Xt(θ) = X(t + θ), θ ∈ [−1, 0].

By Riesz representation theorem, there exists bounded variation function η(θ, µ) : [−1, 0] → R3

such that

L(µ)φ =

∫ 0

−1
dη(θ, µ)φ(θ),

where

η(θ, µ) = (µ + τ0)


0 −x∗ 0
−αy∗ 0 ρy∗

0 −γz∗ −µ2z∗

 δ(θ) + (µ + τ0)


−µ1x∗ 0 0

0 0 0
0 0 0

 δ(θ + 1)

and δ(θ) is the Dirac delta function. For φ ∈ C([−1, 0],R3), we define

A(µ)φ(θ) =


dφ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1
dη(ξ, µ)φ(ξ), θ = 0,

and

R(µ)φ(θ) =

0, θ ∈ [−1, 0),
F(µ, Xt(·)), θ = 0.

Then Eq (4.7) is equivalent to the following operator equation

Ẋt(θ) = A(µ)Xt(θ) + R(µ)Xt(θ).

For ϕ ∈ C([0, 1], (R3)∗), we define

A∗(0)ϕ(s) =


−

dϕ(s)
ds

, s ∈ (0, 1],∫ 0

−1
dηT(ξ, 0)φ(−ξ), s = 0.
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For ϕ ∈ C([0, 1], (R3)∗) and φ ∈ C([−1, 0],R3), we define a bilinear form as

< ϕ, φ >= ϕ̄T(0)φ(0) −
∫ 0

−1

∫ θ

0
ϕ̄T (ξ − θ)dη(θ)φ(ξ)dξ,

where η(θ) = η(θ, 0). Then it is not difficult to show that A∗(0) is the adjoint operator of A(0). By the
discussion at the beginning of this section, we know that ±iω0τ0 are eigenvalues of A(0). Thus, they
are also eigenvalues of A∗(0).

Let q(θ) = (1, q2, q3)Teiω0τ0θ be the eigenvectors of matric A corresponding to eigenvalue iω0τ0.
Then we have

τ0


iω0 + µ1x∗e−iω0τ0 x∗ 0

αy∗ iω0 −ρy∗

0 γz∗ iω0 + µ2z∗




1
q2

q3

 =


0
0
0

 .
It follows that

q2 = −
µ1x∗e−iω0τ0 + iω0

x∗
, q3 =

γz∗(iω0 + µ1x∗e−iω0τ0)
x∗(µ2z∗ + iω0)

.

Let q∗(s) = D(1, q∗2, q
∗
3)Teiω0τ0 s be the eigenvectors of matric A∗ corresponding to eigenvalue −iω0τ0.

Then we have

τ0


−iω0 + µ1x∗eiω0τ0 αy∗ 0

x∗ −iω0 γz∗

0 −ρy∗ −iω0 + µ2z∗




1
q∗2
q∗3

 =


0
0
0

 .
It follows that

q∗2 =
iω0 − µ1x∗eiω0τ0

αy∗
, q∗3 =

ρy∗(µ1x∗eiω0τ0 − iω0)
αy∗(iω0 − µ2z∗)

,

Note that

< q∗(s), q(θ) > = D̄(1, q̄∗2, q̄
∗
3)(1, q2, q3)T −

∫ 0

−1

∫ θ

s=0
D̄(1, q̄∗2, q̄

∗
3)e−(s−θ)iω0τ0dη(θ)(1, q2, q2)Teiω0τ0 sds

= D̄(1 + q2q̄∗2 + q3q̄∗3 −
∫ 0

−1
(1, q̄∗2, q̄

∗
3)θeiω0τ0θdη(θ)(1, q2, q2)T)

= D̄(1 + q2q̄∗2 + q3q̄∗3 − µ1x∗τ0e−iω0τ0).

Then we can choose
D̄ = (1 + q2q̄∗2 + q3q̄∗3 − µ1x∗τ0e−iω0τ0)−1.

such that < q∗(s), q(θ) >= 1.
Now following the standard notations and algorithms given in [44] and using a computation process

similar to that of Wei and Ruan [43], we can obtain the following coefficients which will be used for
determining the important qualities:
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g20 =2D̄τ0
{
(q̄∗2ρ − q̄∗3γ)q2q3 − µ1e−iω0τ0 − (1 + q̄∗2α)q2 − q̄∗3µ2q2

3
}
,

g11 =D̄τ0
{
(q̄∗2ρ − q̄∗3γ)(q̄2q3 + q2q̄3) − µ1(eiω0τ0 + e−iω0τ0) − (1 + q̄∗2α)(q̄2 + q2) − 2q̄∗3µ2q3q̄3

}
,

g02 =2D̄τ0
{
(q̄∗2ρ − q̄∗3γ)q̄2q̄3 − µ1eiω0τ − (1 + q̄∗2α)q̄2 − q̄∗3µ2q̄3

2},
g21 =2D̄τ0

{
− µ1[W (1)

11 (−1) +
1
2

W (1)
20 (−1) +

1
2

W (1)
20 (0)eiω0τ + W (1)

11 (0)e−iω0τ0]

+ (q̄∗2ρ − q̄∗3γ)
[
q3W (2)

11 (0) +
1
2

q̄3W (2)
20 (0) +

1
2

W (3)
20 (0)q̄2 + W (3)

11 (0)q2
]

− (1 + q̄∗2α)
[
W (2)

11 (0) +
1
2

W (2)
20 (0) +

1
2

W (1)
20 (0)q̄2 + W (1)

11 (0)q2
]

− q̄∗3µ2
[
2q3W (3)

11 (0) + q̄3W (3)
20 (0)

]}
,

where W (1)
11 (−1), W (i)

20(0) and W (i)
11(0) are given, respectively, by

W20(θ) =
ig20

ω0τ0
eiω0τ0θq(0) +

iḡ02

3ω0τ0
e−iω0τ0θq̄(0) + E20e2iω0θ

and

W11(θ) = −
ig11

ω0τ0
eiω0τ0θq(0) +

iḡ11

ω0τ0
e−iω0τ0θq̄(0) + E11.

Furthermore the constant vector E20 satisfy the following equation
2iω0 + µ1x∗e−2iω0τ0 x∗ 0

αy∗ 2iω0 −ρy∗

0 γz∗ 2iω0 + µ2z∗

 E20 = 2


−µ1e−iω0τ0 − q2

ρq2q3 − αq2

−µ2q2
3 − γq2q3

 .
It follows that

E20 = 2


2iω0 + µ1x∗e−2iω0τ0 x∗ 0

αy∗ 2iω0 −ρy∗

0 γz∗ 2iω0 + µ2z∗


−1 
−µ1e−iω0τ0 − q2

ρq2q3 − αq2

−µ2q2
3 − γq2q3

 .
The constant vector E20 satisfy the following equation

µ1x∗e−2iω0τ0 x∗ 0
αy∗ 0 −ρy∗

0 γz∗ µ2z∗

 E11 = 2


−µ1Re{e−iω0τ0} − Re{q2}

ρRe{q2q3} − αRe{q2}

−µ2Re{q2
3} − γRe{q2q3}

 .
It follows that

E11 = 2


µ1x∗e−2iω0τ0 x∗ 0

αy∗ 0 −ρy∗

0 γz∗ µ2z∗


−1 
−µ1Re{e−iω0τ0} − Re{q2}

ρRe{q2q3} − αRe{q2}

−µ2Re{q2
3} − γRe{q2q3}

 .
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So far, we have calculated g20, g11, g02, g21 and then we can obtain

c1(0) =
i

2ω0τ0

(
g11g20 − 2 | g11 |

2 −
| g02 |

2

3

)
+

g21

2
,

ν2 = −
Re(c1(0))
Re(λ′(τ0))

,

β2 = 2Re(c1(0)),

T2 =
−
(
Im{c1(0)} + ν2Im{λ

′

(τ0)}
)

ω0τ0
.

(4.8)

It is known that ν2 and β2 will determine the direction and stability of the Hopf bifurcation, and T2

determines the period of the bifurcated periodic solutions. In particular, if ν2 > 0(ν2 < 0), the Hopf
bifurcation is supercritical (subcritical) and the bifurcated periodic solutions exist for τ > τ0(τ < τ0).
If β2 < 0(β2 > 0), the bifurcated periodic solutions are stable(unstable). The period will become
longer(shorter) if T2 > 0(T2 < 0).

5. Numerical simulations

In this section, we carry out some numerical simulations to display the qualitative behaviours of
Eq (1.4) and confirm the theoretical results obtained in the above sections. We perform simulations by
using MATLAB software with realistic parameter values given in Table 1.

Table 1. Meanings and units of parameters.

Parameters Descriptions Ranges Units
r1 growth rate of malignant tumor cells 0.05 − 0.5 day−1 [30]
k1 carrying capacity of tumor cells 106 − 5 × 109 cells [30]
α1 decay rate of tumor cells by hunting cells 10−12 − 5 × 10−7 cell−1day−1 [30]
α2 decay rate of hunting cells by tumor cells 10−12 − 5 × 10−7 cell−1day−1 [30]
d death rate of hunting cells 0.01 − 0.1 day−1 [30]
r2 growth rate of resting cells 0.0245 day−1 [27]
k2 carrying capacity of resting cells 107 cells [27]
β conversion rate from resting to hunting cells 10−9 cell−1day−1[27]
c1 decay rate of tumor cells by chemotherapy 105 − 106 cell−1day−1[15]
c2 decay rate of resting cells by chemotherapy 105 − 106 cell−1day−1[15]
c3 decay rate of hunter cells by chemotherapy 105 − 106 cell−1day−1[15]

Note: GAS means globally asymptotically stable; LAS means locally asymptotically stable.

According to the ranges of parameters in Table 1, we first take the following normalized parameter
values

µ1 = 0.2, µ2 = 0.6, k = 0.4, α = 0.1, ρ = 0.48, γ = 0.1,m1 = 0.01,m2 = 0.02,m3 = 0.026. (5.1)

Then we obtain the boundary equilibria Ex
0 = (0, 0.49, 0.8750), Ey

0 = (0.95, 0, 0.9567). It is easy to
check that the conditions in Theorems 3.5 and 3.6 are satisfied. Then both Ex

0 and Ey
0 are locally
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Figure 1. (a) Basins of attraction of Ex
0 and Ey

0. (b) (c)Trajectories are shown to con-
verge to either Ex

0 or Ey
0 depending on their initial positions. The initial values in 1(b) is

[x(0), y(0), z(0)] = [0.9, 0.6, 0.2] and in 1(c) is [x(0), y(0), z(0)] = [0.9, 0.5, 0.2]. Normalized
parameters are given in Eq (5.1). One can note that when the initial density of hunting preda-
tor cells is small, the tumour cells tend to be persistent; when the initial density of hunting
predator cells is relatively large, the tumour cells will be cleared.
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Figure 2. The coexistence equilibrium E∗ = (0.6, 0.07, 0.8) is locally asymptotically stable
when time delay is absent. Normalized parameters are given in Eq (5.2).

asymptotically stable and E∗ is unstable. Figure 1 presents a phase diagram and time series of the
solutions of Eq (1.4). One can see that the trajectories converge to either Ex

0 or Ey
0 with different initial

positions. Specially, when the initial density of hunting predator cells is small, the tumour cells tend to
be persistent; when the initial density of hunting predator cells is relatively large, the tumour cells will
be cleared.

To investigate the stability of coexistence equilibrium E∗, we choose a slightly different set of the
normalized parameter values as following

µ1 = 0.2, µ2 = 0.48, k = 0.4, α = 0.1, ρ = 0.6, γ = 1,m1 = 0.01,m2 = 0.02,m3 = 0.026. (5.2)

The coexistence equilibrium is E∗ = (0.6, 0.07, 0.8). One can show that the conditions in Theorem 3.8
are satisfied and then E∗ is locally asymptotically stable when τ = 0, which implies that all the bound-
ary equilibria including Ex

0 and Ey
0 are unstable. One can see that the trajectories around E∗ converge

to it (see Figure 2).
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Figure 3. Time series and phase diagrams of the solutions of Eq (1.4) with different time
delays τ. (a) (d):the positive equilibrium E∗ = (0.6, 0.07, 0.8) of Eq (1.4) is local asymptot-
ically stable when τ = 14 < τ0 = 14.5117. (b) (c) (e) (f): the bifurcated periodic solutions
occur through Hopf bifurcations when τ = 15, 20, 25 > τ0. Normalized parameters are given
in Equation (5.2).

From Eq (4.6), we can obtain the Hopf bifurcation point τ0 = 14.5117. By Eq (4.8), we obtain
the Hopf bifurcation parameters ν2 = 40.3056, β2 = −0.3561, T2 = 5.8354. Then we know that the
Hopf bifurcation at E∗ is supercritical, the bifurcated periodic solutions is stable and the period will
increase with the increase of time delay. Figure 3 gives the time series and phase diagrams of the
solutions of Equation (1.4) with different time delays. One can see that when the time delay is under
the threshold, that is τ = 14 < τ0, E∗ is a stable focus(see Figure 3(a),(e)), which can explain the
short-term oscillations in tumour sizes; when τ = 15, 20, 25 > τ0, a branch of stable periodic solutions
bifurcate from E∗ and the period become larger with the increase of τ (see Figure 3(b)–(d), 3(f)–(h)),
which can explain the long-term tumour relapse.

Figure 4 presents the amplitude and period of the bifurcated periodic solutions of Eq (1.4) with
respect to different time delay τ. One can see that, larger intrinsic recruitment delay lead to larger
amplitude and longer period of the bifurcated periodic solutions, which indicates that the period of
tumor relapse become longer and then can provide us with a longer period to control or delete the
tumor. Furthermore, with the increase of time delay, the minimum of the periodic tumor tends to zero,
which indicates larger delay τ contributes to the control of tumor growth.

Figure 5 shows the sensitivity of state variable x(t) (tumour cells) to the parameters m1, m2, m3 and
α. The oscillation behaviour indicates that the tumour cells population is very sensitive in the early
time intervals. Note that ∂x

∂m1
< 0. We know that the increase of m1 is beneficial to control and clear the

tumor (see Figure 5(a)). On the other hand, the positivity of ∂x
∂mi

0 (i = 1, 2) indicates that stronger side
effect of chemotherapy on hunting predator cells and resting predator cells leads to increase of tumor
cells (see Figure 5(b),(d)). The positivity of ∂x

∂α
implies that larger destructive influence of tumor cells
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Figure 4. Amplitude and period of tumor cells population for the bifurcated periodic solu-
tions of Eq (1.4) with respect to time delay τ. One can note that larger intrinsic recruitment
delay lead to larger amplitude and longer period of the bifurcated periodic solution. Normal-
ized parameters are given in Eq (5.2).

is not conductive to the control of tumor. Here we have used the so called ”direct approach” to find
sensitivity functions of Eq (1.4) (refer to [40]).

6. Conclusions

The long-term relapse phenomenon of tumor, that is the appearance of periodic solution in a system
including tumor, is interesting for the control or deletion of tumor. In this paper, we construct a three-
dimensional nonlinear delay differential system including Tumor cells, cytotoxic-T lymphocytes, T-
helper cells with recruitment delay and chemotherapy to investigate long-term relapse phenomena of
tumor.

We first show that the existence and stability of the equilibria are influenced by the effects of
chemotherapy and destructive influence of tumor cells and the results are summarized in the following
Table 2.

Table 2. Equilibria and their stability of Eq (1.4).

Case Conditions Equilibria and stability
m1 > µ1 m3 > µ2 Exyz

0 is GAS
m3 < µ2, µ2m2 + ρm3 ≥ µ2(ρ − k) Exy

0 is GAS
µ2m2 + ρm3 < µ2(ρ − k) Ex

0 is LAS
m1 < µ1 m3 > µ2 Eyz

0 is GAS
m3 < µ2, µ2m2 + ρm3 > µ2(ρ − k) +

µ2α(m1−µ1)
µ1

Ey
0 is LAS

µ2m2 + ρm3 < µ2(ρ − k) + ργ(m1 − µ1) Ex
0 is LAS

Note: GAS means globally asymptotically stable; LAS means locally asymptotically stable.

It is found that there exist bistable phenomenon in Eq (1.4). Both tumor-free equilibrium Ex
0 and

Ey
0 are locally asymptotically stable at the same time, which indicates that if the tumour cells can be

eradicated or not rely on the initial density of the hunting predator cells (see Figure 1). We point out
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Figure 5. Sensitivity functions ∂x
∂m1

, ∂x
∂m2

, ∂x
∂m3

and ∂x
∂α

for Eq (1.4). Normalized parameters
are given in Eq (5.2). One can see that the tumour cells population is very sensitive to the
perturbation of the chosen set of parameters in the early time intervals and the sensitivity
decreases by time. The increase of m1 is beneficial to control and clear the tumor. However
stronger side effect of chemotherapy and destructive influence of tumor cells on predator
cells leads to increase of tumor cells.
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that the bistable phenomenon appearing in this paper is a new dynamical behavior compared with the
results in [27] and [28], which indicates that the introduction of chemotherapy and destructive influence
of tumor cells can generate richer dynamics in tumor-immune system.

It is found that the coexistence equilibrium is locally asymptotically stable if the destructive influ-
ence of tumor cells is small enough (see Figure 2). We also show that the introduction of intrinsic
recruitment delay of tumor can leads to the appearance of periodic solutions through Hopf bifurcation,
which is a different factor that explain the long-term relapse phenomena of tumor compared with the
factor in [27] and [28] (see Figure 3). We further investigate the direction and stability of bifurcated
periodic solutions by applying normal form method and center manifold theory. Finally, by numerical
simulations, it is shown that, with the increase of delay τ, the amplitude and period of the bifurcated
periodic solutions increase and the minimum of the periodic tumor cells tend to zero, which indicates
that the increase of delay τ is beneficial to the control of the growth of tumor (see Figure 4). The
sensitivity of tumour cells population to small perturbations in m1, m2, m3 and α are also investigated.
It follows that tumour cells is negatively proportion with increasing the parameter m1 and is positively
proportion with increasing the parameter m2, m3 and α and they are very sensitive in the early time
intervals and the sensitivity decreases by time to be insensitive in the steady state (see Figure 5).

Some aspects of the problem remain to be examined and studied in the future. For instance, we plan
to extend our analysis to global Hopf bifurcation analysis. Some other factors that influence the dy-
namics of tumor including the biological heterogeneity of tumor and the resistance to immunotherapy
or chemotherapy may be investigated.
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