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Abstract: Accurate and efficient estimation for defect profile of magnetic flux leakage (MFL) 
signals is important for nondestructive evaluation in industry. To improve the accuracy of defect 
profile reconstruction, an improved reconstruction method based on modified cuckoo search (CS), 
called MCS, is proposed in this paper. Firstly, a novel single-dimension updating evolution strategy 
is proposed to avoid the interference between multiple dimensions, which can make full use of the 
appropriate nest position in the historical search. Secondly, an adaptive multi-strategy difference 
evolution is introduced into the evolution process to improve the diversity and efficiency of CS 
algorithm. The proportion factor of each strategy in multi-strategy difference evolution is adjusted 
dynamically according to the value of the objective fitness. Finally, various MFL signals are selected 
to verify the effectiveness of the proposed MCS algorithm. The experiment results illustrate that the 
proposed method has high performance on the quality of the solution and robustness for noise. 

Keywords: defect profile reconstruction; cuckoo search; single-dimension; multi-strategy difference 
evolution; MFL signals 
 

1. Introduction 

For the nondestructive testing problem, the solution methods can be classified into three 
different categories: magnetic flux leakage (MFL) testing [1,2], eddy current testing [3,4], and 
ultrasonic testing [5]. Among these methods, the MFL technique is a highly efficient and popular 
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method of nondestructive testing (NDT) [6], which has been widely applied in pipeline 
nondestructive due to many advantages, such as high reliability, fast scanning and digital signal 
processing [7,8]. Early detection of the pipe faults according to the result of magnetic flux leakage 
(MFL) inspection may avoid severe collapses that involve environmental damage and high costs. 
Reconstructing defect profiles from MFL measurements is a typical inverse problem in MFL testing. 
An efficient solution for an inverse problem to estimate the defects from MFL signals is very 
important to enhance the accuracy of defect measurement [9,10]. The defect dimension of the 
pipelines determines whether the severity and repair urgency of defects need to be established.  

The direct method to estimate the defect inversing is to obtain the geometry parameters of the 
defects in early studies, such as the equivalent length, width, and depth. Although the method is 
simple and fast, the accuracy of the reconstruction is low and the defect of arbitrary shape can not be 
reconstructed. Then, in order to meet the requirement for higher precision, the actual profile of the 
defect is accurately reconstructed by an iterative inversion method. For this method, the defect 
contour reconstruction can be considered as an optimization problem to solve by minimizing the 
difference between the reference signal and the predicted signal iteratively. The iterative inversion 
method has two essential components: the forward model and the update strategy of defect profile.  

The forward model is used to predict the magnetic response of ferromagnetic materials. There 
are several models for the forward model, e.g., analytical model, numerical model and heuristic 
model. Magnetic dipole model, as a typical analytical model, is not suitable to calculate the complex 
defect. In order to overcome the drawback of the magnetic dipole model, the finite-element method 
(FEM) [11,12], which belongs to numerical model, is used to calculate the distribution of magnetic 
leakage field. Compared with the analytical model of magnetic dipole model, FEM can exploit 
different shapes and sizes units to approximate the distribution of leakage magnetic field in the 
different defect position with irregular profiles, but unfortunately the computational expense will be 
very expensive. Heuristic model is mainly based on the application of various machine learning 
methods. Artificial neural network (ANN), e.g., RBFNN [13,14], as the most commonly used 
heuristic model method, can be trained by a lot of prior defect profile and the corresponding MFL 
signal, then approximate highly nonlinear functions efficiently. The calculation speed of heuristic 
model is obviously faster than other methods. 

As the core of the iterative inversion method, the updating process of the defect profile aims to 
provide the high quality candidate predict profiles. Many optimization algorithms have been applied 
to update the defect profile in the inversing process. Priewald et al. [11] presented a fast and effective 
algorithm for reconstructing arbitrary defect profiles based on a nonlinear FEM forward model and a 
rapidly converging Gauss-Newton optimization to update the defect model. Hari et al. [13] adopted 
genetic algorithm (GA) as the optimization technique to determine the shape, the size and the place 
of defect considering the nonlinearity of the pipe material. Li et al. [15] proposed to employ a 
modified harmony search (MHS) algorithm with a multiple selection opposition-based learning 
strategy to update the defect profile. Zhang et al. [16] proposed particle swarm optimization 
algorithm (PSO) to reconstruct the sizes of rectangular crack. 

So far intelligent algorithms have attracted more and more attention [17–19], particle swarm 
optimization (PSO) [20], difference evolution (DE) [21], ant colony optimization (ACO) [22], 
genetic algorithm (GA) etc. Cuckoo search (CS) algorithm [23,24] is a new intelligent optimization 
algorithm, which is presented under the inspiration of cuckoo breeding behavior with levy flight. CS 
algorithm has many advantages, which include few parameters, simple operation, easy 
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implementation, strong ability of searching and so on. The CS algorithm is widely used in solving 
with optimal problems, such as function optimization, power system optimization and parameter 
estimation. In the study and application of the CS algorithm, it is found that the CS algorithm [25,26] 
has some drawbacks of weak local search ability, slow convergence speed and easy to get into the 
local solution. Therefore, in order to solve these shortcomings, a modified CS (MCS) algorithm 
based on single dimensional evolution strategy and multi-strategy difference evolution are introduced 
in original CS algorithm.  

The innovations and main contributions of this paper are described as follows. 
•An improved reconstruction method based on modified cuckoo search (CS), called MCS, is 

proposed to improve the accuracy of defect profile reconstruction.  
•The single dimensional evolution is firstly proposed to optimize the process of the evolution. 

The dimension with the maximum error between preference signals and predicted signals is selected 
to update the position of its nest in CS algorithm.  

•The DE with multi-strategy evolution is complemented to optimize the initial CS algorithm by 
the way of increasing the diversity of the swarm. The multi-strategy evolution can avoid the species 
into the local optimum, consequently the algorithm ability of global optimization is enhanced.  

The remainder of the paper is organized as follows. The principle of the defect reconstruction 
problem is described in Section 2. The traditional CS algorithm is presented in Section 3. The 
modified CS algorithm is introduced in Section 4. The modified CS algorithm is used to estimate the 
defect profile in Section 5. The experimental results to demonstrate the performance of the proposed 
method are given in detail in Section 6. Finally, Section 7 concludes this paper and discusses future 
research direction.  

2. Forward model of MFL signals 

Ferromagnetic materials are magnetized under the action of external magnetic field, which leads 
to leakage magnetic field at defects. Due to the high magnetic permeability of ferromagnetic 
materials, the magnetic induction field of magnetized materials is relatively strong. When the 
materials are defective, the non-continuity of material properties leads to the magnetic refraction at 
the interface where they contact with the air, and the magnetic induction field in ferromagnetic 
materials is deflected to the air, forming magnetic diffusion. 

 

Figure 1. The physical model of the MFL inspection system. 
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The principle of three-axis magnetic flux leakage detection is to saturate and magnetize the tube 
wall with permanent magnet, so that the tube wall between magnetic iron reaches the state of 
magnetic saturation, and then transfers to another steel brush and permanent magnet. The two 
permanent magnets are connected by yoke iron, and the permanent magnet steel brush tube wall and 
iron core finally form a magnetic circuit. The complete physical model of the MFL inspection system 
is shown in Figure 1, which mainly consists of permanent magnet, steel brushes, yoke iron, sensor 
and the inspected pipe wall. 

The solid model is built according to the working state of the detection equipment in the 
pipeline with MFL. Since the detection model of the pipeline is axisymmetric, this model is built by 
selecting the radial profile of the detection equipment in the pipeline with MFL. The axial simplified 
model of the MFL inspection system is depicted in Figure 2.  

 

Figure 2. The axial simplified model of FEM. 

X52 steel is chosen as the material of the pipeline wall, its B-H curve is described in Figure 3. When 
the magnetic force line passes through the pipe wall, the magnetic force line passes through the pipe wall 
without defects and is evenly distributed. As shown in Figure 4. When there are defects in the pipe wall, 
the cross-sectional area of the pipe wall where the defects become smaller. As the permeability of the 
pipeline wall at the defects is far less than that of the pipe wall, the magnetic path at the defects becomes 
smaller and the magneto-resistance becomes larger. Finally, the magnetic force line is distorted, and a 
leakage magnetic field is formed when the pipe wall at the defects penetrates through the pipe wall. 
Figures 5 and 6 show the MFL signal corresponding to a group of rectangular defects with the same 
length and different depths. Figure 5 describes the axial component of the MFL signal, and Figure 6 
shows the radial component. 

 

Figure 3. The B-H curve of X52 steel. 
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Figure 4. Distribution of magnetic flux density with defect. 

 

Figure 5. Axial components of MFL signals for a series of defects with the same length 
and different depths. 

 

Figure 6. Radial components of MFL signals for a series of defects with the same length 
and different depths. 
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speed and learning convergence speed to approximate the forward model. In RBFNN frame, there is 
three-layer neural network, including input layer, hidden layer and output layer. The size of the 
samples is proportional to the increased training accuracy. 

The data extracted from the defects of pipeline wall is used as the input vector, and the MFL 
signal of different defects is regarded as the target output vector for the common defects. A highly 
uncertain nonlinear system can be achieved through the network operation. The model can be 
expressed mathematically as 

                                  
1

( )
M

i ij j
j

y w x c


                                    (1) 

where  is the i-th output component of the radial basis function,  is the weight value of the 

input vector in the network,  is the center of the i-th radial basis function, and M is the total 

number of radial basis functions. 
The Gauss function is the most commonly used radial basis function, so it is denoted as 

                                          (2) 

where j  is the standard deviation of the Gauss function. Substitute Eq (2) into Eq (1), the relation 

between input and output of the neural network with the Gauss function as the radial basis function 
can be written as 

                                          (3) 

3. Cuckoo search algorithm 

Cuckoo search algorithm is a new and effective population-based optimization algorithm to 
solve high-dimension optimization problems. The algorithm is designed by the observations on the 
breeding behavior of cuckoo birds. It is called that certain species of cuckoos select suitable birds’ 
nests to lay their eggs with the Lévy flights behavior [25–27]. Once the host bird discovers the 
presence of the cuckoo’s eggs, the host bird will discard the cuckoo’s eggs or rebuilds a new nest. In 
Cuckoo algorithm, Lévy flights random walks is utilized to replace isotropic random walks in GA 
and PSO algorithms. So it is more efficient than many swarm-based intelligent optimal algorithms. 
Its step is a random walk that satisfies a stable distribution of a heavy tail. CS has the three 
assumptions as follows. 

(I) Each cuckoo lays only one egg at a time, and its egg is randomly put into a nest; 
(II) The nests with the highest quality of eggs will carry over to the next generation;  
(III) The number of host’s nests is fixed, and the cuckoo egg is discovered by the host with the 

probability . 

For the actual optimization problem, it is noted that a candidate solution in the search space is 
equivalent to the position of a nest with D dimension. On the basis of current solution, there are two 
important operations to update the solution. The first one is the nest position of the next generation is 
generated through Lévy flight. The position  of the new nest by Lévy flight is updated 
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according to the following equation 

                                                  (4) 

with                                                           (5) 

where  is the position of the d-th dimension for the k-th nest at t iteration;  is a step length 

scaling factor. In general, , and  is the d-th dimension of the best nest. 

In Eq (11),  is the step size obeying a given Lévy distribution.  

Where  is a constant, both u and v follow a normal distribution 

                                       (6) 

After new nest is obtained by Lévy flight, it is possible that cuckoo egg in a host nest is found 
by its host bird with the probability aP . Random migration is the second important operation to 

update the solution. Random migration will produce a new solution to replace the previous one by 
two different solutions randomly selected from current solutions, and the updated formula is  

                                         (7) 

where  is a random number over the range [0, 1]. ( )d
ix t  and ( )d

jx t  are two different nest position 

randomly selected from current nest at  iteration, respectively. 
The new generated solution may be out of the search space, so the solution should be 
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where min
dx  and max

dx  are the lower and upper range of the d-th dimension of the k-th solution, 

respectively. 

4. Modified cuckoo search algorithm  

Although cuckoo search algorithm has many advantages, e.g. strong global optimization ability and 
few parameters, it still has some drawbacks, such as low convergence speed, poor population diversity 
etc. Specifically, the major improvement of MCS algorithm includes the following two aspects. 
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4.1. Single dimension evolution 

In CS algorithm, each nest is updated and evaluated as a whole to investigate the effectiveness of 
algorithm evolution. It means that each dimension in each nest location will be updated, and all new 
generated dimensions will be evaluated as a whole. This overall updated and evaluation strategy is 
effective for single-dimensional optimization problems. However, for multi-dimensional problems, the 
search speed and convergence accuracy of the algorithm will be restricted due to the coupling 
phenomenon between multi-dimensions. The traditional CS algorithm does not make full use of the 
information of the current candidate solution. Therefore, the single dimension evolution strategy is 
adopted to optimize the quality of obtained solution to improve the search efficiency of CS algorithm.  

Each generation of single evolution strategy only updates the solution of single dimension. In 
view of the correspondence between the defect signal and the corresponding MFL signal, the single 
evolution dimension is selected according to the difference between the reference signal and the 
MFL single of the estimated global best defect profile at current iteration. The selection of the 
dimension can be derived from the following equation 

                              
0 arg max( )

t
t

g ii
i

d RP PP                                   (9) 

                                   0( , )t td N d s                                      (10) 

where iRP  is the i-th component of the reference signal,  giPP  is the i-th dimension of the global best 

nest at t iteration. 0( , )N d sigma  is Gaussian distribution with mean 0d  and standard deviation s . 

The i-th dimension is updated according to Eq (4), the obtained new dimension together with 
the other dimensions constitutes a new candidate solution, and it is appraised by the objective 
function value. If the value is better than the function fitness value of the last generation, keep the 
candidate solution and continue to evolve until meet the stop condition. Due to the adoption of the 
greed rule, the algorithm only accepts new values that can improve the current candidate solutions, 
which ensures the target tuning of the search direction during the optimization process of the 
algorithm and does not affect the efficiency of the algorithm. Due to the single-evolution evaluation 
strategy using the greed rule, it will not abandon the global optimal evolution direction because of 
the degeneration of some dimensions. The single-dimension information guidance is used to carry 
out effective search and obtain higher quality solution results.  

4.2. Multi-strategy DE mutation 

In the cuckoo search algorithm, firstly the random search by Lévy Flight is designed to obtain 
new solutions, and then the part of the obtained nests are discarded to rebuilt new nest according to 
the probability aP . The second important process is designed on the basis of randomly selected nests 

from the population, to generate new nest position solution. In order to improve the population 
diversity, multi-strategy difference evolution is introduced into CS algorithm. A new updating 
strategy is designed on the basis of three following kinds of difference evolution strategies. 

As an important branch of evolutionary algorithm, difference evolution is a heuristic global 
random search algorithm based on the differences among individuals [28]. The individual of the 
difference evolution algorithm will generate new individuals through mutation operation. The 
commonly used mutation strategy [29] is summarized as  
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DE/Rand/2: 

                  (11) 

DE/Best/1: 

                                (12) 

DE/Best/2: 

                                 (13) 

Current-to-best/1: 

                                           (14) 

where F is the weighted factor; 1 2 3 4 5, , , , [1, ]r r r r r N  are random number; N is the number of the 

population; ( )bestx t  is the best individual in the current group, rand  is random number that obey 

uniform distribution of [0, 1]. 
MCS algorithm combines Eqs (11)–(14) as the new random migration strategy which is used to 

rebuilt the solutions which have been abandoned according to the proportion aP . New random 

migration strategy consisting four choices can enhance the search efficiency and enrich the diversity 
of cuckoos. When a few of evolution strategies are implemented, we should consider the 
performance of each evolutionary strategy in each generation. The scaling factor is designed to be 
dynamically adjusted associated with the evaluation function. The MCS algorithm retains the global 
searching ability of CS algorithm, and improves local searching ability of CS algorithm. It provides 
an effective and feasible method to extract the characteristic of adaptive multi-strategy mutation 
process for DE algorithm. 

4.3. Adaptive parameter strategy 

The control parameters of MCS algorithm have an important influence on its optimization 
performance. Generally the control parameters are determined by traditional empirical methods 
which cannot always maintain the optimality. 

The global search of MCS algorithm is carried out by adaptive Levy flight mechanism, the Levy 
flight step size decreases with the iteration. The improved algorithm has a larger step size factor in 
the initial stage of optimization, so as to expand the search space and improve the global search 
ability; in the process of optimization, the step size is reduced to improve the local search 
performance of the algorithm. The adaptive strategy of the step length scaling factor 1c  is described 

                           1 max max0.001 exp( ( / ))c T T T                              (15) 

The probability aP  of each generation is obtained by normal distribution, which can be 

expressed as 
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In the evolution process, if the individual is better than that of the parent after multi strategy 
differential mutation, the corresponding aP  will be stored in FS  set. At the end of each generation 
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evolution, pM  is updated as follows 

1
( ), if

, else

F Ft
P t

P

mean S S
M

M




 


                             (17) 

According to the experience, the value of F should increase with the number of iterations. When 
the algorithm begins, F should be small, and in the later stages of the algorithm, the value of F will 
get large. Therefore, F is set as follows, 

                          
max max min max( ) /F F T F F T                                (18) 

Where maxF  and minF  are the upper and lower bounds of F. 

4.4. Complete optimization procedure of the MCS 

The MCS algorithm with single dimension search and adaptive multi-strategy different 
evolution is described as follows in detail. 

Step 1. Initialize the MCS algorithm. 
Set the size of nests N , the maximum number of iterations maxT , the upper and lower bounds 

of search space, step length scaling factor 1c  and the probability aP . Randomly generate the 

positions of N  nests.  
Step 2. Calculate the fitness value.  
Calculate the fitness value of each individual, and choose the best position of the individual and 

the global optimum as the current position of cuckoo nests and best individual. 
Step 3. Select the dimension of evolution. 
The dimension is selected according to Eqs (9) and (10).  
Step 4. Update single dimension of the nests by Lévy flight. 
The selected dimension is updated by using Lévy flight, which together with the others forms 

the new nests. The fitness of new nests is calculated according to the evaluation function, where the 
quality of new nests positions will be measured. If the fitness of the new nest positions is better than 
the old one, the previous nest can be replaced by the new nest. 

Step 5. Abandon and construct the new single dimension of the nest position. 
The corresponding selection boundaries of four policies are written as 1

t
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t
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generation. The current dimension is updated as 

                         (19) 

with                                                       (20) 
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                           with                         (21) 

where  is the improvement rate of Eq (11);  is the number the current solutions which are better 

than the previous ones; 1s  is the total number of the individuals which are used to update by the 

first strategy. The adjust rule of  and are similar to , when , ; . 

In order to prevent the parameter be overturned, it is noted the upper and lower of kf  should be 

determined before the start of the run. If the dimension exceeds the search space, then it is limited 
into the boundary value of search space. 

Step 6. Determine the end condition. 
Determine whether the end conditions are met. If the end condition is met, the global optimum 

value and position of nest are recorded. Otherwise, turn to Step 2. 

5. Inversing approach based on MCS  

On the basis of the above section, MCS algorithm is used to reconstruct the defect profile. The 
flow chart of which is shown in Figure 7. 
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The algorithm is implemented using the following steps in detail. 
Step 1. Initialize the nests of the MCS algorithm and set all the parameters, e.g., the number of 

the nests N, the maximum iteration of maxIt , the probability aP , and step length scaling factor 1c . N 

nests of MCS algorithm represent the predicted profiles as 

                                          (22) 

Step 2. Compute the MFL signal of the corresponding nest by the RBFNN, the obtained data 
from the FEM forward model are used to train the RBFNN, which can be more accurate to 
approximate the relationship between profile signal and the MFL signal. 

Step 3. Calculate the fitness value of each nest according to the given preference profile using 
the formula as 

                           
  2
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（ ） （ ）                           (23) 

The best nest is selected by the fitness value f. 
Step 4. Generate the new nests by MCS algorithm. 
Step 5. Determine whether the maximum number of the iterations is met. If maxt T , turn to Step 2. 

Otherwise, output the final predicted defect profile. 

6. Performance evaluation 

To test the performance of the proposed approach, some defects with different profiles were 
reconstructed in the experiment. The MFL data was generated from ANSYS 15.0 software. The 
defects with 360 samples were used to produce the corresponding MFL signals. Among the 360 
defects, 240 profiles were rectangular defects, 80 profiles were ladder defects, and the remaining 40 
profiles were triangular. The data were divided into two groups. The first group including 340 pairs 
was used for training by RBFNN and the second group was used to test the reconstruct result of the 
proposed inversing approach. The dimension number of defect profile was 50, so the number of input 
and output layers of RBFNN was also 50.  

In order to evaluate the error between the true defect profile and reconstruction predicted profile, 
overall proximate degree PSD could be utilized as an important performance criterion. Besides that, 
the error PDE between the maximum depth of the true defect profile and the maximum depth of the 
predicted profile were taken account to estimate the severity of the defect. The PSD and PDE [15] 
are defined as follows, 

                                                         (24) 

                                                             (25) 

The accuracy of defect assessment is mainly evaluated by the above two indicators. In practice, 
the actual MFL signals are often mixed by the normally distributed noise. The noise will affect the 
evaluated results, so we discussed the performance with the noise which had with an SNR of 20 dB.  
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All the simulation experiments were implemented on a PC with an Intel Core I7-9700 CPU and 
a 32 GB memory. For a reliable and fair comparison, all simulation experiments were ordered to 
execute 50 independent runs. The average results were calculated to demonstrate the performance of 
the different algorithms. 

(I) Parameter setting 
If there is no defect in the pipe, the depth of defect is defined as 0. In ANSYS model, pipe wall 

thickness was set to 8 mm. The scope of defect depth was from −8 to 1 mm, which constrained the 
search space for the solutions. So min 8X    and max 1X  . In MCS algorithm, 0.8aP  , 1.5  , 

and 0.8F  , respectively. To show the effect of population size on the performance of the algorithm, 
we selected different population sizes from 50 to 500. Figures 8 and 9 display the simulation 
experimental results, including the results of the PSD and the PDE. The corresponding simulation 
experimental data is recorded in Table 1. The profiles and the MFL signal estimated by MCS are 
shown in Figure 10.  

 

Figure 8. The result of the PSD. 

 

Figure 9. The result of the PDE. 
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(a) The profiles estimated by MCS. 

 

(b) The MFL signal estimated by MCS. 

Figure 10. The profiles and the MFL signal estimated by MCS. 

Table 1. The results of the PSD and the PDE. 

Term Number of nests 
 50 100 150 200 250 

PSD 0.0382 0.0363 0.0355 0.0353 0.0354 

PDE 0.2628 0.2431 0.2379 0.2398 0.2378 

Term Number of nests 
 300 350 400 450 500 
PSD 0.0344 0.0351 0.0346 0.0343 0.0348 
PDE 0.2369 0.2378 0.2365 0.2330 0.2377 

From Figures 8 and 9, the results demonstrate that if the number of nests is too small, e.g., 50, 
the value of PSD and PDE is obviously larger than when N are other values. But when the number of 
nests was enough to predict the defect profile, e.g., 100, the number of nests had little influence on 
the change of the value of PSD and PDE. 

(II) Performance comparison of different approaches without noise 
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To demonstrate the performance of the proposed algorithm, the nine defect profiles with 
different depth and width were adopted to reconstruct, which were randomly selected from the test 
set and presented in Table 2. The parameters in PSO, DE, CS, CS-PF [6] is given in Table 3. The 
results, including PSD and PDE, are listed in Table 4. 

Table 2. The samples of nine defect profiles.  

Sample index Defects shape Width (mm) Depth (mm) 

1 rectangle 10 1.6 

2 rectangle 15 2.4 

3 rectangle 25 3.2 

4 triangle 41 4.4 

5 triangle 45 5.6 

6 triangle 35 3.6 

7 trapezoid 34/15 2.0 

8 trapezoid 8/3 5.6 

9 trapezoid 21/9 7.2 

Table 3. The parameters of five different algorithms. 

Parameter Value 

Number of generations 100 

Population size 100 

Pa (CS, CS-PF, MCS) 0.8 

 (CS, CS-PF, MCS) 1.5 

T (CS-PF) 1 

F (only DE) 0.7 

CR (only DE) 0.8 

w  0.73 

 1.5 

2c  1.5 

Figures 11 and 12 and Table 4 show the reconstruction result of defect profile. It is noted that the 
best results among the five algorithms are indicated in bold. From Figures 11 and 12 and Table 4, it is 
obvious that MCS can achieve better result indicators, e.g., PSD and PDE, than the other approaches. 
PSD of CS-PF method was smaller than that of the other three methods (PSO, DE, CS) in most cases. 
It is clearly visible that MCS exceeds other algorithms significantly in three types of defect samples.  

From the experiment, it could be concluded that the performance of MCS was better than the 
other four approaches. This results demonstrated that the proposed inversing approach based on 
MCS was effective and steady.  



1c
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Table 4. Performance comparisons of five algorithms. 

Sample index Item CS CS-PF DE PSO MCS 

1 
PSD 0.136 0.109 0.154 0.227 0.035 
PDE 0.975 0.517 1.067 0.903 0.202 

2 
PSD 0.130 0.122 0.142 0.218 0.050 
PDE 1.287 1.165 1.323 1.589 0.299 

3 
PSD 0.145 0.113 0.155 0.233 0.037 
PDE 1.295 0.806 1.351 1.607 0.260 

4 
PSD 0.142 0.135 0.173 0.262 0.061 
PDE 1.368 1.257 1.459 1.543 0.682 

5 
PSD 0.148 0.137 0.171 0.256 0.074 
PDE 1.435 1.245 1.477 1.526 0.870 

6 
PSD 0.137 0.133 0.178 0.249 0.057 
PDE 1.401 1.344 1.538 1.621 0.813 

7 
PSD 0.129 0.112 0.124 0.157 0.027 
PDE 1.319 1.231 1.406 1.453 0.216 

8 
PSD 0.117 0.106 0.122 0.186 0.059 
PDE 1.266 1.192 1.435 1.594 0.647 

9 
PSD 0.125 0.107 0.136 0.191 0.055 
PDE 0.800 1.238 1.474 1.614 0.292 

 

Figure 11. The PSD values of nine defect profiles without noise. 

 

Figure 12. The PDE values of nine defect profiles without noise. 
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In the actual environment, noise signals are often included in the collected MFL measurement 
signals, so the performance of the reconstruction algorithm with noise added should be considered 
when the defect reconstruction is employed. To verify the performance of MCS about the robustness 
of the noise, the noise with an SNR of 20 dB was added to the above nine signals. The performances 
of the five different methods are described in Figures 13 and 14 and Table 5. Figures 15–23 display 
the reconstruction results of the defect profiles based on MCS. In these figures, the true profile is 
expressed by the blue line, and the predicted defect profile is represented by the red line. 

Table 5. Performance comparisons of five algorithms with SNR of 20. 

Sample index Item CS CS-PF DE PSO MCS 

1 
PSD 0.145 0.113 0.164 0.271 0.039 
PDE 1.063 0.628 1.362 1.217 0.230 

2 
PSD 0.168 0.127 0.176 0.286 0.053 
PDE 1.359 1.203 1.694 1.628 0.357 

3 
PSD 0.162 0.116 0.196 0.279 0.044 
PDE 1.534 0.885 1.479 1.716 0.287 

4 
PSD 0.270 0.169 0.211 0.337 0.069 
PDE 1.425 1.259 1.553 1.689 0.682 

5 
PSD 0.217 0.189 0.178 0.223 0.075 
PDE 1.493 1.305 1.637 1.787 0.870 

6 
PSD 0.148 0.121 0.197 0.226 0.056 
PDE 1.441 1.376 1.638 1.755 0.813 

7 
PSD 0.150 0.147 0.199 0.186 0.037 
PDE 1.513 1.320 1.607 1.516 0.216 

8 
PSD 0.139 0.115 0.242 0.196 0.062 
PDE 1.365 1.292 1.694 1.769 0.647 

9 
PSD 0.163 0.125 0.163 0.211 0.060 
PDE 0.820 0.702 1.165 1.518 0.292 

 

Figure 13. The PSD values of five different algorithms with noise. 
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Figure 14. The PDE values of five different algorithms with noise. 

 

(a) The estimated defect profile of MCS algorithm. 

 

(b) The MFL single of MCS algorithm. 

Figure 15. The result of MCS algorithm (sample No. 1). 
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(a) The estimated defect profiles of MCS algorithm. 

 
(b) The MFL single of MCS algorithm. 

Figure 16. The result of MCS algorithm (sample No. 2). 

 
(a) The estimated defect profile of MCS algorithm. 

 

(b) The MFL single of MCS algorithm. 

Figure 17. The result of MCS algorithm (sample No. 3). 
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(a) The estimated defect profile of MCS algorithm. 

 

(b) The MFL single of MCS algorithm. 

Figure 18. The result of MCS algorithm (sample No. 4). 

 
(a) The estimated defect profile of MCS algorithm. 

 
(b) The MFL single of MCS algorithm. 

Figure 19. The result of MCS algorithm (sample No. 5). 
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(a) The estimated defect profile of MCS algorithm. 

 
(b) The MFL single of MCS algorithm. 

Figure 20. The result of MCS algorithm (sample No. 6). 

 

(a) The estimated defect profile of MCS algorithm. 

 
(b) The MFL single of MCS algorithm. 

Figure 21. The result of MCS algorithm (sample No. 7). 
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(a) The estimated defect profile of MCS algorithm. 

 

(b) The MFL single of MCS algorithm. 

Figure 22. The result of MCS algorithm (sample No.8). 

 
(a) The estimated defect profile of MCS algorithm. 

 

(b) The MFL single of MCS algorithm. 

Figure 23. The result of MCS algorithm (sample No. 9). 
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Since the noise is added into the preference MFL signal, which causes some differences 
between the reference signal and the real value. Therefore, the accuracy of contour defect inversion 
will be affected by the noise and increases evaluation difficulty. From Table 5 and Figures 13 and 14, 
it is seen that the noise influences greatly the accuracy of the measurement. The PSD and PDE of the 
proposed approach were both higher than that case with no noise. The evaluated error increased due 
to the existence of the noise for the five algorithms. Among these algorithms, MCS and CS-PF had 
good robustness to noise. The change in PSD and PDE of PSO and DE, especially PSO, was larger 
than that of MCS and CS-PF. 

Meanwhile, it is generally known that the predicted profiles achieved by MCS are clearly closer 
to the true profiles than CS-PF according to the average indicator PSD. It can be seen that the 
reconstructed profile of the proposed method can further improve the performance of CS-PF 
approach, which is a little better than CS-PF in the nine samples. The PSD and PDE of the proposed 
algorithm were lower than that of the other approaches. These results demonstrated that the proposed 
model was effective and efficient to reconstruct the defect profile in the presence of noise. 

To further test the influence of the MCS on the accuracy of the inversion, an arbitrary defect 
was also used to reconstruct the profile. The number of the maximum iteration was 10,000. The 
predicted profile based on different methods is shown in Figure 24 and Table 6. 

It is clearly seen that the accuracy of the predicted profile based on MCS is better than that of 
other four methods according to the PSD and PDE in Table 6. From Figure 24, it is also obvious that 
the predicted signal of MCS matches the reference signals accurately. Therefore, MCS algorithm is 
helpful for improving the profile reconstruction accuracy. 

In addition, the experimental case was performed for testing the effectiveness of the MCS 
approach. The defect reconstruction based on MCS was applied to estimate real defect profile. As 
can be seen from the Figure 25, the MFL detector includes the three independent parts: the magnetic 
section, the record section and the battery section. The magnetic section was mainly used for 
detection. The record section was to save the data during the detection process. The main purpose of 
the battery section was to provide the required electric energy. The defect profile with known size 
was used to test the availability of the proposed algorithm. The results of the defect profile are 
plotted in Figure 26, the indicators of PSD and PDE are listed in Table 7. From Table 7, it can be 
seen that the method based on MCS is an effective method to construct the defect profile of the 
pipeline in the experimental case. The performance of MCS algorithm was superior to CS algorithm. 

Table 6. The reconstruction results of different methods. 

Method PSD PDE 

CS 0.1409 1.1890 

CS-PF 0.1219 1.1087 

DE 0.1587 1.6738 

PSO 0.2196 1.1525 

MCS 0.1006 0.6327 
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(a) Result of the inversion method based on CS.        (b) Result of the inversion method based on CS-PF. 

 

(c) Result of the inversion method based on DE.        (d) Result of the inversion method based on PSO. 

 
(e) Result of the inversion method based on MCS. 

Figure 24. Inversion result of different methods. 

 

Figure 25. Structure drawing of experimental equipment. 
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Table 7. The reconstruction results of CS and proposed approach. 

Sample index PSD PDE 

CS MCS CS MCS 

Defect 1 0.157 0.051 1.388 0.656 

Defect 2 0.121 0.056 1.172 0.589 

 

(a) Estimated profile for defect 1. 

 
(b) Estimated profile for defect 2. 

Figure 26. The result of the defect profile. 
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7. Conclusions 

In this paper, we have proposed a novel defect profile reconstruction approach based on MCS. In the 
proposed approach, firstly, the MFL signal is employed as a key reference to estimate the quality of the 
predicted defect profiles in inversing process. Specifically, only the one-dimensional information with the 
largest error between the predicted signal and the reference signal is updated to reduce the interference 
caused by other dimension information. Secondly, to improve the diversity of the CS algorithm, 
multi-strategy DE optimization method is introduced to enrich the nest solution in rebuilt new nest 
process. Moreover, to optimize the structure of solution space, adaptive and dynamic settings of 
proportion parameter according to cost function or fitness function are discussed. The proposed MCS 
algorithm is tested by MFL experiment. In order to prove the ability of the reconstruction in noise 
circumstance, the proposed approach can reconstruct the defect profile by adding noise in preference 
MFL signal. The experiment results indicate that MCS can achieve higher accuracy. To reconstruct 3D 
defect profiles will be our future work with intelligent optimization methods. 
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