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1. Introduction

Applied mathematics did not only appear because of an objective purpose, but also thanks to the
human desire of always getting to know more. It is known that a quantitative description of a phe-
nomenon observed with the formulation of laws is not enough if it does not make a qualitative study
of the model along with the corresponding phenomenon. Mathematical modeling of a real problem is
sometimes a difficult, long-term and very detailed process. An effective or at least close to an effec-
tive solution represents the final target of any problem. The theory of differential equations and some
software packages are important tools for solving several actual problems from different real-world
domains.

There are known various contributions to the investigation of solid tumor growth and chemothera-
peutic scenarios. Thus, the effects of drug administration in chemotherapy are studied in the papers of
R.B. Martin et al. [1] and S.T.R. Pinho et al. [2]; the fail of chemotherapy, in S.T.R. Pinho et al. [3]
and D.S. Rodrigues et al. [4]; problems of optimal control of drug administration, in J.C. Panetta
and K.R. Fister [5], L.G. de Pillis and A. Radunskaya [6], L.G. de Pillis et al. [7], A. D’Onofrio et
al. [8]; multi-scale simulations, in G.S. Stamatakos et al. [9]; Monte Carlo models, in L.G. Marcu
and E. Bezak [10]; models based on ordinary differential equations, in S.T.R. Pinho et al. [11], D.S.
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Rodrigues and P.F. de Arruda Mancera [12], M. Mamat et al. [13], J. Malinzi [14] and P. Unni and P.
Seshaiyer [15]; and stochastic dynamic models, in W. L. Duan [16], W. L. Duan and H. Fang [17] and
W. L. Duan et al. [18]. For some reviews on mathematical models for tumor growth and treatment, we
refer the reader to P.M. Altrock et al. [19], A. Fasano et al. [20] and A. Yin et al. [21].

In paper [22], the mathematical model for solid tumors has been the self-limiting equation

N′(t) =
aN(t)

1 + bN(t)
− cN(t)

involving three positive parameters a, b, c. The same equation has been used in [23–25] for modeling
cell proliferation in leukemias.

Alternatively, one can use the generalized logistic equation or Richards’ growth model [26],

N′(t) = rN(t)
1 − (

N(t)
K

)θ . (1.1)

Such an approach is given by H.M. Byrne in [27], where the following dynamic system is suggested
as a model for tumor chemotherapy:N′(t) = rN(t)

(
1 −

(
N(t)
K

)θ)
− µA(t)N(t)

A′(t) = α(t) − λA(t) − γA(t)N(t).
(1.2)

We will adopt this model for the study which follows. In this model, N(t) represents the number of the
tumor cell population from a solid tumor that changes in time, A(t) is the drug concentration within the
tumor at time t, and α(t) represents the rate at which the drug is injected in the body.

Parameter r represents the nonrestrictive growth rate of the tumor cell population giving the pro-
liferative capacity of the cells, K stands for the tumor carrying capacity, θ measures how quickly the
tumor reaches its carrying capacity, µ is the rate at which the drug kills malignant cells, λ represents
the decreasing rate of the concentration of the drug, and γ gives the rate at which the drug is consumed
significantly within the tumor. We emphasize the role of the parameter θ for the adequacy of the lo-
gistic equation to the real clinical data obtained on each type of tumor. A method for determining the
value of this parameter is described in paper [28], where the criterion of best fit was the mean square
error between the observed and predicted tumor values. For breast cancer, the best overall fit to the
clinical data was obtained with θ = 1/4.

According to the clinical practice, two cases have to be considered: (a) the case of continuous
infusion, when α(t) is a constant α∞, and (b) case of periodic infusion, when the drug is delivered as a
series of interrupted continuous infusions, and thus α(t) is only piecewise constant.

The scope of this paper is to perform a complete analysis of the stability of the equilibrium or
stationary solutions of the Eq (1.2), as a theoretical basis of the chemotherapeutic protocols. Our
results extend to a general exponent θ and some of the conclusions established in [27, Chapter 4].
The theory is illustrated and complemented by a number of numerical simulations with MATLAB and
MAPLE software, using real data from the medical literature. A part of the numerical simulations
was carried out on the Kotys HPC (High Performance Computing) infrastructure of Babeş-Bolyai
University, Cluj-Napoca [29].
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2. The generalized logistic growth model for a solid tumor

Before starting to discuss the model of chemotherapy given by the Eq (1.2), in this first section,
for comparative purposes, we remind the reader of some well-known basic results regarding the gen-
eralized logistic Eq (1.1) here considered as a model for tumor cell dynamics and the stability of its
equilibrium solutions.

The solution of Eq (1.1) satisfying the initial condition N (0) = N0 can be given explicitly, namely

N(t) =
1(

K−θ + e−rθt
(
N−θ0 − K−θ

)) 1
θ

.

The equation admits two equilibrium solutions, N∗1 = 0 and N∗2 = K. Their stability properties can be
easily established and are given by the next result.

Theorem 2.1. (a) If r < 0 and N0 < K, then N(t) → 0 as t → +∞, thus N∗1 = 0 is the only one
equilibrium solution which is locally asymptotically stable.

(b) If r > 0, then N(t) → K as t → +∞, thus N∗2 = K is the only one equilibrium solution which is
locally asymptotically stable.

(c) If r = 0, then N(t) ≡ N0, thus the solution N(t) remains constantly equal with the initial value
N0.
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(a) Tumor cell population behavior when
r = −1, θ = 2 and K = 10.
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(b) Tumor cell population behavior when
r = 1, θ = 2 and K = 10.
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(c) Tumor cell population behavior when
r = 0, θ = 2 and K = 10.

Figure 1. The dynamics of the generalized logistic model.

From a biological point of view, we can say that in the case of a negative nonrestrictive growth rate,
as in situation (a) from the previous theorem, the population of tumor cells will be eliminated in time,
see Figure 1(a). On the contrary, in the case of a positive nonrestrictive growth rate, as in situation
(b), the population of tumor cells reaches its carrying capacity K, see Figure 1(b). In the case when
the nonrestrictive growth rate is equal to zero, as in situation (c), the population of tumor cells remains
constant in time, see Figure 1(c).

The aim of this paper is to study the influence of chemotherapy over the dynamics of the tumor
cell population, in the case r > 0, when, in the absence of the treatment, the tumor cell population
approaches K.We are looking for conditions for the treatment to be effective, i.e. to make the transition
from the bad situation N (t)→ K to the good one N (t)→ 0 as t → +∞.

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1845–1863.
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3. Treatment of homogeneous solid tumors

Consider that a tumor grows according to the generalized logistic model, where r > 0, that a drug
is used to destroy the malignant cells, and that the mathematical model of the therapeutic dynamics is
given by Eq (1.2).

We take into consideration two methods of treatment administration: by continuous infusion and by
periodic infusion.

3.1. Continuous infusion

When the tumor is in a continuously mode exposed to cytostatic medicine, the concentrations of
tumor cells and of the drug can evolve to equilibrium values. To study the impact produced by the
continuous infusion of the drug, we will find and classify the equilibrium solutions of the Eq (1.2),
by taking into consideration how they both depend on α∞ and therefore on the amount of medicine
administered.

We consider two cases: Case I of continuous infusion when the medicine keeps its efficiency effect
(which means is not consumed within the tumor), that is γ = 0; Case II of continuous infusion when
the drug does not keep its efficiency effect (which means is consumed significantly within the tumor),
that is γ , 0.

Case I: Assume that the drug keeps its efficiency effect, that is, γ = 0. Then Eq (1.2) has the
following form N′(t) = rN(t)

(
1 −

(
N(t)
K

)θ)
− µA(t)N(t) = f1 (N, A)

A′(t) = α∞ − λA(t) = f2 (N, A) .
(3.1)

The equilibrium points are the solutions of the algebraic system rN
(
1 −

(
N
K

)θ)
− µAN = 0

α∞ − λA = 0.

By direct calculation, we find two equilibrium points X1

(
N∗1 , A

∗
)

and X2

(
N∗2 , A

∗
)
, where

A∗ =
α∞
λ
, N∗1 = 0 and N∗2 = K

(
1 −

µα∞
rλ

) 1
θ

. (3.2)

We say that an equilibrium point is admissible (from a biological point of view) if its components are
nonnegative. The discussion which follows is about the admissibility and local stability of the above
equilibrium points.

Clearly, the equilibrium X1 is admissible. As regards X2, observe that if r > µα∞
λ
, then N∗2 > 0, that

is the equilibrium point X2 is admissible, while if r < µα∞
λ
, then N∗2 < 0 and so X2 is not admissible,

without biological relevance.
Next, by the method of the first approximation (for details about the method see [30,31]), we study

the stability of the equilibrium solutions. The Jacobian matrix associated to Eq (3.1) is

J f =( f1, f2) (N, A) =

∂ f1
∂N (N, A) ∂ f1

∂A (N, A)
∂ f2
∂N (N, A) ∂ f2

∂A (N, A)
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=

r − r
Kθ (θ + 1) Nθ − µA −µN

0 −λ

 .
For X1

(
N∗1 , A

∗
)

we have

J f
(
N∗1 , A

∗) =

(
r − µα∞

λ
0

0 −λ

)
and its eigenvalues are

η1 = r −
µα∞
λ

, η2 = −λ < 0.

Hence, if r < µα∞
λ
, then the equilibrium solution X1

(
0, α∞

λ

)
is locally asymptotically stable, while if

r > µα∞
λ
, then it is unstable.

For X2

(
N∗2 , A

∗
)
, the Jacobian matrix is

J f
(
N∗2 , A

∗) =

r − (θ+1)(rλ−µα∞)−µα∞
λ

−µK
(

rλ−µα∞
λ

) 1
θ

0 −λ


and its eigenvalues are

η1 = r −
(θ + 1) (rλ − µα∞) − µα∞

λ
, η2 = −λ < 0.

Hence, if rλ− (θ + 1) (rλ − µα∞) < µα∞, or equivalently r > µα∞
λ
, then the equlibrium point X2

(
N∗2 , A

∗
)

is locally asymptotically stable, while if r < µα∞
λ
, then it is unstable.

If we put together the above results, we can state the following theorem about the local asymptotic
stability of the equilibrium points of Eq (3.1).

Theorem 3.1. Let r,K, θ, µ, α∞ and λ be positive parameters. Then Eq (3.1) has the following admis-
sible equilibrium points:

(a) If r < µα∞
λ
, then there is only one admissible equilibrium point X1

(
N∗1 , A

∗
)

which is locally
asymptotically stable.

(b) If r > µα∞
λ
, then there are two admissible equilibrium points: X1

(
N∗1 , A

∗
)

unstable, and

X2

(
N∗2 , A

∗
)

locally asymptotically stable.

From a medical point of view, conclusion (a) of the above theorem says that the treatment is
successful leading to the elimination of the cancer cells provided that the amount α∞ of drug infused
is large enough as the inequality α∞ > rλ

µ
shows. If on the contrary α∞ < rλ

µ
, then the treatment

can only guarantee a reduction of the limit value for the tumor cell population from K to K
(
1 − µα∞

rλ

) 1
θ
.

Numerical simulations in Case I of continuous infusion

The results of our study cover all the positive values of the parameters. For clinical applications,
however, it is necessary to determine the specific values of these parameters. This aspect is intensely
analyzed in the literature (see, for example [15,32–34] ) and is not the subject of our research. Here,
for the numerical simulations, we use the values of the parameters presented in Table 1.
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Next, we simulate numerically the Eq (3.1) to investigate the behavior of the tumor cell population
after the continuous infusion of the chemotherapy treatment when the drug is not consumed within the
tumor, that is when γ = 0.

The initial number of tumor cells N0 was calculated by dividing up the initial tumor volume to the
individual volume of a typical tumor cell. For the initial tumor volume, we took the median value of all
breast tumor volumes Vt = 407 mm3 as estimated by mammography in a series of 448 patients see J.A.
Spratt et al. [28]. The individual volume of a tumor cell Vc = 1760 µm3 was taken from M.P. Gamcsik
et al. [35], which measured breast cancer cells in culture. It appears reasonable to approximate the size
of actual tumor cells in vivo by the size of the lab-grown cells. This leads to an initial number of cells
equal to:

Vt

Vc
=

407 mm3

1760 µm3 =
4.07 × 1011 µm3

1760 µm3 = 2.31 × 108.

We chose a value for γ such as the consumption of the drug within the tumor (−γNA) equals the
elimination of the drug by first-order kinetics such as excretion via kidneys (−λA), when the tumor is
large (N approaches the carrying limit K). That is, λ = γK, or

γ =
λ

K
=

4.16 day−1

1.1 × 1012 cells
= 3.78 × 10−12 day−1/cell.

Table 1. Parameter values for simulations.

Parameters Values Units Comments / References
r

[
0.2 × 10−3, 33.72 × 10−3

]
day−1 see J.A. Spratt et al. [28]

K 1.1 × 1012 cells see J.A. Spratt et al. [28]
θ 1/4 − see J.A. Spratt et al. [28]
µ 8 × 10−2 day−1 µ > r / assumed condition, see R.N. Buick [36]
α∞ [0.01, 5] mg day−1 continuous infusion / see L. Edelstein-Keshet [37]
λ 4.16 day−1 see S.T.R Pinho et al. [2], D.S. Rodrigues et al. [12]
γ 3.78 × 10−12 day−1/cell γ = λ/K / calculated value
τ 0.5 day assumed value
N0 2.31 × 108 cells calculated value

In a previous study on a sample of 448 patients diagnosed with breast tumors, see J.A. Spratt et
al. [28], the growth rate r was calculated for each individual case by regression analysis. Centrality
(the median, 3.22 × 10−3/day) and dispersion measures (1% and 99% percentiles, 0.2 × 10−3/day, and
33.72 × 10−3/day, respectively) were then computed for the set of growth rates. We have employed
these three values for r across all our simulations. They characterize synthetically the spectrum of
disease severity, spanning from the slowest growing tumors (low r) to the most aggressive (high r).
The shaded area between the curves in the simulations using time-series representations corresponds
to values of r between the above limits.

Case I of continuous infusion: In this case, the drug is not consumed within the tumor, that means
γ = 0. Figure 2(a) shows the behavior in time (t = 100 days) of the breast tumor cell population
for the corresponding parameter values from Table 1, values that correspond to treatment success,
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when r < µα∞/λ. The breast tumor cell population N(t) and the drug concentration A(t) becomes
arbitrarily close to the values N∗1 = 0 and A∗ = α∞/λ, that means the equilibrium point X1

(
N∗1 , A

∗
)

is
locally asymptotically stable. Figure 2(b) shows the behavior in time (t = 5 × 106 days) of the breast
tumor cell population for the corresponding parameter values from Table 1, values that correspond to
treatment failure, when r > µα∞/λ. The breast tumor cell population N(t) and the drug concentration
A(t) tend toward N∗2 and A∗, respectively. In this case, the equilibrium X1

(
N∗1 , A

∗
)

is unstable and

X2

(
N∗2 , A

∗
)

is locally asymptotically stable.

(a) Treatment success (b) Treatment failure

Figure 2. Behavior of breast tumor cell population according to Eq (3.1). For this time-
series representations we chose the cytostatic drug dose α to be: α = 5 mg day−1 in the case
of treatment success (a), and α = 0.01 mg day−1 in the case of treatment failure (b). The
values for all the other parameters are listed in Table 1. Initial conditions for both (a) and (b)
are: N(0) = 2.31 × 108 and A(0) = 0.

Case II: Assume that the drug does not keep its efficiency effect. Then γ , 0 and for the determi-
nation of the equilibrium points of the Eq (1.2), we need to solve the algebraic system rN

(
1 −

(
N
K

)θ)
− µAN = 0

α∞ − λA − γAN = 0.

Direct calculation yields the equilibrium point

X1
(
N∗1 , A

∗
1
)
, N∗1 = 0, A∗1 =

α∞
λ

and possible additional equilibrium points of the form X (N∗, A∗) , where (N∗, A∗) solves the system A = α∞
λ+γN

r
(
1 −

(
N
K

)θ)
− µA = 0,

and consequently, N∗ is a solution of the equation

r
(
1 −

(N
K

)θ)
=

µα∞
λ + γN

. (3.3)
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To discuss the solvability of Eq (3.3) and the number of its solutions, it is convenient to look at the
functions ϕ1, ϕ2 : [0,+∞)→ R,

ϕ1 (N) = r
(
1 −

(N
K

)θ)
, ϕ2 (N) =

µα∞
λ + γN

.

Both functions are decreasing and

ϕ1 (0) = r, ϕ1 (K) = 0, lim
N→+∞

ϕ1 (N) = −∞,

ϕ2 (0) =
µα∞
λ

, lim
N→+∞

ϕ2 (N) = 0.

In addition, the function ϕ2 is convex, while ϕ1 is concave if θ > 1, and convex if θ < 1. Then,
elementary geometric considerations yield the following conclusions about Eq (3.3):

(a) If r > µα∞
λ
, then Eq (3.3) has a unique solution N∗ ∈ (0,K) and Eq (1.2) admits the equilibrium

point X
(
N∗, α∞

λ+γN∗

)
.

(b) If r < µα∞
λ
, then Eq (3.3) may have no positive solution, one positive solution, or two positive

solutions, and any positive solution belongs to the interval (0,K).

(c) If r
(
1 +

γK
λ

)
≤

µα∞
λ
, then Eq (3.3) has no solution in (0,K) .

We can prove assertion (c) assuming the contrary, i.e., the existence of a solution N in (0,K) . Then
we would have

r > r
(
1 −

(N
K

)θ)
=

µα∞
λ + γN

>
µα∞
λ + γK

,

or equivalently

r
(
1 +

γK
λ

)
>
µα∞
λ

,

which yields a contradiction.

Numerical simulations for Eq (3.3)

Figures 3(a)–(b), 4(a)–(c) and 5(a)–(c) illustrate the number of solutions of Eq (3.3).

(a) Eq (3.3) has a
unique solution.

(b) Eq (3.3) has a
unique solution.

Figure 3. Graphs functions ϕ1 (red solid line) and ϕ2 (blue solid line) in the case when
r > µα∞/λ. In both cases (a) and (b), Eq (3.3) has a unique solution N∗ ∈ (0,K) for the
following values: Case (a) r = 1, K = 1, θ = 0.5 (θ < 1), µ = 0.5, α∞ = 0.3, λ = 0.2, γ = 1
and Case (b) r = 1, K = 1, θ = 2 (θ > 1), µ = 0.5, α∞ = 0.3, λ = 0.2, γ = 1.
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(a) Eq (3.3) has no
positive solution.

(b) Eq (3.3) has one
positive solution.

(c) Eq (3.3) has two
positive solutions.

Figure 4. Graphs functions ϕ1 (red solid line) and ϕ2 (blue solid line) in the case when
r < µα∞/λ for θ < 1. In Case (a), Eq (3.3) has no positive solution, in Case (b), has
one positive solution and in Case (c), has two positive solutions for the following values:
Case (a) r = 1, K = 1, θ = 0.3, µ = 0.7, α∞ = 0.5, λ = 0.2, γ = 1.5, Case (b)
r = 2.5, K = 1, θ = 0.5, µ = 0.5, α∞ = 1, λ = 0.1, γ = 1.109016994, and Case (c)
r = 1, K = 1, θ = 0.3, µ = 0.5, α∞ = 0.3, λ = 0.1, γ = 2.

(a) Eq (3.3) has no
positive solution.

(b) Eq (3.3) has one
positive solution.

(c) Eq (3.3) has two
positive solutions.

Figure 5. Graphs functions ϕ1 (red solid line) and ϕ2 (blue solid line) in the case when
r < µα∞/λ for θ > 1. In Case (a), Eq (3.3) has no positive solution, in Case (b), has one
positive solution and in Case (c), has two positive solutions for the following values: Case
(a) r = 1, K = 1, θ = 3, µ = 0.7, α∞ = 0.5, λ = 0.2, γ = 0.2, Case (b) r = 2.5, K = 1, θ =

2, µ = 0.5, α∞ = 1, λ = 0.1, γ = 0.3330190676, and Case (c) r = 1, K = 1, θ = 3, µ =

0.5, α∞ = 0.3, λ = 0.1, γ = 0.2.

We now go to study the stability of the equilibrium solutions. The Jacobian matrix is in this case

J f (N, A) =

(
r − r

Kθ (θ + 1) Nθ − µA −µN
−γA −λ − γN

)
.

For X1

(
0, α∞

λ

)
, one has

J f

(
0,
α∞
λ

)
=

(
r − µα∞

λ
0

−γα∞
λ
−λ

)
Mathematical Biosciences and Engineering Volume 18, Issue 2, 1845–1863.
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and the eigenvalues are
η1 = r −

µα∞
λ

, η2 = −λ < 0.

Therefore, the equilibrium point X1

(
0, α∞

λ

)
is locally asymptotically stable if r < µα∞

λ
, and unstable if

r > µα∞
λ
. Notice the same stability behavior of the equilibrium point X1

(
0, α∞

λ

)
as in the case γ = 0.

Assume now that there exists a solution N∗ ∈ (0,K) of the Eq (3.3). Then

J f (N∗, A∗) =

(
r − r

Kθ (θ + 1) (N∗)θ − µA∗ −µN∗

−γA∗ −λ − γN∗

)
and using the equality

r
1 − (

N∗

K

)θ = µA∗

we obtain
J f (N∗, A∗) =

 −rθ
(

N∗
K

)θ
−µN∗

−
γr
µ

(
1 −

(
N∗
K

)θ)
−λ − γN∗

 .
The corresponding characteristic polynomial is

η2 +

λ + γN∗ + rθ
(

N∗

K

)θ η + r
(N∗

K

)θ
(θλ + N∗γ (θ + 1)) − N∗γ

 = 0.

From the Hurwitz principle, we have that Re η < 0 if and only if all coefficients of the characteristic
polynomial are positive. Thus, the equilibrium point X (N∗, A∗) is locally asymptotically stable if and
only if (

N∗

K

)θ
(θλ + N∗γ (θ + 1)) − N∗γ > 0. (3.4)

Replacing (
N∗

K

)θ
= 1 −

µA∗

r
and N∗γ =

α∞
A∗
− λ

we obtain the equivalent condition in terms of A∗, namely

rθα∞ − µα∞ (θ + 1) A∗ + µλ (A∗)2 > 0. (3.5)

We can summarize the conclusions about the local asymptotic stability of the equilibrium points of
Equation (1.2) in this case as follows.

Theorem 3.2. Let r,K, θ, µ, α∞, λ and γ be positive parameters. Then Eq (1.2) has the following
admissible equilibrium points:

(a) If r > µα∞
λ
, then there are two admissible equilibrium points: X1

(
0, α∞

λ

)
unstable, and X (N∗, A∗)

locally asymptotically stable if and only if condition Eq (3.4) or equivalently Eq (3.5) holds.
(b) If r < µα∞

λ
, then there is at least one admissible equilibrium point, namely X1

(
0, α∞

λ

)
which is

locally asymptotically stable. Additionally, one or two other equilibrium points of the form X (N∗, A∗)
could exist depending on the number of positive solutions of Eq (3.3), and they are locally asymptoti-
cally stable provided that condition Eq (3.4) or equivalently Eq (3.5) holds.
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In the case of one equilibrium point, the treatment succeeds, but in the case of multiple equilibrium
points the dynamics is sensitive to the initial conditions since it is possible that one of the equilibrium
points X (N∗, A∗) is locally asymptotically stable if the condition Eq (3.4) (or Eq (3.5)) is satisfied. So,
to make sure that the treatment succeeds, it is necessary to have r < µα∞

λ
and that the Eq (3.3) has no

positive solution.

Numerical simulations in Case II of continuous infusion

In the following, we will simulate numerically the Eq (1.2) in order to investigate the behavior of
the tumor cell population after the continuous infusion of the chemotherapy treatment when the drug
is consumed significantly within the tumor, that is when γ , 0. For the numerical simulations, we use
the values of the parameters presented in Table 1.

Case II of continuous infusion: In this case, the drug is consumed significantly within the tumor,
that means γ , 0. Figure 6(a) shows the behavior in time (t = 5 × 106 days) of the breast tumor cell
population for the corresponding parameter values from Table 1, values that correspond to treatment
failure, when r > µα∞/λ. The breast tumor cell population N(t) and the drug concentration A(t) tend
toward N∗ and A∗, respectively. In this case, there exists two admissible equilibrium X1

(
0, α∞

λ

)
unstable

and X (N∗, A∗) locally asymptotically stable. Figure 6(b) shows the behavior in time (t = 100 days)
of the breast tumor cell population for the corresponding parameter values from Table 1, values that
correspond to treatment success, when r < µα∞/λ. The breast tumor cell population N(t) and the
drug concentration A(t) becomes arbitrarily close to the values N∗1 = 0 and A∗1 = α∞/λ. In this case
the Eq (3.3) has no positive solution, so X1

(
0, α

λ

)
is locally asymptotically stable. This case is similar

to the Case I when γ = 0, see the treatment success from the Figure 2(a).

(a) Treatment failure (b) Treatment success

Figure 6. Behavior of breast tumor cell population according to Eq (1.2). For this time-series
representations we chose the cytostatic drug dose α to be: α = 0.01 mg day−1 in the case of
treatment failure (a), and α = 5 mg day−1 in the case of treatment success (b). The values
for all the other parameters are listed in Table 1. Initial conditions for both (a) and (b) are:
N(0) = 2.31 × 108 and A(0) = 0.

In the Figure 7(a), (b) (enlarged Figure 7(a)), we can see the behavior in time (t = 1600 days
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respectively t = 500 days) of the breast tumor cell population for the corresponding parameter values
from Table 1. Under the condition r < µα∞/λ, both treatment success and treatment failure are possible
outcomes. As we can see, for the value of the nonrestrictive growth rate r = 33.72 × 10−3 the breast
tumor cell population N(t) and the drug concentration A(t) tend toward N∗3 and A∗3, respectively. For
the values r = 3.22 × 10−3 and r = 0.2 × 10−3 of the growth rate, the breast tumor cell population N(t)
and the drug concentration A(t) become arbitrarily close to the values N∗1 = 0 and A∗1 = α∞/λ. In this
case the Eq (3.3) has two positive solutions N∗2 and N∗3 , so X1

(
0, α∞

λ

)
is locally asymptotically stable,

X2

(
N∗2 ,

α∞
λ+γN∗2

)
is unstable and X3

(
N∗3 ,

α∞
λ+γN∗3

)
is locally asymptotically stable.

(a) Treatment failure for r = 33.72 × 10−3 and is suc-
cessful for r = 0.2 × 10−3 and r = 3.22 × 10−3

(b) in large figure of (a)

Figure 7. Behavior of breast tumor cell population according to Eq (1.2). For this time-
series representation we chose the rate at which the drug is consumed within the tumor γ =

3.78 × 10−7 day−1/cell, and the cytostatic drug dose α to be: α = 5 mg day−1. The values for
all the other parameters are listed in Table 1. Initial conditions are: N(0) = 2.31 × 108 and
A(0) = 0.

Numerical simulations of the dependence on parameters

To illustrate the dependency of solution on the parameters, we have performed numerical sweeps
for each of the six system parameters: r, θ, µ, α∞, λ and γ, see Figures 8 and 9. We have excluded
from the analysis the carrying capacity K, as it has only a trivial effect on the solution (scaling). Except
for the swept parameter, the fixed values are: r = 3.22 × 10−3, θ = 0.25, µ = 8 × 10−2, α∞ = 0.01,
λ = 4.16, γ = 0, K = 1.1 × 1012. The initial conditions are: N0 = 2.31 × 108, A0 = 0.

3.2. Periodic infusion

In real situations, secondary effects reveal that continuous infusion is not usually considered a viable
method to administrate the drug. Administered systematically, the drug can have an adverse effect on
the vital organs (i.e., the liver). As a result, the chemotherapeutic drug is usually delivered as a series
of continuous infusions, so that the health of the patient’s organs can recover between the successive
treatments. Unfortunately, this kind of method can have as a result the regeneration of the tumor.

Next, we will investigate the impact of periodic infusion considering that the tumor cell population
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Figure 8. Dependence of solution on the parameters r, θ and µ.
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Figure 9. Dependence of solution on the parameters α∞, λ and γ.

grows according to the generalized logistic model with a nonrestrictive growth rate r > 0. Thus, we
assume that the cell population develops under treatment according to the model N′(t) = rN(t)

(
1 −

(
N(t)
K

)θ)
− µA(t)N(t)

N (0) = N0

, t ≥ 0 (3.6)

where this time the function which describes the chemotherapeutic drug infusion A (t) is only piecewise
continuous, more exactly it has the form

A(t) =

{
α∞ for n ≤ t < n + τ

0 for n + τ ≤ t < n + 1.
(3.7)

Here, τ denotes the duration of each period of treatment in which the drug is administered, and it is
assumed that τ < 1. Therefore, on a time interval [n; n + τ] , the drug is continuously infused at the
constant rate α∞, while on the time interval [n + τ; n + 1] , no drug is administered. By integration, we
find the expression of N(t) on [n, n + 1], namely

N(t) =


(

KθΛNθ
n

Nθ
n+[KθΛ−Nθ

n]e−rθΛ(t−n)

) 1
θ

, n ≤ t < n + τ(
KθNθ

n+τ

Nθ
n+τ+[Kθ−Nθ

n+τ]e−rθ(t−n−τ)

) 1
θ

, n + τ ≤ t < n + 1
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where Λ = 1 − µα∞
r and Nt := N (t) . Then

Nn+τ = N (n + τ) =

(
KθΛNθ

n

Nθ
n + [KθΛ − Nθ

n]e−rθΛτ

) 1
θ

and we find that the values Nn satisfy the following recurrence relation

Nn+1 = h (Nn) , (3.8)

where h is the function

h (x) =

(
KθΛxθ

Λxθ +
[
(1 − Λ) xθ + (KθΛ − xθ) e−rθΛτ] e−rθ(1−τ)

) 1
θ

, x > 0.

The equilibrium points of the discrete dynamic process Eq (3.8), that is the solutions N∞ of the equation
N∞ = h (N∞) are N1

∞ = 0 and

N2
∞ =

 Λ
(
1 − e−rθ(1−τ+Λτ)

)
Kθ

Λ + e−rθ(1−τ) − e−rθ(1−τ)Λ − e−rθ(1−τ+Λτ)


1
θ

in case that r − τµα∞ > 0. Obviously, if the initial condition is N (0) = N1
∞ = 0, then N (t) ≡ 0

meaning that tumor cannot develop in the absence of cancer cells. By contrary, if the initial condition
is N (0) = N2

∞, then N (t) becomes a nontrivial periodic function Nper because Nn+1 = h (Nn) = N2
∞, see

the Figure 10.
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Figure 10. Breast tumor cell population behavior when N(t) is a periodic solution for the
following values r = 3.22 × 10−3, K = 1.1 × 1012, θ = 0.25, µ = 8 × 10−2, τ = 0.5 and three
different values for alpha: α = 0.01, α = 0.02 and α = 0.03.

We now study the stability of the equilibrium points for the discrete dynamic process Eq (3.8). One
has

h′
(
N1
∞

)
= er−τµα∞ and h′

(
N2
∞

)
= eθ(τµα∞−r).

Therefore, we can state the following theorem.
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Theorem 3.3. (a) If r−τµα∞ < 0, then h′
(
N1
∞

)
< 1, which implies that N1

∞ = 0 is locally asymptotically
stable; so if N0 is in a neighbourhood of N1

∞ then Nn → N1
∞ = 0 as n → +∞ and therefore N (t) → 0

as t → +∞.

(b) If r − τµα∞ > 0, then h′
(
N1
∞

)
> 1 and h′

(
N2
∞

)
< 1, which implies that N1

∞ = 0 is unstable and N2
∞

is locally asymptotically stable, so if N0 is in a neighbourhood of N2
∞ then Nn → N2

∞ as n → +∞ and
therefore N (t)→ Nper (t) as t → +∞.

Under the conditions of the previous theorem, in case (a), we have N (t) → 0 as t → +∞, which
means that the malign cells are eliminated in time, and so the treatment succeeds; in case (b), we
have N (t) → Nper (t) , which shows that the graph of tumor cell population stabilizes at the graph of a
periodic function. Thus, when a periodic infusion takes place, the system can develop to a nontrivial
periodic solution for which N (t) = N (1 + t) . Applying numerical simulation, we will see how N2

∞ and
the limit function Nper depend on the drug dose. In the simulations, the graphs show us the way that
N2
∞ decreases as the drug dose α∞ increases. If the drug dose is high enough, then the eradication of

the tumor occurs. Obviously, with periodic infusion, the dose required to achieve eradication is greater
than that required for continuous infusion. This conclusion holds because with periodic infusion,
tumor cells are exposed to chemotherapy for short periods of time.

Numerical simulations in the case of periodic infusion

Next, we will simulate numerically the Eq (3.6) when the chemotherapeutic drug infusion A(t),
given by Eq (3.7) is a piecewise continuous function, in order, to investigate the behavior of the tumor
cell population after the periodic infusion of the chemotherapy treatment. For the numerical simula-
tions, we use the values of the parameters presented in Table 1.

(a) Treatment success (b) Treatment failure for r = 33.72 × 10−3 and r =

3.22 × 10−3 and is successful for r = 0.2 × 10−3

Figure 11. Behavior of breast tumor cell population according to the Eq (3.6), after the pe-
riodic infusion of the drug, where A(t) given by Eq (3.7), is a piecewise continuous function.
For this time-series representations we chose the cytostatic drug dose α to be: α = 5 mg day−1

in the case of treatment success (a), and α = 0.01 mg day−1 in the case of treatment failure
and is successful (b). The values for all the other parameters are listed in Table 1. The initial
condition for both (a) and (b) is N(0) = 2.31 × 108.

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1845–1863.



1860

In Figure 11(a) we can see the behavior in time (t = 30 days) of the breast tumor cell population
after the periodic infusion of the drug, for the corresponding parameter values from Table 1, values that
correspond to treatment success, when r − τµα∞ < 0. The breast tumor cell population N(t) becomes
arbitrarily close to the values N1

∞ = 0, that means the equilibrium N1
∞ is locally asymptotically stable.

Figure 11(b) shows the behavior in time (t = 15000 days) of the breast tumor cell population for
the corresponding parameter values from Table 1, values that correspond to treatment failure, when
r − τµα∞ > 0 and to treatment success, when r − τµα∞ < 0. As we can see, when the treatment
fails, for the values of the nonrestrictive growth rate r = 33.72 × 10−3 and r = 3.22 × 10−3 the breast
tumor cell population N(t) tend toward a periodic solution Nper. For the value r = 0.2 × 10−3 of the
growth rate, the breast tumor cell population N(t) becomes arbitrarily close to the value N1

∞ = 0. In
the case when the treatment fails, the equilibrium points of the equation with differences Eq (3.8) are
N1
∞ = 0 unstable and N2

∞ locally asymptotically stable, and when the treatment is successful, the only
admissible equilibrium point is N1

∞ = 0, locally asymptotically stable.

4. Conclusions

It is natural that due to the limitations imposed by the biological environment, the mathematical
models of the growth of homogeneous solid tumors should be based on self-limited equations, par-
ticularly on the logistic equation. In this paper, we worked with the generalized logistic equation of
Richards. Without any medical intervention, if the nonrestrictive growth rate is positive (r > 0), the
tumor cell population will tend to the carrying capacity constant K. In order to destroy the tumor a
medical treatment is necessary.

We study the dynamics of the tumor cell population in two cases of chemotherapy, the case of
continuous infusion when the medicine keeps its efficiency (γ = 0) and when the medicine does not
keep its efficiency (γ , 0), and the case when the chemotherapeutic drug is administrated as a series
of continuous infusions, so that the health of the patient’s organs can recover between successive
treatments. The mathematical model is given by the dynamic Eq (1.2), where α∞ (t) is constant in case
of continuous infusion of the drug and piecewise continuous when the drug administration is periodic.
In the first case the system is autonomous, while in the second case it is nonautonomous.

From the stability analysis of the equilibrium solutions of the system, it turns out that it is necessary
that the parameters satisfy the condition r < µα∞

λ
in order to have a successful treatment, but in the case

when the medicine does not keep its efficiency this is not sufficient. In addition, it is necessary that the
value of µα∞

λ
to be big enough - more exactly µα∞

λ
≥ r

(
1 +

γK
λ

)
- so that the system has only one positive

equilibrium point X1

(
0, α∞

λ

)
, i.e.. Eq (3.3) has no positive solutions. If Eq (3.3) has a positive solution

N∗, then it is possible that the corresponding equilibrium point X
(
N∗, α∞

λ+γN∗

)
be asymptotically stable,

and the cell dynamics becomes sensitive to the initial conditions: if the initial value is in the attraction
basin of X1, then the treatment succeeds, while if it is in the attraction basin of X, then the treatment
fails.

A more realistic chemotherapy treatment is that when the drug is administrated as a series of con-
tinuous infusions separated by rest periods. Then the dynamics is described by a nonautonomous
system. In this case, in addition to the trivial null periodic solution, a non trivial periodic solution
appears, which biologically means that the tumor cells can remain in the body. However, if the null
periodic solution is asymptotically stable, then the treatment succeeds. Our result is that this happens
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if the condition r < τµα∞ holds. Otherwise, i.e., if r > τµα∞, then the non trivial periodic solution is
asymptotically stable and the treatment proves unsuccessful.

It is noteworthy that the conditions for successful treatment never depend on the exponent θ. That
is, from a treatment standpoint, the generalized logistic model behaves exactly like a plain logistic vari-
ant. In biological terms, the speed of tumor cell proliferation may modify the growth curve towards the
plateau phase of tumor growth, but has no bearing whatsoever on the success or failure of chemother-
apy. This interesting and counterintuitive finding may have implications for adjuvant antiangiogenic
therapy, even modeled without an explicit description of tumor vascular network. However, our study
highlights a certain dependence on the parameter θ, namely the value of N representing residual cancer
(in the case of incomplete elimination of the disease). Therefore, we can conclude that, for the same
dose, the size of the residual cancer also depends on the speed of proliferation of the tumor cells.

The mathematical analysis performed provides the necessary conditions for the success of
chemotherapy, in the form of precise mathematical relationships given in terms of system parameters.
Practically, the determination by theoretical and laboratory methods of the values of these parameters
becomes essential for anticipating the effectiveness of treatment.
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