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Abstract: In this paper, we present an SEIIaHR epidemic model to study the influence of recessive
infection and isolation in the spread of COVID-19. We first prove that the infection-free equilibrium
is globally asymptotically stable with condition R0 < 1 and the positive equilibrium is uniformly
persistent when the condition R0 > 1. By using the COVID-19 data in India, we then give numerical
simulations to illustrate our results and carry out some sensitivity analysis. We know that asymp-
tomatic infections will affect the spread of the disease when the quarantine rate is within the range of
[0.3519, 0.5411]. Furthermore, isolating people with symptoms is important to control and eliminate
the disease.
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1. Introduction

In December 2019, COVID-19 (Corona Virus Disease 2019) named by the World Health Organi-
zation was first diagnosed in China. Until now, the COVID-19 in China is basically under control, but
there are still many infections around the world. WHO Director-General Tedros Adhanom Ghebreye-
sus said on March 11, 2020 that COVID-19 has pandemic characteristics. The disease has now spread
globally, including cases confirmed in 220 Countries. According to the latest real-time statistics of the
WHO, as of November 26, 2020, there have been a total of 60,074,174 confirmed cases of COVID-
19, and a total of 1,416,292 deaths [1]. The most infected countries distributed in descending order
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of infected cases are United States of America, India, Brazil, Russian Federation, France, Spain, The
United Kingdom, Italy, etc. To defeat the epidemic, scientists in different fields have contributed to
COVID-19 [2–9].

The disease dynamic models continue to play an important role in predicting the development trend
of infectious disease epidemics, scientific prevention and control guidance, and provide important data
basis and theoretical support for the decision-making of public health managers and the implementa-
tion of efficient intervention measures. The SIR model proposed by Kermack and McKendrick [10] has
been widely used to study infectious diseases. Differential equations and dynamical system methods
are widely used to study the origin, evolution and spread of various diseases. In particular, the dynamic
model has achieved fruitful results in rabies [11, 12], malaria [13], cholera [14], brucellosis [15] and
HFMD(Hand, foot and mouth disease) [16]. There also has been a large amount of literatures using dy-
namic models to analyze the spread and outbreak of COVID-19 [2,3,8,17–24]. Jiao et al. [2] studied an
SEIR with infectivity in incubation period and homestead-isolation on the susceptible. Their research
results indicate that governments should strictly implement the isolation system to make every effort
to curb the spread of disease during the epidemic. Li et al. [3] revealed the effects of city lock-down
date on the final scale of cases and analyzed the impact of the city lock-down date on the final scale
of cases by studied the transmission of COVID-19 in Shanxi Province. He et al. [8] proposed an SEIR
model for the COVID-19 which is built according to some related factors, such as hospital, quarantine
and external input. The particle swarm optimization (PSO) algorithm is applied to estimate the param-
eters of the system. They show that, for the given parameters, if there exists seasonality and stochastic
infection, the system can generate chaos. Bouchnita [17] et al use a multi-scale model of COVID-19
transmission dynamics to quantify the effects of restricting population movement and wearing face
masks on disease spread in Morocco. Bardina [19] and Zhang et al. [20] using a stochastic infectious
disease model to study COVID-19. This research has shown that the social blockade is very effective
in controlling the spread of disease.

For COVID-19, there is no specific vaccines or antiviral drugs to treatment the disease and it is
hard to control the spread of the disease. The best way to control the spread of COVID-19 is social
blockade. However, the social blockade will have a serious impact on economic development and the
normal lives of the people. Therefore, in order not to affect the normal life of non-infected persons, we
proposed the strategy of isolating infected people to study the spread of the disease. Nowadays, there
is a kind of infectious patients who have no symptoms, disseminating the infection disease and causing
social panic. In 2013, Ma et al. [16] established an SEIIaHR epidemic model to study the spread of
HFMD. The SEIIaHR isolates the infected person for treatment, while considering the role of recessive
infection in the spread of HFMD. This is the same as our strategy in studying the spread of COVID-19.
Therefore, we use the SEIIaHR model to study the impact of asymptomatic patients on the disease.

This paper is organized as follows: in the next section, we give the SEIIaHR model and describe the
each symbol of the system. In section 3, we study the stability analysis of disease-free equilibrium and
the persistence of the endemic equilibrium. Next, we take some numerical simulations for the system
of (2.1) in section 4. Finally, we give some conclusions about COVID-19.
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2. Mathematical model

From the above discussions, we consider an SEIIaHR model with asymptomatic infected and quar-
antined on the symptomatic infected as following system

Ṡ (t) = Λ − β1S (t)I(t) − β2S (t)Ia(t) − dS (t),
Ė(t) = β1S (t)I(t) + β2S (t)Ia(t) − σE(t) − dE(t),
İ(t) = σpE(t) − (γ1 + k + δ1)I(t) − dI(t),
İa(t) = σ(1 − p)E(t) − γ3Ia(t) − dIa(t),
Ḣ(t) = kI(t) − (γ2 + δ2)H(t) − dH(t),
Ṙ(t) = γ1I(t) + γ2H(t) + γ3Ia(t) − dR(t).

(2.1)

Here S (t), E(t), I(t), Ia(t),H(t),R(t) represent the numbers of the susceptible, exposed, symptomatic
infected, asymptomatic infected, quarantined, recovered population at time t, respectively. Λ > 0
describes the annual birth rate, β1, β2 are infection rates, 1

σ
represents the mean incubation period; p is

the fraction of developing infectious cases, and the remaining fraction 1−p return to the recessive class;
δ1 and δ2 are the disease-induced mortality for the infective and quarantined individuals, respectively;
k is the quarantine rate; infective, quarantined and recessive individuals recover at the rate γ1, γ2 and
γ3, respectively; d is the human natural mortality rate.

3. Stability analysis

Define N(t) = S (t) + E(t) + I(t) + Ia(t) + H(t) + R(t), from system (2.1), we know that

dN
dt ≤ Λ − dN ,

it implies that the solutions of system (2.1) are bounded and the region

X =
{
(S , E, I, Ia,H,R) ∈ R6

+ : S + E + I + Ia + H + R ≤ Λ
d

}
(3.1)

is positively invariant for system (2.1). It is easy to see that system (2.1) has a disease-free equilibrium
E0 = (Λ

d , 0, 0, 0, 0, 0). Using the next generation matrix formulated in Diekmam et al. [25] and van den
Driessche and Watmough [26], we define the basic reproduction number by

R0 =
β1Λσp
dM1 M2

+
β2Λσ(1−p)

dM1 M3
, (3.2)

here we denote M1 = σ + d,M2 = γ1 + k + δ1 + d,M3 = γ3 + d and M4 = γ2 + δ2 + d. Thus we have
the following theorem.

Theorem 3.1. If R0 < 1, then the disease-free equilibrium E0 = (Λ
d , 0, 0, 0, 0) of the system (2.1) is

global asymptotically stable.

Proof. we prove the global stability of the disease-free equilibrium. Define the Lypunov function as
V(E, I, Ia) = β1M1M3I + β2M1M2Ia +

(
β1σpM3 + β2σ(1 − p)M2

)
E. For all t > 0, the derivative of V(t)
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is
dV
dt =β1M1M3

(
σpE − M2I

)
+ β2M1M2

(
σ(1 − p)E − M3Ia

)
+

(
β1σpM3 + β2σ(1 − p)M2

)
(β1S I + β2S Ia − M1E)

=β1σpM3S (β1I + β2Ia) + β2σ(1 − p)M2S (β1I + β2Ia)
− M1M2M3(β1I + β2Ia)

=M2M3M4(β1I + β2Ia)
(
β1σpS
M1 M2

+
β2σ(1−p)S

M1 M3
− 1

)
≤M2M3M4(β1I + β2Ia)

(
R0 − 1

)
.

(3.3)

Here the relation S ≤ Λ
d has been utilized. If R0 < 1, we know that dV

dt ≤ 0, and dV
dt = 0 holds if and

only if S = Λ
d , I = Ia = H = R = 0. Using the LaSalle’s extension to Lyapunov’s method, the limit

set of each solution is contained in the largest invariant set in {(S , E, I, Ia,H,R) ∈ X|dV
dt = 0} is the

singleton {E0}. This means that the disease-free equilibrium E0 is globally asymptotically stable in X
when R0 < 1. �

Theorem 3.2. If R0 > 1, then the disease is uniformly persistent, i.e., there is a constant ε > 0 such
that every positive solution of system (2.1) satisfies

lim
t→∞

I(t) ≥ ε , lim
t→∞

Ia(t) ≥ ε . (3.4)

Proof. Define
∂X = {x(t) ∈ X : E(t) = 0} , X0 = X − ∂X.

In order to prove that the disease is uniformly persistent, we only need to show that ∂X repels uniformly
the solutions of system (2.1) in X0. It is easy to verify that ∂X is relatively closed in X and is point
dissipative. Let

X∂ = {x(t) : x(t) ∈ ∂X,∀t > 0} . (3.5)

We now show that X∂ = {(S 1, 0, 0, 0, 0, 0) : 0 < S 1 ≤
Λ
d }. Assume that x(t) ∈ X∂ for all t ≥ 0, then

we have E(t) = 0 for all t ≥ 0. Thus, by the second equation of system (2.1), we have S (t)[β1I1(t) +

β2Ia(t)] = 0, which implies that I(t) = 0, Ia(t) = 0 for all t ≥ 0. Indeed, if I(t) , 0, Ia(t) , 0, there is a
t0 ≥ 0 such that I(t0) > 0, Ia(t) > 0, form the second equation of system (2.1), we have

dE
dt

∣∣∣
t=t0

= β1S I(t0) + β2S Ia(t0) > 0 . (3.6)

It exists a t1 > t0 such that E(t1) > 0, dI
dt

∣∣∣
t1

= σpE(t1) > 0, dIa
dt

∣∣∣
t1

= σ(1− p)E(t1) > 0, it follows that there
is a η > 0 such that I(t), Ia(t) > 0 for t1 < t < t1 + η. This means that x(t) < X∂ for t1 < t < t1 + η, which
contradicts to the assume x(t) ∈ X∂ for all t ≥ 0. Therefore, X∂ = {(S 1, 0, 0, 0, 0, 0) : 0 < S 1 ≤

Λ
d }.

By analyzing system (2.1), it is clear that E0 is unique equilibrium in ∂X. Next, we will show that
E0 repels the solutions of system (2.1) in X0. We analyze the behavior of any solution x(t) of system
(2.1) close to E0. We divide the initial data into two cases.

• If E(0) = I(0) = Ia(0) = 0, then E(t) = I(t) = Ia(t) = 0. System (2.1) implies that S (t) goes away
from E0 as t → −∞.
• If E(0), I(0), Ia(0) > 0, then E(t), I(t), Ia(t) ≥ 0 for all t > 0. When x(t) stays close to E0, by the

system (2.1) there exists a ρ small enough such that
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1837
dE
dt > ã11E + ã12I + ã13Ia ,
dI
dt = ã21E + ã22I ,
dIa
dt = ã31E + ã33Ia .

(3.7)

where ã11 = −(d + σ) − ρ, ã12 =
Λβ1

d − ρ, ã13 =
Λβ2

d − ρ, ã21 = σp, ã22 = −M2, ã31 = σ1(1 − p),
ã33 = −(d + γ3), and largest eigenvalue of the coefficient matrix Ã(ãi j) of the right hand of (3.7) is
positive, since R0 > 1 [25]. Hence the solutions of the linear quasi-monotonic system

dx
dt = ã11x + ã12y1 + ã13ya
dy
dt = ã21x + ã22y1
dya
dt = ã31x + ã33ya ,

with y1(0), ya(0) > 0 are increasing as t → ∞. By the comparison principle, (E, I1, Ia) goes away
from (0, 0, 0, 0, 0). Therefore, {E0} is an isolated invariant set and acyclic. Using Theorem 4.3 in
Freedman [27], system (2.1) is uniformly persistent. Thus, the proof of Theorem 3.2 is completed. �

Biologically speaking, Theorem 3.2 shows that the disease is uniformly persistent if R0 > 1, and all
the solutions of system are ultimately bounded in X, then system has at least one positive solution By
Zhao [28]. Therefore, we have the following theorem.

Theorem 3.3. If R0 > 1, then the system (2.1) has an endemic equilibrium E? = (S ∗, E∗, I∗, I∗a,H
∗,R∗).

Proof. From the third and forth equations of system (2.1), we can conclude that

σpE∗ = M2I∗ ,

σ(1 − p)E∗ = M3I∗a ,

then we have
I∗ =

σpE∗

M2
, I∗a =

σ(1−p)E∗

M3
.

We also obtain
S ∗ = Λ−M1E∗

d , H∗ =
kσpE∗

M2 M4
, R∗ = 1

d (σpγ1
M2

+
σ(1−p)γ2

M3
+

kσpγ3
M2 M4

)E∗ ,

where M1,M2,M3 and M4 are mentioned in (3.2). Substituting S ∗, I∗ and I∗a in the second equation of
(2.1) at steady state, we obtain the following equation

E∗ = M2 M3d
β1 M3σp+β2 M2σ(1−p) (R0 − 1) . (3.8)

Here we should show the term S ∗ is positive, from the above Eq (3.8), we have S ∗ = M1 M2 M3
β1 M3σp+β2 M2σ(1−p) >

0. From the similar argument, we have I∗, I∗a,H
∗,R∗ > 0, i.e., the system has at most one positive

solution. Therefore, if R0 > 1, the system has an endemic equilibrium. �

4. Simulations and results

Since the first case was reported to WHO on 31st December 2019, the COVID-19 has spread rapidly
worldwide. As of December 21, 2020 there are 220 countries were infected, and there are many
countries still trap in the epidemic. In this section, we consider the study of spread of COVID-19
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Table 1. Descriptions and values of parameters.

Para. Value Unit Interpretation Source
Λ 7.7575 × 104 day−1 population input [29]
d 3.8905 × 10−5 day−1 Natural death rate [29]
σ 0.33 day The average incubation period [30]
p 0.25 none The fraction of developing infected cases [30]
k 0.1 day−1 The quarantine rate [31]
γ1 0.3303 day Recovery rate of the infected [32]
γ2 0.0714 day Recovery rate of the quarantined [33]
γ3 0.1398 day Recovery rate of the recessive [32]
δ1 0.0135 day−1 The infected disease-related death rate Estimated
δ2 0.0328 day−1 The quarantined disease-related death rate [32]

disease in India. India is observing an increase in the number of patients each day. The accuracy of
our proposed model is validated by using the official data of India from [29–31].

The study consider currently infected patients of India from May 1st 2020 to November 15th 2020.
The population of India is around N = 1386750000 [29], thus we assumed that the initial value is
S (0) = N−E(0)− Ia(0)− I(0)−H(0)−R(0), E(0) = 315236, Ia = 78809, I(0) = 236427, H(0) = 7880,
R(0) = 59646. Then we illustrate the source of parameters in following. We can get the value of
population input into the susceptible class through birth 77575 per day in India, and the average life
expectancy of India is 70.42. Noting that 1/d is the average life expectancy, the value of parameter d
can be calculated as d = 1/(70.42 × 365) = 3.8904 × 10−5. We choose the 1/σ = 2.5 which represent
the average period of from the susceptible to the exposed. Because the average recovered period of
the quarantined about is 14 days, so we choose the parameter γ2 = 1/14 = 0.0714. The parameters of
system (2.1) are listed in Table 1.

Figure 1. COVID spread in India and simulated by MCMC(Days from May 1st 2020).

We use the Markov Chain Monte Carlo (MCMC) method to fit the parameters β1, β2 to the data,
and adopt an adaptive Metropolis-Hastings (M-H) algorithm to carry out the MCMC procedure. The
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Table 2. The values of β1 and β2 given by MCMC.

Para. Mean Value Range Unit Interpretation Geweke
β1 1.3958 × 10−9 [1.37, 1.42] × 10−9 day Infection rate of the Recessive 0.99942
β2 1.5155 × 10−11 [1.2, 2.0] × 10−11 day Infection rate of the Infectious 0.99284

(a) (b)

Figure 2. The distribution of β1 and β2 given by MCMC.

algorithm is run for 10,000 iterations with a burn-in of the first 6,000 iterations, and the Geweke
convergence diagnostic method is employed to assess convergence of chains. In Figure 1, we have
plotted the curves between the total number of COVID-19 cases versus days (till November 15, 2020)
in India based on the actual data and the proposed model (2.1). The estimation results some parameters
are given in Table 2 and Figure 2.

Figure 3. The relationship between quarantine rate k and R0.

For the quarantine rate k, we have chosen two different values as a comparison to show the impor-
tance of quarantine measures for symptomatic infected to control the spread of disease. Figure 3 shows
the relationship between quarantine rate k and basic reproduction number R0. We can see that R0 and

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1833–1844.
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(a) k = 0.8,R0 = 0.7741 < 1 (b) k = 0.01,R0 = 2.1321 > 1

Figure 4. The evolution of system (2.1).

k are negatively correlated. After calculation, we get the critical point kc = 0.4949, then we have R0

is equal to 1. Figure 4 is the evolution of system (2.1) when k = 0.8, 0.01, respectively. If k = 0.8,
we compute the basic reproduction number R0 = 0.7741 < 1, it can be seen that the disease-free
equilibrium E0 is globally asymptotically stable (see Figure 4a). If k = 0.01, we calculate the basic
reproduction number R0 = 2.1321 > 1, it can be seen that system (2.1) has a positive equilibrium point
and it is is uniformly persistent (see Figure 4b).

(a) Number of infected (b) Number of quarantined (c) Cumulative deaths

Figure 5. The impact of the treatment period for quarantined on COVID-19: k = 0.8,R0 =

0.7741 < 1.

Next, the impact of the treatment period(1/γ2) for quarantined on COVID-19 is analyzed. Figures
5 and 6 show the number of infected (I + Ia + H), quarantined (H), and cumulative deaths (COVID-19
deaths, excluding natural deaths) in different treatment period for R0 < 1 and R0 > 1 respectively.
When R0 < 1, the shorter the treatment period, the disease will die out faster, and the fewer people
will be isolated. At the same time, the cumulative number of deaths will be lower. When R0 > 1, the
longer the treatment period, the more people will be infected and quarantined. Assuming that there
are no individual differences, the treatment period is negatively related to the medical level. That is,
the higher the medical level, the shorter the treatment period. This means that improving the level of

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1833–1844.



1841

(a) Number of infected (b) Number of quarantined (c) Cumulative death

Figure 6. The impact of the treatment period for quarantined on COVID-19: k = 0.01,R0 =

2.1321 > 1.

medical treatment is conductive to the control of COVID-19. Therefore, it is urgent for India and other
countries to develop specific drugs against COVID-19.

Then, we show the relationship between parameters k, β2 and R0. From Figure 7a, we know that the
parameters k and R0 are negatively correlated, and the parameters β2 and R0 are positively correlated.
When β2 = 2.0×10−11, the quarantine rate k has the maximum threshold k = 0.5411 > kc. When β2 = 0,
the quarantine rate k has the minimum threshold k = 0.3519 < kc. Figure 7b,7c show the relationship
between β2 and R0 when k = 0.01, 0.8, respectively. When k = 0.01, the disease is uniformly persistent,
even the the parameter β2 = 0. If we select k = 0.8, only when β2 > 3.6639×10−11 can affect the spread
of the disease. Therefore, we deduce that when k > 0.5411, asymptomatic infections do not affect the
spread of the disease; when 0.3519 < k < 0.5411, it is related to the infection rate of asymptomatic
people whether the disease persists. In general, the higher the quarantine rate of people with symptoms,
the easier it is to control the spread of the disease.

(a) (b) k = 0.01 (c) k = 0.8

Figure 7. The relationship between parameters k, β2 and R0.

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1833–1844.
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5. Conclusions

In this paper, we consider an SEIIaHR epidemic model with asymptomatic infection and isolation.
First, We have proved that the disease-free equilibrium E0 is globally asymptotically stable if and only
if R0 < 1 and the system (2.1) is uniformly persistent if R0 > 1. Our numerical simulation results
are consistent with theoretical analysis. Second, we showed the impact of the treatment period(1/γ2)
for quarantined on COVID-19. The better the medical treatment, the COVID-19 is more likely to die
out or be controlled at a lower level. Therefore, it is urgent for India and other countries around the
world to develop specific drugs against COVID-19. Third, we deduced that the parameters k and R0

are negatively correlated, and the parameters β2 and R0 are positively correlated. At the same time,
we found that asymptomatic infections will affect the spread of the disease when the quarantine rate is
within the range of [0.3519, 0.5411] and isolating people with symptoms is very important to control
and eliminate the disease in India and other countries.
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