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Abstract: The complexity of biological systems suggests that current definitions of molecular 

dysfunctions are essential distinctions of a complex phenotype. This is well seen in 

neurodegenerative diseases (ND), such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), 

multi-factorial pathologies characterized by high heterogeneity. These challenges make it necessary 

to understand the effectiveness of candidate biomarkers for early diagnosis, as well as to obtain a 

comprehensive mapping of how selective treatment alters the progression of the disorder. A large 

number of computational methods have been developed to explain network-based approaches by 

integrating individual components for modeling a complex system. In this review, high-throughput 

omics methodologies are presented for the identification of potent biomarkers associated with AD 

and PD pathogenesis as well as for monitoring the response of dysfunctional molecular pathways 

incorporating multilevel clinical information. In addition, principles for efficient data analysis 

pipelines are being discussed that can help address current limitations during the experimental 

process by increasing the reproducibility of benchmarking studies. 
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1. Introduction 

Neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson disease (PD), 

involve the loss of structure or function of neurons in the brain or peripheral nervous system, 

including neuronal death. The topological complexity of the neuropathological vulnerability and 

transcriptional regulation in AD and PD in the brain suggest a need to analyze in more detail the 

molecular mechanisms that govern disease susceptibility and progression [1]. On the other hand, 

accurate and reliable biomarkers for these disorders are urgently needed to help both diagnose, 

especially in the early stages, and monitor the progression of symptoms. A comprehensive overview 

of expression profiles specific for each disease cell type specific, distinct biomarker profiles and 

topological composition of cell types provides the opportunity to shed light on the diversity in brain 

deterioration and spread of neuropathological symptoms observed between patients. Unfortunately, 

limited candidate biomolecules have preceded the discovery phase of the development pipeline for 

an objective diagnostic biomarker. Typical signs of neurodegeneration are the activation of microglia 

and the inflammatory response of astrocytes (neurotoxic and neuroprotective; M1- or M2-phenotype 

microglia and A1- or A2- phenotype astrocytes) accompanied by increased expression of cytokines 

as well as mediators of the immune system in the brain and cerebrospinal fluid [2]. 

Neuroinflammation can be characterized as contradictory, covering many distinct responses to the 

neurodegenerative process. Inflammation triggered by the central nervous system (CNS) innate 

immune response, as defined by microglial activation and accompanied by astrocyte responses along 

with increased expression of cytokines and immune system mediators in the brain and cerebrospinal 

fluid (CSF), is constant in neurodegeneration [3]. Although anti-inflammatory therapeutic strategies 

have not been successful in the past, the development of a strategy that potentiates protective 

microglia functions could be a promising model for ND treatment, suggesting that novel approaches 

against inflammation may be useful and could reduce the progression of the disease [4].  

Advancements in the field of omics approaches allow the monitoring of abnormalities in 

multiple interconnected networks necessary to detect transcriptional, translational and metabolic 

changes whereas they demonstrate the complexity of the dynamic alterations related to AD and PD 

progression, highlighting the challenges associated with designing and evaluating effective 

therapeutic interventions. The two neurodegenerative diseases share many clinical and pathological 

features and many similar cascades of neuronal reactions leading to progressive neurodegeneration 

occur in Alzheimer’s disease and Parkinson’s disease. Cognitive decline is common in both AD and 

PD (cortical and subcortical dementia, respectively), as well as behavioral symptoms like depression, 

apathy, sleep disturbances and anxiety. The toxicity of specific proteins, due to the accumulation of 

abundant extracellular Αβ plaques and intraneuronal neurofibrillary tau tangles present in AD as well 

as abnormal filaments of α-synuclein leading to progressive degeneration of dopaminergic neurons in 

PD, results in overlapping common pathological alterations such as the activation of glycogen 

synthase kinase-3 beta, mitogen-activated protein kinases, mitochondrial dysfunctions, oxidative 

stress and neuroinflammation [5]. Moreover, high levels of α-synuclein aggregation into Lewy body 

have been reported in patients with AD, with nicotinic receptors and loss of locus coeruleus may 

occurring in the progression of both diseases [6]. Together with high-throughput bioinformatics 

methodologies and integrated omics and pharmacological data, specific biomarker panels can be 

studied simultaneously, allowing these highly promising technologies to recognize variable changes 

across multiple interconnection networks and understand the pathophysiology of complex diseases [7]. 
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Moreover, pathway analysis along with distinct molecular profile provide important 

neuropathological information as well as increased disclosure of underlying disease mechanisms and 

guidance in the design and development of new therapeutic strategies to monitor disease efficacy. 

The contribution of functional imaging techniques in medicine such as the positron emission 

tomography or the magnetic resonance imaging also helps to enhance the accuracy of the diagnosis. 

These neurobiological and neuroimaging efforts can illuminate the heterogeneity of prognostic 

biomarkers and molecularly targeted drugs for neurodegenerative diseases that are important in 

selecting appropriate patients for specific treatments as a one-size-fits-all medicine to patient-specific 

medicine shift strategy [8]. 

Integrated omics methods eliminate speculation arising from the discrepancy between discovery 

and validation associated with biomarker-driven research process. The analysis of biomedical data 

allows the exploratory of important molecular entities, biological molecules and features of the 

interactions that lead to a mechanistic understanding of the observed clinical symptoms, while the 

familiarity of software packages allows the handling of genotype and phenotype data with large data 

integration. In attempting to depict cellular malfunctions during neuronal loss, an initial model of the 

system should be provided based on prior genetic information along with insights on proteome and 

metabolite changes as well as epigenetic abnormalities [9]. Parallel targeted omics approaches are 

proposed instead of a single approach to promote the exploratory of candidate biomarkers with ND 

cases. A large number of computational approaches have been developed to generate co-expression 

networks from genomics to transcriptomics and protein expression data, along with functional 

annotations and regulatory networks. 

2. Genetics and pathophysiology of Alzheimer’s disease 

Alzheimer’s disease (AD) is a genetically complex, multifactorial disorder that leads to memory loss, 

difficulty thinking, and changes in behavior. AD preferentially affects individuals over 60 years of age 

with a steadily increasing risk at older ages [10]. There is no treatment for AD yet and the prevalence of 

the disorder rises from about 1% in the under-65 population to about 40% in nonagenarians. Due to its 

high prevalence and unreservedly high occurrence, it poses a serious problem to both personal health and 

the healthcare system. The majority of AD cases are sporadic (> 95% prevalence) without a specific 

genetic basis and the symptoms are progressive with age being the strongest risk factor [11]. The disease 

is preceded by a long prodromal phase and most patients have late-onset AD. The progressive 

hippocampal and cortical atrophy are among the neuropathological alterations in the AD brain that are 

visible upon neuroimaging and macroscopic examination. Moreover, among the most representative 

microscopic features are extracellular depositions of amyloid-β (Aβ1–42) peptide and intraneuronal tangles 

of hyperphosphorylated forms of microtubule associated protein tau, in combination with neuronal and 

synapse elimination and reactive gliosis. Microglia responses to β-amyloid are the focus of many studies 

that depend on the significant contribution of β-amyloid cascade to AD progression (Figure 1A). 

Undoubtedly, the inflammatory response and the activation of microglia associated with β-amyloid 

behavior are under investigation [12]. 

Causal mutations in specific genes have been identified in early-onset forms, including amyloid 

precursor protein (APP), presenilin-1 (PSEN1) and presenilin-2 (PSEN2). The apolipoprotein E 

(APOE) ε4 allele is highly associated with an increased risk of AD developing considering that 

approximately 25% of AD cases carry one or more copies of the allele. Genome-wide studies, 
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molecular genetic investigation and pathway-based exploration can help define AD subgroups, 

identify diagnostic indicators of the disease and ultimately shed light on improved and adapted 

treatments. Many studies that have either focused on detecting new genetic risk factors or 

investigated the relationship between single nucleotide polymorphisms (SNPs) and Alzheimer’s 

disease have shown specific genes/loci associated with late-onset disease progression, among them 

NME8, FERMT2, PICALM, PTK2B, CD2AP, CD33, CELF1SLC24A4/RIN3, FERMT2, CASS4 

and DGS2 [13]. Moreover, different analytical methodologies with an emphasis on sliding window 

haplotype-based approach and gene-wide analysis have shown that FRMD4A as well as TP53INP1 

and IGHV1-67 are potential risk loci [14]. Furthermore, according to the GWAS investigation for 

single nucleotide polymorphisms related to late-onset, a significant number of variations in genes 

such as ATP-binding cassette subfamily A member 7 (ABCA7), CD2 associated protein (CD2AP), 

CD3 molecule (CD33), complement component 3b/4b receptor 1 (CRI), EPH receptor 1 (EPHA1), 

inositol polyphosphate-5-phosphatase D (INPP5D) and phospholipase D family member 3 (PLD3) 

has been reported [15]. 

The search for genetic risk factors for polygenic AD was initially dominated by studies querying 

common genetic variation, most successfully through GWAS. Specific loci including BIN1, CD2AP, 

PICALM and PLD3 have been associated with late-onset AD at genome-wide significance [16]. The 

regulatory role of ATP-binding cassette, sub-family A, member 7 (ABCA7), has been originally 

determined through genomics, transcriptomics and methylomics analysis as a novel risk gene and 

potent pharmacological target for Alzheimer’s disease [17]. It should be noted here the impact of 

CLU, BCA7, CD33, CD2AP, EPHA1 and CRI serving as regulatory molecules on the complement 

response along with the strong involvement of EPHA1 and INPP5D in inflammatory cascade 

compared to the limited knowledge of genes such as CLU, CR1, SORL1, PLD3, and PICALM even 

if the latter is associated with the APOE genotypes as provided by extensive next-generation 

sequencing assessment of entire exomes and genomes [18]. Specific databases, including Reactome, 

KEGG and ALIGATOR were used to analyze the vast number of GWAS datasets that involved 

ADNI, central regulator genes such as SPI1 and TYROBP, complex measure of memory as 

phenotype, GERAD/EADI and combined TGen1 [8]. Combined techniques such as the whole 

genome and whole exome sequencing of a rare non-synonymous mutation have also been utilized, 

shedding light on a number of different genetic risk factors that contribute to AD and suggesting 

potential targets for the development of treatment. Characteristic indications can be identified such as 

ABCA7 for heterozygous PTC mutations, SORL1 in patients with early-onset AD (EOAD) and 

R4H7 in TREM2 with increased risk in AD with limited exome-wide significance regarding PLD3, 

AKAP9 and UNC5C [19]. In addition to GWAS, transcriptome-wide association studies have 

supported the exploration of specific loci related to transcriptional regulation as well as in parallel 

with GWAS data as a valuable combinatory analysis. CLU, PTK2B, and CR1 are characteristic 

genes provided by this approach, while postmortem brain transcriptome studies in AD and healthy 

controls from RNA-Seq and microarrays detected a variety of genes that were differentially 

expressed [20]. Moreover, functional annotation leads to differentially expressed pathways that are 

affected such as accumulation of abnormal neuritic plaques, synaptic transmission, endocytic APP 

trafficking, immune response and apoptosis. 
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3. Genetics and pathophysiology of Parkinson’s disease 

Parkinson’s disease is a common neurodegenerative disease characterized by progressive 

degeneration of dopaminergic neurons of the substantia nigra, a significant diminution in the 

neurotransmitter dopamine in the nigrostriatal region of the brain as well as the formation of Lewy 

dystrophic neuritis and Lewy body insertions [21]. One of the hallmarks of the disease is the depletion of 

dopamine, as the pathological evaluation of the postmortem brain indicates the degeneration of substantia 

nigra in the pars compacta, resulting in dopamine deficiency [22]. Although the majority of PD 

apparently is sporadic, 5–10% is inherited. There is currently no therapy for termination or delaying the 

neurodegenerative process, as the exact mechanisms governing the pathogenesis of PD require further 

investigation. However, a number of key genes play an important role in the etiology of PD and the 

elaboration of the α-synuclein pathology, whereas lysosomal and mitochondrial behavioral disruptions 

seem to play a crucial role in PD pathogenesis [23]. According to the histopathological and molecular 

profile of PD patients, the involvement of oxidative stress in the pathogenesis of the disorder has 

increased due to recent advances in the genetics of PD. The accumulated presence of iron in substantia 

nigra is perfectly consistent with iron-catalyzed oxidative stress capable of stimulating strong interaction 

between alpha-synuclein aggregation and mitochondrial dysfunction. Furthermore, mitochondrial 

efficiencies and protein processing affect each another and is the subject of intense research, including the 

ubiquitin-proteasome system that regulates mitochondrial fission and fusion. According to numerous 

studies, reactive oxygen species can play an important role as signaling molecules that can initiate the 

activation of transcription of proteins or protein misfolding in the mitochondria, induction of cell-

mediated immunity or sirtuin-mediated mitochondrial stress response [24]. The endoplasmic reticulum 

(ER) and the subsequent unfolded protein response (UPR) may be involved in the pathogenic 

mechanisms of the disease affecting neuronal regulation, as proteins lose their acquisition upon post-

translation modification process including characteristic folded confirmation. The UPR intervenes in 

cellular adaptation to reinstate ER homeostasis under acute ER stress conditions while apoptosis can be 

triggered upon chronic exposure to reduce damaged cells. Based on this mechanism, three 

transmembrane sensor proteins are activated, the IRE1 (inositol-requiring enzyme-1), ATF6 (activating 

transcription factor 6) and PERK (protein kinase RNA-like endoplasmic reticulum kinase), along with 

the transcription factors, XBP1s (X box protein 1), ATF6f and ATF4. This cascade leads to regulation of 

the expression of important molecules associated with protein folding, protein apoptosis and 

autophagy [25]. Among the variety of genes related to rare monogenic forms of PD are leucine-rich 

repeat kinase 2 (LRRK2), parkin, DJ-1 and PTEN-induced kinase 1 (PINK1) (Figure 1B). Evidence 

accumulation indicates that Parkin (PARK2) is suspected of an autosomal-recessive trait of the disease, 

while several familial PD-linked mutations, including ATP13A2 (PARK9) have been observed. Exonic 

deletions or duplications in PARK2 are frequently associated with Parkinsonism, while genomic 

replications in the SNCA (the gene encoding α-synuclein) or predominant Ala30Pro and Ala53Thr 

substitutions lead to nigral neuronal loss. Similarly, exon-deletion mutations in Parkinsonism-associated 

PINK1 are gradually evolving into limited doses of L-DOPA [26]. Moreover, delayed progressive 

Parkinsonism or the expression of sporadic symptoms can be caused by mutations in DJ1 related to 

recovery of progressive symptom expression. The deubiquitylating enzyme, UCH-L1, has also been 

found to be linked to a genetic predisposition. To this must be added the identification of an E46K 

mutation in a family member with Lewy bodies dementia along with selective mutations in GCH1 (GTP 
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cyclohydrolase 1), ataxin 2 (ATXN2), VPS35 retromer complex component, DNAJC6 and DJ1 

(Leu166Pro substitution), factors leading to Parkinsonism with dementia or amyotrophy [27,28]. 

A few susceptibility loci, including a-synuclein, tau and LRRK2 have been demonstrated in PD 

genome-wide association studies. These indications in combination with the already known data that a-

synuclein accumulation, in the form of Lewy bodies, is also detected in other neuronal cell types in 

various neurodegenerative diseases may lead to a possible common mechanism of disease onset and be 

responsible for familial autosomal dominant PD [29]. Activation of ROS-regulated signaling molecules 

and related pathways may also be stimulated by reduced proteasomal activity or problematic 

mitochondrial efficiency that causes the detection of mitochondrial protein oxidation and degradation. 

Furthermore, this scenario can cause significant damage to the synaptic regions of dopaminergic cells and 

their intracellular environment, as this type of cells is rich in mitochondria as well as key molecules such 

as dopamine and α-synuclein. The important role of these signaling molecular signatures should be 

emphasized here, as they are able to attenuate proteasomal activity, interact with cellular and 

mitochondrial calcium flux and mitochondrial dynamics using NADH/FADH2 as well as electron 

activation and initiate intracellular mechanisms for depolarized or inefficient regulation of mitochondria 

in the cell compartment for macroautophagy [30]. The protective effect of a significant number of 

proteins involved in pathways implicated in PD, including Parkin and G2019S LRRK2, has been 

reported through proteomics. However, other model studies have shown a relationship between α-

synuclein and the RAB1 ER-to-Golgi modulator, leading to neuronal loss [31]. Protein aggregation has 

apparently been reported to be of great importance for the detection of factors that prevent the 

accumulation or distribution of inclusions as well as the involvement of protein quality control and 

clearance systems. 

A promising therapeutic approach for PD can be considered gene therapy though viral vector 

methodologies. By performing this strategy, genes can be transferred to nuclei and genetically alter the 

neuronal environment of the basal ganglia or modify specific neurotrophic factors such as CDNF, VEGF-

A and neurturin. Moreover, this technology can determine the limited level of dopamine release and the 

capacity of the circuit controlling movement, enriching the effectiveness of dopamine replacement [32]. 

The incorporation of specific neuroprotective genes has proven to be a sensible therapeutic approach that 

includes both Adeno-associated virus (AAV) and lentiviral vectors for the transport of genetic material to 

both the substantia nigra and the striatum. Alterations in α-synuclein levels are a demanding factor due to 

their significant contribution to neurotransmitter release, while silencing through RNA interference has 

shown nigral degeneration in animal models [33]. Parkin mutations in patients are characterized by an 

atypical form of Parkinsonism and delay disease progression, as the substantia nigra does not include 

Lewy bodies with elevated a-synuclein expression. For these cases, the PINK1-Parkin pathway as a 

potential pharmacological target is highly uncertain. The bacterial clustered regularly interspaced short 

palindromic repeats (CRISPR)-associated protein-9 nuclease (Cas9) could also provide important 

therapeutic indications including a variety of targeted genes. Genome-wide association data of PD 

patients’ characteristics can be found in the PDGene database, while according to the International 

Parkinson’s Disease and the Movement Disorders Genetic Mutation Database (MDSGene), a large 

international project encompassing genes for PD as well as for several other inherited movement 

disorders, a systematic summary of clinical cases has been classified and causative mutations in SNCA, 

Parkin, PINK1, VPS35, SYNJ1, DNAJC6 and FBXO7 have been described [34]. NADH ubiquinone 

oxidoreductase core subunit S1 and Cytochrome C oxidase subunit 4I1 are involved in PD regulatory 

cascade, while cross-platform datasets have shown significant monitoring between new therapeutic 



1819 

Mathematical Biosciences and Engineering  Volume 18, Issue 2, 1813–1832. 

strategies and prognostic indicators, among them MAPK8, CDC42 and COX4I1 as well as miR-126-5p, 

miR-19-3p and miR-29a-3p [35]. Large-scale transcriptomic datasets obtained from a transcriptome-wide 

association study in dorsolateral prefrontal cortex and peripheral monocytes cells highlighted sixty-six 

important molecules related to predicted expression or splicing levels [36]. 

 

Figure 1. Pathogenesis, molecular pathways and genetic causes of Alzheimer’s and 

Parkinson’s disease. 

4. Omics approaches to explore the landscape of ND 

The use of high-throughput omics technologies is widely used in biomedical research to enable 

personalized medicine leading to the rapid discovery of many candidate biomarkers and approaches to 

enhance their validation. Genomics, transcriptomics and metabolomics contribute to the identification of 

important diagnostic and prognostic biomarkers that help to reveal molecular mechanisms of specific 

disorders whereas integration of such multiple technologies provide a more comprehensive view of 

disease as well as significant benefits for patient well-being [37]. Overlaying omics datasets across 

pathways along with extensive bioinformatic analyses enabled outcome and phenotypic distinctions to be 
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defined, making these platforms highly important for interpreting and supporting clinical decisions 

(Figure 2A). Omics strategies have figured a window into the diagnostics of devastating brain disorders 

such as neurodegenerative diseases. Hybridization-based approaches such as microarrays have been 

widely used as technology over the past decade to explore the gene expression profiling that represents an 

efficient approach to quantifying thousands of transcripts. The method starts with reverse transcription of 

complementary DNA (cDNA) from RNA substrates and afterwards the samples are inserted into the 

array prior the analysis, such as differential gene expression. More recently, RNA-Seq and next-

generation sequencing platforms have emerged as alternative approaches for gene expression profiling, 

providing powerful hybridization-free approaches that allow massive parallel mapping sequenced 

fragments of cDNA. Undoubtedly, microarrays have been overshadowed by high-throughput sequencing 

with RNA. The main difference among the two methods is that the latter allows for full sequencing of the 

whole transcriptome compared to the predefined transcripts through hybridization performed by 

microarrays, providing higher specificity and sensitivity to detect novel transcripts. Moreover, RNA-Seq, 

as a state-of-the-art technique, is accomplished through a selection of subsets of RNAs from a total RNA 

pool and secondly reverse transcription is performed to obtain a cDNA library, contributing to significant 

challenges on full-length transcript structure identification [38]. Moreover, the inability to distinguish 

between distinct transcript isoforms is a weakness of this approach. Surely, microarray data analysis for 

transcriptome profiling can be confused with adaptations to probe hybridization sensitivity between array 

platforms, while the development of probes for unknown sequences is not applicable and the detection 

and accurate quantification of limited expressed transcripts proves a difficult issue. In order to 

accomplish reliable meta-analyses for the interpretation of multiple independent datasets, updates to the 

human reference genomes should also be considered [11]. cDNA sequencing can also be executed using 

the directional RNA-Seq technique that provides massive knowledge of reads. The latter is useful for 

revealing new splicing events involved in dissecting the complexity of the disorders. Knowledge of 

descriptive data between these approaches is extremely important to uncover the very complex scenario 

caused by neurodegeneration in the context of these highly progressive disorders. A better understanding 

of the aspects of each methodology will help identify specific targets at the appropriate stages of 

particular diseases for effective and highly selective therapeutic interventions. 

Metabolomics is the latest systems biology approach that offers great potential for diagnosing and 

predicting neurodegenerative diseases by measuring the levels of individual metabolites simultaneously 

in clinical and biological samples, discovering reliable biomarkers as well as developing effective 

therapeutic interventions. The advantage of this powerful methodology is based on its ability to 

demonstrate qualitative and quantitative changes of a defined set of metabolites which are also dynamic 

with each other, reflecting changes in multiple functional and regulatory networks [39]. Quantitative 

measurements of the human metabolites can be performed either by mass spectrometry (MS) or nuclear 

magnetic resonance spectroscopy, two powerful analytical platforms utilized also for detection and 

structural characterization of molecules. MS is a destructive technique that provides high sensitivity, 

selectivity, flexibility and the ability to analyze a wide range of metabolites providing quantitative data. 

Combination with chromatography techniques such as liquid chromatography, gas chromatography or 

capillary electrophoresis is essential for sample separation prior to mass spectrometer injection. This step 

is used as multiple executions to obtain a sufficient number of samples and increases the analysis time 

along with the selection of the ionization approach such as electrospray ionization (ESI) or matrix-

assisted laser desorption ionization (MALDI) [40]. 
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Figure 2. Overview of different omics techniques in biomarker discovery. A) Schematic 

categorization of omics technologies, their corresponding analysis targets, and 

assessment methodologies. B) A typical integrated omics workflow showing input 

datasets, processing approaches, cluster classification and data export. 

Nuclear magnetic resonance spectroscopy-based metabolomics, on the other hand, is a non-

destructive, low-cost approach that provides detailed information on molecular structure. Cryogenic 

probes and high-field magnets are used during sample quantification, however, this methodology is no 

less sensitive to low molecular weight metabolites [41]. As the brain is highly dependent on glucose, 

which consumes about 20% of the total energy derived from glucose, cerebral hypometabolism and 

abnormalities associated with reduced glucose utilization can be observed with this approach. Plasma and 

CSF metabolomics studies in patients with MCI and AD showed an effect on ketone bodies to maintain 

energy homeostasis, while analysis of the metabolic network of the first group showed changes in lipid 

metabolism, mitochondrial ketone bodies and tricarboxylic acid cycle. On the other hand, AD individuals 

indicated metabolic alterations associated with neurotransmission and inflammation as well as in TCA 

cycle and lysine metabolism [42]. The glycerophospholipid pattern predominately altered in AD cortex 

with increased NAA levels while mitochondrial dysfunction and aspartate metabolism correlated with 

dementia and AD pathology have been observed in the frontal cortex from 21 AD and 19 CN in a 
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metabolomic study using UPLC-HILIC-MS and ionKey/MS [43]. Cerebellum, middle frontal gyrus and 

inferior temporal gyrus analysis from 14 AD, 14 CN, and 15 asymptomatic patients revealed global brain 

UFA perturbations and region-specific alterations in patients with AD. Moreover, reduced linoleic acid, 

linolenic acid and arachidonic acid within the middle frontal gyrus and elevated levels of 

docosahexaenoic acid were observed, evidence that may be indicated as peripheral threshold fingerprints 

associated to Aβ plaques, tau tangles, and cognitive decline [44]. Using ultra performance liquid 

chromatography-tandem mass spectrometry alterations in 17 metabolites in the methionine cycle were 

depicted in AD plasma and CSF samples [45]. Moreover, the levels of sphingomyelins and ether-

containing phosphatidylcholines were found altered in a cohort consisting of 732 fasting plasma samples 

from an ADNI-1 pool [46]. In another lipidomic study using a high-resolution mass spectrometer, 

polyamine metabolism, sphingolipid transport and saturated fatty acid biosynthesis were found altered in 

AD plasma samples with parallel diminution of ceramides and phosphocholines [47]. Lastly, 3-

hydroxypalmitoleylcarnitine, lysoPC and specific amino acids such as histamine, citrulline, and 

nitrotyrosine were indicated as a well-defined metabolic framework in analysis of aMCI/AD plasma 

samples by UPLC-MS [48]. 

The starting point for implementing an integrated analytical approach is the development of the 

appropriate protocols that includes a sequence of steps through which biological samples are processed 

and analyzed measurements (Figure 2B). These biological protocols derive key features from existing 

methods found in conventional testing procedures performed in clinical practice. All the steps that will be 

able to support the process are the ones that will determine its specifications in terms of design and 

functionality [49]. Through the detailed modeling of the individual experimental phases, it is possible to 

implement an efficient computational tool that achieves complete automation of the experimental process 

with high accuracy of the produced results. Initially, an important step is to normalize the data values to 

control all samples if the expression values from different experiments are comparable. The results 

cannot be taken into account using incorrect normalization or inflated false positives. Further steps are the 

supplementary values for the absent expression values, the adoption of a common nomenclature and the 

total number of reads, along with the deletion of samples having similar identifiers and the finding of 

differentially expressed genes between the control and the test state [50]. Statistical approaches such as 

signal-to-noise ratio, fold-change, and correlation coefficient are usually followed to unravel the 

differentially expressed molecules. 

Focusing on pathway analysis methodologies, over-representation analysis can derive a model 

which is based on genomics data and describes process complexity. The basic premise of a Functional 

Class Scoring (FCS) analysis is that in addition to large changes in gene expression, smaller changes are 

important whose component significantly affects the condition of the pathway [51]. Three steps comprise 

this approach, starting with the calculation of statistic at the gene level as well as in the general 

methodology. Compilation of individual statistics from the genes of each pathway into a pathway-level 

statistic is following, a process which is equivalent to selecting statistics at the gene-level set. Lastly, a 

statistical evaluation of each pathway should be performed based on the null hypothesis adopted. 

Furthermore, the standard hypothesis of a Pathway Topology Based Analysis is that the interactions 

contained in the pathway topology are important in studying the correlation of changes that occur 

between parts of a pathway, addressing some of the limitations of previous methods. These interactions 

follow the same general methodology except for the calculation of statistics at the genome level where 

the topology of the whole pathway is used [52]. These approaches provide information on the nature of 

their members’ interaction, which allows different weights to be assigned to each gene depending on the 
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alterations that occur in each individual’s the expression and the effect it has on the condition of the entire 

pathway. In addition, different biological states may correspond to different interactions between the 

same genes. Knowledge of the interactions allows the approach to be able to distinguish the two states 

which by considering only the genes and their expression would be observed identical. Among the key 

limitations can be pointed out that these methodologies can determine whether there is an enrichment of 

the pathway without addressing the exact time point of this specific enrichment as well as they do not 

take into account pathway correlations to detect possible interactions among them (Table 1). The 

Subpathway-GM method is one approach of indentifying biologically interesting metabolic pathways by 

integrating information from genes and metabolites, as well as specifying their location within the 

topology of a pathway. The method incorporates data sets from different omics related to the disease’s 

condition and studies in depth the respective enzymatic networks within the metabolic pathway [53]. In 

the case of irreversible reactions, a substrate points to the corresponding enzyme while an enzyme points 

to the corresponding product. In the case of reversible reactions, the opposite directions may occur. The 

Topology Enrichment Analysis detects correlations between genes within enriched biologically important 

pathways. The method extracts linear and non-linear sub-paths which are ultimately scored using specific 

criteria for specialized data as well as for case-control studies [54]. 

Table 1. Omics analytical methods and findings in AD and PD. 

Method type Disease Highlights Reference 

Genomics and 

transcriptomics 

analysis 

AD new genes/loci associated with late-onset disease 

progression, (NME8, FERMT2, PTK2B, CASS4, 

DGS2) 

Yan et al. [13] 

genome-wide 

association study 

AD new risk loci (FRMD4A, TP53INP1, IGHV1-67) Escott-Price et al. [14] 

genome-wide 

association study 

AD late-onset AD associated loci (BIN1, CD2AP, 

PICALM, PLD3) 

Van Acker et al. [16] 

genome-wide 

association study 

AD single nucleotide polymorphisms related to late-

onset disease progression (ABCA7, CD2AP, 

CD33, PLD3 

De Roeck et al. [17] 

whole genome and 

whole exome 

sequencing 

AD complement response (CLU, BCA7, CD33, 

CD2AP, EPHA1), inflammatory cascade 

(EPHA1, INPP5D) 

Reitz et al. [18] 

whole genome and 

whole exome 

sequencing 

AD new risk loci related to early-onset progression 

(SORL1, R4H7) 

Bellenguez et al. [19] 

Continued on next page 
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Method type Disease Highlights Reference 

transcriptome-wide 

association studies  

AD accumulation of abnormal neuritic plaques, 

synaptic transmission, endocytic APP trafficking, 

immune response and apoptosis (CLU, PTK2B, 

and CR1) 

Ciryam et al. [20] 

genome-wide 

association study 

AD PARK-SYNJ1, PARK-DNAJC6, PARK-

FBXO7, CHCHD2, GBA 

Klein et al. [34] 

meta-analysis of 

multiple gene 

expression arrays 

datasets 

AD MAPK8, CDC42, NDUFS1, COX4I1, SDHC 

and miR-126-5p, miR-19-3p, miR-29a-3p, lipid 

metabolism and mitochondrial dysregulation 

Chi et al. [35] 

transcriptome-wide 

association study 

AD 66 risk genes with predicted expression or 

splicing levels (SNCA, CLASP2, TMEM175, 

GPNMB, CTSB, CAMLG, and NUDT14) 

Li et al. [36] 

genome-wide 

association study 

PD familial autosomal dominant PD (a-synuclein, 

tau and LRRK2) 

O'Hara et al. [29] 

transcriptomics/meta 

analysis brain 

samples 

PD signaling pathways and protein-protein 

interaction networks (REST as an upstream 

regulator) 

Kelly et al. [62] 

transcriptomics/meta 

analysis brain 

samples 

PD changes in dopaminergic neuronal transcription, 

NPTX2, DEFA3, DEFA1 

Mariani et al. [63] 

frontal cortex 

metabolic profiling 

AD mitochondrial dysfunction, aspartate metabolism 

variation 

Paglia et al. [43] 

brain tissue metabolic 

profiling 

AD dysregulation in the metabolism of unsaturated 

fatty acids 

Snowden et al. [44] 

plasma and CSF 

metabolic profiling 

AD changes in the methionine cycle (homocysteine, 

S-adenosylmethionine, 5-methyltetrahydrofolic 

acid) 

Guiraud et al. [45] 

plasma metabolic 

profiling 

AD alterations in sphingomyelins and ether-

containing phosphatidylcholines 

Toledo et al. [46] 

plasma metabolomics AD alterations in 3-hydroxypalmitoleylcarnitine and 

lyso phosphatidylcholines  

Mapstone et al. [48] 
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5. Computational analysis and dynamic network models in ND 

Computational biology and bioinformatics provide important assistance in biomedical research 

for the analysis, clustering and validation of molecular and clinical indications, with the aim of 

prognostic evidence, diagnostic markers identification and efficient treatment. The development of 

high-throughput methodologies in accordance with state-of-the-art infrastructure and powerful tools 

is highly important, whereas the establishment of bioinformatics platforms for data pre-processing 

can support the storage and integration of clinical data, combination of up-to-date biomedical 

knowledge with analytical pipelines and therapeutic development [55,56]. A computational 

workflow for biomarker extraction is depicted in Figure 3. The proposed workflow consists of three 

stages, namely the: (i) data curation stage, (ii) biomarker extraction stage, and (iii) validation stage. 

The data curation stage involves automated functionalities for the detection of similarities among the 

input medical data using covariance and correlation-based scores, as well as, functionalities for 

outlier detection using both univariate (e.g., the interquartile range) and multivariate (e.g., the 

isolation forests and the elliptic envelopes) methods and data standardization. In addition, the data 

curation stage eliminates any data incompatibilities that are present within the data structure, as well 

as, resolves data format issues that obscure data management and analysis [57]. The biomarker 

extraction stage is then applied on the curated data and involves functionalities for: (i) the definition 

of the target feature (i.e., the feature of interest), (ii) the application of class imbalance handling 

methods by randomly down sampling the majority class (i.e., the group of controls) with replacement, 

given a specific downsampling ratio, and (iii) the application of feature selection methods, such as, 

the False Correlation Based Feature (FCBF) selection algorithm or feature ranking methods, such as 

false detection rate (FDR) methods based on ANOVA scores, and the Information Gain (IG), among 

others, to identify prominent features (biomarkers) that are highly associated with the pre-defined 

target feature and less associated among them. The prediction performance of the extracted 

biomarkers is validated against the performance of existing biomarkers in the validation stage, where 

supervised machine learning algorithms are applied, to yield explainable and robust AI models for 

disease prediction and patient risk stratification, among others [58]. 

 

Figure 3. A computational workflow for biomarker extraction. 
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Another method for the identification of biomarkers, based on bioinformatics approaches is 

through the estimation of the protein-protein interaction affinity (PPIA) from gene expression data 

and further identification of a set of protein-protein interactions and single proteins as network 

biomarkers for diagnosing/prognosticating diseases. Firstly, PPIA can be approximated by the law 

of mass action. Then a model can be developed to indicate a set of PPIAs and single proteins as 

network biomarkers, where theoretically each class or cluster of samples is depicted by an ellipsoid. 

The selection of minimal numbers of PPIs and proteins can be extracted according to this process 

to maximize the distance between different ellipsoids [59]. The "Expression Data UpStream 

Analysis” (EDUSA), an innovative bioinformatics approach, has been developed for the 

compelling analysis and categorization of the genomic pattern to assess a coherent explanation of 

the PD mechanism, revealing the different levels of disease progress by summarizing data within a 

single or multiple annotation [60]. As an example of EDUSA disease-oriented genomic expression 

profiling data analysis, the methodology begins with sample collection, the analysis of 

differentially expressed genes is the second step, followed by the categorization of over-

represented biological families using the Expression Analysis Systematic Explorer software as well 

as the depletion of repeated groups applied to conjugated gene clusters and terminates by defining 

a hierarchy of interactions between processes. 

The advantages of this highly promising process may include the rapid identification of 

pathways affected by disorder through tissue samples taken from both patient and non-PD groups. 

Transcriptomic data related to neurological disorders have been also provided though a web portal 

tool that included annotations to each study for in-depth investigation [61]. Moreover, a meta-

analysis approach was proposed to observe altered gene expression in PD brain microarrays 

datasets as well as to compare these profiles with AD datasets, noting the similarities and cross-

talk between PD and AD differentially expressed genes in the same direction and pathways [62]. 

Another software called Transcriptome Mapper (TRAM) has been used in brain PD and microarray 

data from healthy individuals, and meta-analysis has also been performed to determine changes in 

dopaminergic neuronal transcription by integrating multiple datasets from independent trials. 

Deregulation of characteristic genomic loci and regions involving neurodegenerative functional 

pathways as well as genes and non-coding RNA transcripts can be ascertained by this methodology, 

while genetic signatures with effective overexpression in substantia nigra like NPTX2, DEFA3 and 

DEFA1 were reported [63]. Modifying known cellular pathways and investigating molecular 

processes could verify system-level variations in omics datasets, and to address this issue, a variety 

of pathways and approaches can be extracted from known databases such as KEGG (Kyoto 

Encyclopedia of Genes and Genomes), Gene Ontology Resource, Reactome and BioCarta [64]. 

PANTHER and NCI-PID are also common pathway databases, while other complementary 

methods follow network and GO analysis. Omics-based pathways were clustered into different 

groups, while an over-representation analysis related to abundance evidence derived from omics 

datasets were depicted and GSEA (Gene set Enrichment Analysis) limited the need to describe a 

significant threshold. Network Module-based Pathway Analysis (NMPA) uses algorithms to 

explore prior knowledge from intracellular networks as well as determine sub-network regions and 

correlate them with common pathways. In addition, Network Topology-based Pathway Analysis 

(NTPA) methodology utilizes molecular network mapping to achieve direct quantification of 

pathway mappings and multiplicity of interconnections [65]. For each of these groups of pathway 

analysis a variety of software applications can be provided and substantial and visible results can 
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be extracted among them DAVID and GOToolBox over-representation analysis tools. Non-

topology-based approaches, known as gene set analysis techniques, should be highlighted 

including either the overpresentation analysis followed by EASE, Onto-Express and WebGestalt or 

the functional class scoring methods such as GlobalTest, GSA, PADOG, GSEA and FunCluster [66]. 

Additionally, PWEA, PathNet and ToPASeq, along with FunMOD, have been developed and can 

be used for network topology- and network module-based pathway analysis in an attempt to 

include all this important knowledge in the analysis. A crucial parameter could be also the 

selection of the appropriate pathway process that is highly related to the prior computation of the 

modified expression pattern for the individual molecular index within each omics dataset [67]. 

Furthermore, a detailed pathway analysis of genome wide association studies and the bias of 

sequencing results related to the related imbalance and amount of gene sets should be noted. In an 

effort to distinguish a PD-related modified molecular network, targeted software tools can be 

included either for network disruption analysis or for causal reasoning clarification, while these 

strategies are able to identify the regulatory network involved at a relevant biological level as well 

as regulatory linkages between genes or protein cascades. These tools are Whistle and SiGNet for 

causal reasoning and data analysis or GenePEN, BioNet/HEINZ and ClustEx for network 

disturbances study [23]. However, for the categorization or clustering of diseased subfamilies, 

machine learning for multilevel predictive modeling and high-dimensional data are extremely 

necessary. Computational approaches, following machine learning models, may give the 

opportunity to delineate the power of correlations between variables of interest or responses to 

intervention. In order to predict specific clinical outcomes or diagnostics phenotypes model-based 

and model-free approaches may be assessed. The application of model-based methods is highly 

dependent on the a priori statistical statements, such as determining the relationship between 

variables and model-specific assumptions associated with the process probability distributions 

while model-free techniques have the capacity to construct non-parametric representations using 

machine learning algorithms with fewer assumptions [68]. In addition, a variety of known software 

tools can be included for machine learning analyses of omics data that provide pathway 

categorization and visualization. Typical examples are Limma and RankProd, which are oriented 

towards ranking and feature selection, ArrayMining for multipurpose machine learning analysis 

and GGobi, which helps with visualization of low-dimensional data. WebGestalt and ToppGene 

can also examine the regulatory characteristics of PD-related genes, can dissect the global 

landscape mapping of molecular interactions, and unravel specific key genes with a highly 

regulatory role in PD for further analytical investigation [69]. 

6. Conclusions 

The continued progression of high-throughput approaches helps to increase the reproducibility 

and the interpretation of biomedical data and results. In neurodegenerative disorders such as AD 

and PD, integrated omics methods and network-based analyses play a significant role in the 

discovery of new biomarkers, the analysis of disease states and the validation of potential 

therapeutics. Biological pathways analysis, including a set of computational tools, is used to 

extract knowledge from data resulting from multiple sequencing techniques, creating important 

information that attempts to describe the underlying biological processes. Through these 

approaches, the structure of the interactions that take place in neuronal environments and the 
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response to possible disturbances can emerge, strengthening the data agreement with the 

experimental findings. 
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