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Abstract: The complexity of biological systems suggests that current definitions of molecular
dysfunctions are essential distinctions of a complex phenotype. This is well seen in
neurodegenerative diseases (ND), such as Alzheimer’s disease (AD) and Parkinson’s disease (PD),
multi-factorial pathologies characterized by high heterogeneity. These challenges make it necessary
to understand the effectiveness of candidate biomarkers for early diagnosis, as well as to obtain a
comprehensive mapping of how selective treatment alters the progression of the disorder. A large
number of computational methods have been developed to explain network-based approaches by
integrating individual components for modeling a complex system. In this review, high-throughput
omics methodologies are presented for the identification of potent biomarkers associated with AD
and PD pathogenesis as well as for monitoring the response of dysfunctional molecular pathways
incorporating multilevel clinical information. In addition, principles for efficient data analysis
pipelines are being discussed that can help address current limitations during the experimental
process by increasing the reproducibility of benchmarking studies.
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1. Introduction

Neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson disease (PD),
involve the loss of structure or function of neurons in the brain or peripheral nervous system,
including neuronal death. The topological complexity of the neuropathological vulnerability and
transcriptional regulation in AD and PD in the brain suggest a need to analyze in more detail the
molecular mechanisms that govern disease susceptibility and progression [1]. On the other hand,
accurate and reliable biomarkers for these disorders are urgently needed to help both diagnose,
especially in the early stages, and monitor the progression of symptoms. A comprehensive overview
of expression profiles specific for each disease cell type specific, distinct biomarker profiles and
topological composition of cell types provides the opportunity to shed light on the diversity in brain
deterioration and spread of neuropathological symptoms observed between patients. Unfortunately,
limited candidate biomolecules have preceded the discovery phase of the development pipeline for
an objective diagnostic biomarker. Typical signs of neurodegeneration are the activation of microglia
and the inflammatory response of astrocytes (neurotoxic and neuroprotective; M1- or M2-phenotype
microglia and Al- or A2- phenotype astrocytes) accompanied by increased expression of cytokines
as well as mediators of the immune system in the brain and cerebrospinal fluid [2].
Neuroinflammation can be characterized as contradictory, covering many distinct responses to the
neurodegenerative process. Inflammation triggered by the central nervous system (CNS) innate
immune response, as defined by microglial activation and accompanied by astrocyte responses along
with increased expression of cytokines and immune system mediators in the brain and cerebrospinal
fluid (CSF), is constant in neurodegeneration [3]. Although anti-inflammatory therapeutic strategies
have not been successful in the past, the development of a strategy that potentiates protective
microglia functions could be a promising model for ND treatment, suggesting that novel approaches
against inflammation may be useful and could reduce the progression of the disease [4].

Advancements in the field of omics approaches allow the monitoring of abnormalities in
multiple interconnected networks necessary to detect transcriptional, translational and metabolic
changes whereas they demonstrate the complexity of the dynamic alterations related to AD and PD
progression, highlighting the challenges associated with designing and evaluating effective
therapeutic interventions. The two neurodegenerative diseases share many clinical and pathological
features and many similar cascades of neuronal reactions leading to progressive neurodegeneration
occur in Alzheimer’s disease and Parkinson’s disease. Cognitive decline is common in both AD and
PD (cortical and subcortical dementia, respectively), as well as behavioral symptoms like depression,
apathy, sleep disturbances and anxiety. The toxicity of specific proteins, due to the accumulation of
abundant extracellular AB plaques and intraneuronal neurofibrillary tau tangles present in AD as well
as abnormal filaments of a-synuclein leading to progressive degeneration of dopaminergic neurons in
PD, results in overlapping common pathological alterations such as the activation of glycogen
synthase kinase-3 beta, mitogen-activated protein kinases, mitochondrial dysfunctions, oxidative
stress and neuroinflammation [5]. Moreover, high levels of a-synuclein aggregation into Lewy body
have been reported in patients with AD, with nicotinic receptors and loss of locus coeruleus may
occurring in the progression of both diseases [6]. Together with high-throughput bioinformatics
methodologies and integrated omics and pharmacological data, specific biomarker panels can be
studied simultaneously, allowing these highly promising technologies to recognize variable changes
across multiple interconnection networks and understand the pathophysiology of complex diseases [7].
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Moreover, pathway analysis along with distinct molecular profile provide important
neuropathological information as well as increased disclosure of underlying disease mechanisms and
guidance in the design and development of new therapeutic strategies to monitor disease efficacy.
The contribution of functional imaging techniques in medicine such as the positron emission
tomography or the magnetic resonance imaging also helps to enhance the accuracy of the diagnosis.
These neurobiological and neuroimaging efforts can illuminate the heterogeneity of prognostic
biomarkers and molecularly targeted drugs for neurodegenerative diseases that are important in
selecting appropriate patients for specific treatments as a one-size-fits-all medicine to patient-specific
medicine shift strategy [8].

Integrated omics methods eliminate speculation arising from the discrepancy between discovery
and validation associated with biomarker-driven research process. The analysis of biomedical data
allows the exploratory of important molecular entities, biological molecules and features of the
interactions that lead to a mechanistic understanding of the observed clinical symptoms, while the
familiarity of software packages allows the handling of genotype and phenotype data with large data
integration. In attempting to depict cellular malfunctions during neuronal loss, an initial model of the
system should be provided based on prior genetic information along with insights on proteome and
metabolite changes as well as epigenetic abnormalities [9]. Parallel targeted omics approaches are
proposed instead of a single approach to promote the exploratory of candidate biomarkers with ND
cases. A large number of computational approaches have been developed to generate co-expression
networks from genomics to transcriptomics and protein expression data, along with functional
annotations and regulatory networks.

2. Genetics and pathophysiology of Alzheimer’s disease

Alzheimer’s disease (AD) is a genetically complex, multifactorial disorder that leads to memory loss,
difficulty thinking, and changes in behavior. AD preferentially affects individuals over 60 years of age
with a steadily increasing risk at older ages [10]. There is no treatment for AD yet and the prevalence of
the disorder rises from about 1% in the under-65 population to about 40% in nonagenarians. Due to its
high prevalence and unreservedly high occurrence, it poses a serious problem to both personal health and
the healthcare system. The majority of AD cases are sporadic (> 95% prevalence) without a specific
genetic basis and the symptoms are progressive with age being the strongest risk factor [11]. The disease
is preceded by a long prodromal phase and most patients have late-onset AD. The progressive
hippocampal and cortical atrophy are among the neuropathological alterations in the AD brain that are
visible upon neuroimaging and macroscopic examination. Moreover, among the most representative
microscopic features are extracellular depositions of amyloid-B (A1 42) peptide and intraneuronal tangles
of hyperphosphorylated forms of microtubule associated protein tau, in combination with neuronal and
synapse elimination and reactive gliosis. Microglia responses to f-amyloid are the focus of many studies
that depend on the significant contribution of B-amyloid cascade to AD progression (Figure 1A).
Undoubtedly, the inflammatory response and the activation of microglia associated with -amyloid
behavior are under investigation [12].

Causal mutations in specific genes have been identified in early-onset forms, including amyloid
precursor protein (APP), presenilin-1 (PSEN1) and presenilin-2 (PSENZ2). The apolipoprotein E
(APOE) &4 allele is highly associated with an increased risk of AD developing considering that
approximately 25% of AD cases carry one or more copies of the allele. Genome-wide studies,
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molecular genetic investigation and pathway-based exploration can help define AD subgroups,
identify diagnostic indicators of the disease and ultimately shed light on improved and adapted
treatments. Many studies that have either focused on detecting new genetic risk factors or
investigated the relationship between single nucleotide polymorphisms (SNPs) and Alzheimer’s
disease have shown specific genes/loci associated with late-onset disease progression, among them
NMES8, FERMT2, PICALM, PTK2B, CD2AP, CD33, CELF1SLC24A4/RIN3, FERMT2, CASS4
and DGS2 [13]. Moreover, different analytical methodologies with an emphasis on sliding window
haplotype-based approach and gene-wide analysis have shown that FRMDA4A as well as TP53INP1
and IGHV1-67 are potential risk loci [14]. Furthermore, according to the GWAS investigation for
single nucleotide polymorphisms related to late-onset, a significant number of variations in genes
such as ATP-binding cassette subfamily A member 7 (ABCA7), CD2 associated protein (CD2AP),
CD3 molecule (CD33), complement component 3b/4b receptor 1 (CRI), EPH receptor 1 (EPHAL),
inositol polyphosphate-5-phosphatase D (INPP5D) and phospholipase D family member 3 (PLD3)
has been reported [15].

The search for genetic risk factors for polygenic AD was initially dominated by studies querying
common genetic variation, most successfully through GWAS. Specific loci including BIN1, CD2AP,
PICALM and PLD3 have been associated with late-onset AD at genome-wide significance [16]. The
regulatory role of ATP-binding cassette, sub-family A, member 7 (ABCA7Y), has been originally
determined through genomics, transcriptomics and methylomics analysis as a novel risk gene and
potent pharmacological target for Alzheimer’s disease [17]. It should be noted here the impact of
CLU, BCA7, CD33, CD2AP, EPHAL and CRI serving as regulatory molecules on the complement
response along with the strong involvement of EPHAL and INPP5D in inflammatory cascade
compared to the limited knowledge of genes such as CLU, CR1, SORL1, PLD3, and PICALM even
if the latter is associated with the APOE genotypes as provided by extensive next-generation
sequencing assessment of entire exomes and genomes [18]. Specific databases, including Reactome,
KEGG and ALIGATOR were used to analyze the vast number of GWAS datasets that involved
ADNI, central regulator genes such as SPI1 and TYROBP, complex measure of memory as
phenotype, GERAD/EADI and combined TGenl [8]. Combined techniques such as the whole
genome and whole exome sequencing of a rare non-synonymous mutation have also been utilized,
shedding light on a number of different genetic risk factors that contribute to AD and suggesting
potential targets for the development of treatment. Characteristic indications can be identified such as
ABCA7 for heterozygous PTC mutations, SORL1 in patients with early-onset AD (EOAD) and
R4H7 in TREM2 with increased risk in AD with limited exome-wide significance regarding PLD3,
AKAP9 and UNC5C [19]. In addition to GWAS, transcriptome-wide association studies have
supported the exploration of specific loci related to transcriptional regulation as well as in parallel
with GWAS data as a valuable combinatory analysis. CLU, PTK2B, and CR1 are characteristic
genes provided by this approach, while postmortem brain transcriptome studies in AD and healthy
controls from RNA-Seq and microarrays detected a variety of genes that were differentially
expressed [20]. Moreover, functional annotation leads to differentially expressed pathways that are
affected such as accumulation of abnormal neuritic plaques, synaptic transmission, endocytic APP
trafficking, immune response and apoptosis.
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3. Genetics and pathophysiology of Parkinson’s disease

Parkinson’s disease is a common neurodegenerative disease characterized by progressive
degeneration of dopaminergic neurons of the substantia nigra, a significant diminution in the
neurotransmitter dopamine in the nigrostriatal region of the brain as well as the formation of Lewy
dystrophic neuritis and Lewy body insertions [21]. One of the hallmarks of the disease is the depletion of
dopamine, as the pathological evaluation of the postmortem brain indicates the degeneration of substantia
nigra in the pars compacta, resulting in dopamine deficiency [22]. Although the majority of PD
apparently is sporadic, 5-10% is inherited. There is currently no therapy for termination or delaying the
neurodegenerative process, as the exact mechanisms governing the pathogenesis of PD require further
investigation. However, a number of key genes play an important role in the etiology of PD and the
elaboration of the a-synuclein pathology, whereas lysosomal and mitochondrial behavioral disruptions
seem to play a crucial role in PD pathogenesis [23]. According to the histopathological and molecular
profile of PD patients, the involvement of oxidative stress in the pathogenesis of the disorder has
increased due to recent advances in the genetics of PD. The accumulated presence of iron in substantia
nigra is perfectly consistent with iron-catalyzed oxidative stress capable of stimulating strong interaction
between alpha-synuclein aggregation and mitochondrial dysfunction. Furthermore, mitochondrial
efficiencies and protein processing affect each another and is the subject of intense research, including the
ubiquitin-proteasome system that regulates mitochondrial fission and fusion. According to numerous
studies, reactive oxygen species can play an important role as signaling molecules that can initiate the
activation of transcription of proteins or protein misfolding in the mitochondria, induction of cell-
mediated immunity or sirtuin-mediated mitochondrial stress response [24]. The endoplasmic reticulum
(ER) and the subsequent unfolded protein response (UPR) may be involved in the pathogenic
mechanisms of the disease affecting neuronal regulation, as proteins lose their acquisition upon post-
translation modification process including characteristic folded confirmation. The UPR intervenes in
cellular adaptation to reinstate ER homeostasis under acute ER stress conditions while apoptosis can be
triggered upon chronic exposure to reduce damaged cells. Based on this mechanism, three
transmembrane sensor proteins are activated, the IRE1 (inositol-requiring enzyme-1), ATF6 (activating
transcription factor 6) and PERK (protein kinase RNA-like endoplasmic reticulum kinase), along with
the transcription factors, XBP1s (X box protein 1), ATF6f and ATF4. This cascade leads to regulation of
the expression of important molecules associated with protein folding, protein apoptosis and
autophagy [25]. Among the variety of genes related to rare monogenic forms of PD are leucine-rich
repeat kinase 2 (LRRK?2), parkin, DJ-1 and PTEN-induced kinase 1 (PINK1) (Figure 1B). Evidence
accumulation indicates that Parkin (PARK?2) is suspected of an autosomal-recessive trait of the disease,
while several familial PD-linked mutations, including ATP13A2 (PARK9) have been observed. Exonic
deletions or duplications in PARK2 are frequently associated with Parkinsonism, while genomic
replications in the SNCA (the gene encoding a-synuclein) or predominant Ala30Pro and Ala53Thr
substitutions lead to nigral neuronal loss. Similarly, exon-deletion mutations in Parkinsonism-associated
PINK1 are gradually evolving into limited doses of L-DOPA [26]. Moreover, delayed progressive
Parkinsonism or the expression of sporadic symptoms can be caused by mutations in DJ1 related to
recovery of progressive symptom expression. The deubiquitylating enzyme, UCH-L1, has also been
found to be linked to a genetic predisposition. To this must be added the identification of an E46K
mutation in a family member with Lewy bodies dementia along with selective mutations in GCH1 (GTP
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cyclohydrolase 1), ataxin 2 (ATXN2), VPS35 retromer complex component, DNAJC6 and DJ1
(Leul66Pro substitution), factors leading to Parkinsonism with dementia or amyotrophy [27,28].

A few susceptibility loci, including a-synuclein, tau and LRRK2 have been demonstrated in PD
genome-wide association studies. These indications in combination with the already known data that a-
synuclein accumulation, in the form of Lewy bodies, is also detected in other neuronal cell types in
various neurodegenerative diseases may lead to a possible common mechanism of disease onset and be
responsible for familial autosomal dominant PD [29]. Activation of ROS-regulated signaling molecules
and related pathways may also be stimulated by reduced proteasomal activity or problematic
mitochondrial efficiency that causes the detection of mitochondrial protein oxidation and degradation.
Furthermore, this scenario can cause significant damage to the synaptic regions of dopaminergic cells and
their intracellular environment, as this type of cells is rich in mitochondria as well as key molecules such
as dopamine and a-synuclein. The important role of these signaling molecular signatures should be
emphasized here, as they are able to attenuate proteasomal activity, interact with cellular and
mitochondrial calcium flux and mitochondrial dynamics using NADH/FADH2 as well as electron
activation and initiate intracellular mechanisms for depolarized or inefficient regulation of mitochondria
in the cell compartment for macroautophagy [30]. The protective effect of a significant number of
proteins involved in pathways implicated in PD, including Parkin and G2019S LRRK2, has been
reported through proteomics. However, other model studies have shown a relationship between o-
synuclein and the RAB1 ER-to-Golgi modulator, leading to neuronal loss [31]. Protein aggregation has
apparently been reported to be of great importance for the detection of factors that prevent the
accumulation or distribution of inclusions as well as the involvement of protein quality control and
clearance systems.

A promising therapeutic approach for PD can be considered gene therapy though viral vector
methodologies. By performing this strategy, genes can be transferred to nuclei and genetically alter the
neuronal environment of the basal ganglia or modify specific neurotrophic factors such as CDNF, VEGF-
A and neurturin. Moreover, this technology can determine the limited level of dopamine release and the
capacity of the circuit controlling movement, enriching the effectiveness of dopamine replacement [32].
The incorporation of specific neuroprotective genes has proven to be a sensible therapeutic approach that
includes both Adeno-associated virus (AAV) and lentiviral vectors for the transport of genetic material to
both the substantia nigra and the striatum. Alterations in a-synuclein levels are a demanding factor due to
their significant contribution to neurotransmitter release, while silencing through RNA interference has
shown nigral degeneration in animal models [33]. Parkin mutations in patients are characterized by an
atypical form of Parkinsonism and delay disease progression, as the substantia nigra does not include
Lewy bodies with elevated a-synuclein expression. For these cases, the PINK1-Parkin pathway as a
potential pharmacological target is highly uncertain. The bacterial clustered regularly interspaced short
palindromic repeats (CRISPR)-associated protein-9 nuclease (Cas9) could also provide important
therapeutic indications including a variety of targeted genes. Genome-wide association data of PD
patients’ characteristics can be found in the PDGene database, while according to the International
Parkinson’s Disease and the Movement Disorders Genetic Mutation Database (MDSGene), a large
international project encompassing genes for PD as well as for several other inherited movement
disorders, a systematic summary of clinical cases has been classified and causative mutations in SNCA,
Parkin, PINK1, VPS35, SYNJ1, DNAJC6 and FBXO7 have been described [34]. NADH ubiquinone
oxidoreductase core subunit S1 and Cytochrome C oxidase subunit 411 are involved in PD regulatory
cascade, while cross-platform datasets have shown significant monitoring between new therapeutic
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strategies and prognostic indicators, among them MAPKS8, CDC42 and COX4I1 as well as miR-126-5p,
miR-19-3p and miR-29a-3p [35]. Large-scale transcriptomic datasets obtained from a transcriptome-wide
association study in dorsolateral prefrontal cortex and peripheral monocytes cells highlighted sixty-six
important molecules related to predicted expression or splicing levels [36].
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Figure 1. Pathogenesis, molecular pathways and genetic causes of Alzheimer’s and
Parkinson’s disease.

4. Omics approaches to explore the landscape of ND

The use of high-throughput omics technologies is widely used in biomedical research to enable
personalized medicine leading to the rapid discovery of many candidate biomarkers and approaches to
enhance their validation. Genomics, transcriptomics and metabolomics contribute to the identification of
important diagnostic and prognostic biomarkers that help to reveal molecular mechanisms of specific
disorders whereas integration of such multiple technologies provide a more comprehensive view of
disease as well as significant benefits for patient well-being [37]. Overlaying omics datasets across
pathways along with extensive bioinformatic analyses enabled outcome and phenotypic distinctions to be
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defined, making these platforms highly important for interpreting and supporting clinical decisions
(Figure 2A). Omics strategies have figured a window into the diagnostics of devastating brain disorders
such as neurodegenerative diseases. Hybridization-based approaches such as microarrays have been
widely used as technology over the past decade to explore the gene expression profiling that represents an
efficient approach to quantifying thousands of transcripts. The method starts with reverse transcription of
complementary DNA (cDNA) from RNA substrates and afterwards the samples are inserted into the
array prior the analysis, such as differential gene expression. More recently, RNA-Seq and next-
generation sequencing platforms have emerged as alternative approaches for gene expression profiling,
providing powerful hybridization-free approaches that allow massive parallel mapping sequenced
fragments of cDNA. Undoubtedly, microarrays have been overshadowed by high-throughput sequencing
with RNA. The main difference among the two methods is that the latter allows for full sequencing of the
whole transcriptome compared to the predefined transcripts through hybridization performed by
microarrays, providing higher specificity and sensitivity to detect novel transcripts. Moreover, RNA-Seq,
as a state-of-the-art technique, is accomplished through a selection of subsets of RNAs from a total RNA
pool and secondly reverse transcription is performed to obtain a cDNA library, contributing to significant
challenges on full-length transcript structure identification [38]. Moreover, the inability to distinguish
between distinct transcript isoforms is a weakness of this approach. Surely, microarray data analysis for
transcriptome profiling can be confused with adaptations to probe hybridization sensitivity between array
platforms, while the development of probes for unknown sequences is not applicable and the detection
and accurate quantification of limited expressed transcripts proves a difficult issue. In order to
accomplish reliable meta-analyses for the interpretation of multiple independent datasets, updates to the
human reference genomes should also be considered [11]. cDNA sequencing can also be executed using
the directional RNA-Seq technique that provides massive knowledge of reads. The latter is useful for
revealing new splicing events involved in dissecting the complexity of the disorders. Knowledge of
descriptive data between these approaches is extremely important to uncover the very complex scenario
caused by neurodegeneration in the context of these highly progressive disorders. A better understanding
of the aspects of each methodology will help identify specific targets at the appropriate stages of
particular diseases for effective and highly selective therapeutic interventions.

Metabolomics is the latest systems biology approach that offers great potential for diagnosing and
predicting neurodegenerative diseases by measuring the levels of individual metabolites simultaneously
in clinical and biological samples, discovering reliable biomarkers as well as developing effective
therapeutic interventions. The advantage of this powerful methodology is based on its ability to
demonstrate qualitative and quantitative changes of a defined set of metabolites which are also dynamic
with each other, reflecting changes in multiple functional and regulatory networks [39]. Quantitative
measurements of the human metabolites can be performed either by mass spectrometry (MS) or nuclear
magnetic resonance spectroscopy, two powerful analytical platforms utilized also for detection and
structural characterization of molecules. MS is a destructive technique that provides high sensitivity,
selectivity, flexibility and the ability to analyze a wide range of metabolites providing quantitative data.
Combination with chromatography techniques such as liquid chromatography, gas chromatography or
capillary electrophoresis is essential for sample separation prior to mass spectrometer injection. This step
is used as multiple executions to obtain a sufficient number of samples and increases the analysis time
along with the selection of the ionization approach such as electrospray ionization (ESI) or matrix-
assisted laser desorption ionization (MALDI) [40].
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Figure 2. Overview of different omics techniques in biomarker discovery. A) Schematic
categorization of omics technologies, their corresponding analysis targets, and
assessment methodologies. B) A typical integrated omics workflow showing input
datasets, processing approaches, cluster classification and data export.

Nuclear magnetic resonance spectroscopy-based metabolomics, on the other hand, is a non-
destructive, low-cost approach that provides detailed information on molecular structure. Cryogenic
probes and high-field magnets are used during sample quantification, however, this methodology is no
less sensitive to low molecular weight metabolites [41]. As the brain is highly dependent on glucose,
which consumes about 20% of the total energy derived from glucose, cerebral hypometabolism and
abnormalities associated with reduced glucose utilization can be observed with this approach. Plasma and
CSF metabolomics studies in patients with MCI and AD showed an effect on ketone bodies to maintain
energy homeostasis, while analysis of the metabolic network of the first group showed changes in lipid
metabolism, mitochondrial ketone bodies and tricarboxylic acid cycle. On the other hand, AD individuals
indicated metabolic alterations associated with neurotransmission and inflammation as well as in TCA
cycle and lysine metabolism [42]. The glycerophospholipid pattern predominately altered in AD cortex
with increased NAA levels while mitochondrial dysfunction and aspartate metabolism correlated with
dementia and AD pathology have been observed in the frontal cortex from 21 AD and 19 CN in a

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1813-1832.



1822

metabolomic study using UPLC-HILIC-MS and ionKey/MS [43]. Cerebellum, middle frontal gyrus and
inferior temporal gyrus analysis from 14 AD, 14 CN, and 15 asymptomatic patients revealed global brain
UFA perturbations and region-specific alterations in patients with AD. Moreover, reduced linoleic acid,
linolenic acid and arachidonic acid within the middle frontal gyrus and elevated levels of
docosahexaenoic acid were observed, evidence that may be indicated as peripheral threshold fingerprints
associated to AP plaques, tau tangles, and cognitive decline [44]. Using ultra performance liquid
chromatography-tandem mass spectrometry alterations in 17 metabolites in the methionine cycle were
depicted in AD plasma and CSF samples [45]. Moreover, the levels of sphingomyelins and ether-
containing phosphatidylcholines were found altered in a cohort consisting of 732 fasting plasma samples
from an ADNI-1 pool [46]. In another lipidomic study using a high-resolution mass spectrometer,
polyamine metabolism, sphingolipid transport and saturated fatty acid biosynthesis were found altered in
AD plasma samples with parallel diminution of ceramides and phosphocholines [47]. Lastly, 3-
hydroxypalmitoleylcarnitine, lysoPC and specific amino acids such as histamine, citrulline, and
nitrotyrosine were indicated as a well-defined metabolic framework in analysis of aMCI/AD plasma
samples by UPLC-MS [48].

The starting point for implementing an integrated analytical approach is the development of the
appropriate protocols that includes a sequence of steps through which biological samples are processed
and analyzed measurements (Figure 2B). These biological protocols derive key features from existing
methods found in conventional testing procedures performed in clinical practice. All the steps that will be
able to support the process are the ones that will determine its specifications in terms of design and
functionality [49]. Through the detailed modeling of the individual experimental phases, it is possible to
implement an efficient computational tool that achieves complete automation of the experimental process
with high accuracy of the produced results. Initially, an important step is to normalize the data values to
control all samples if the expression values from different experiments are comparable. The results
cannot be taken into account using incorrect normalization or inflated false positives. Further steps are the
supplementary values for the absent expression values, the adoption of a common nomenclature and the
total number of reads, along with the deletion of samples having similar identifiers and the finding of
differentially expressed genes between the control and the test state [50]. Statistical approaches such as
signal-to-noise ratio, fold-change, and correlation coefficient are usually followed to unravel the
differentially expressed molecules.

Focusing on pathway analysis methodologies, over-representation analysis can derive a model
which is based on genomics data and describes process complexity. The basic premise of a Functional
Class Scoring (FCS) analysis is that in addition to large changes in gene expression, smaller changes are
important whose component significantly affects the condition of the pathway [51]. Three steps comprise
this approach, starting with the calculation of statistic at the gene level as well as in the general
methodology. Compilation of individual statistics from the genes of each pathway into a pathway-level
statistic is following, a process which is equivalent to selecting statistics at the gene-level set. Lastly, a
statistical evaluation of each pathway should be performed based on the null hypothesis adopted.
Furthermore, the standard hypothesis of a Pathway Topology Based Analysis is that the interactions
contained in the pathway topology are important in studying the correlation of changes that occur
between parts of a pathway, addressing some of the limitations of previous methods. These interactions
follow the same general methodology except for the calculation of statistics at the genome level where
the topology of the whole pathway is used [52]. These approaches provide information on the nature of
their members’ interaction, which allows different weights to be assigned to each gene depending on the
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alterations that occur in each individual’s the expression and the effect it has on the condition of the entire
pathway. In addition, different biological states may correspond to different interactions between the
same genes. Knowledge of the interactions allows the approach to be able to distinguish the two states
which by considering only the genes and their expression would be observed identical. Among the key
limitations can be pointed out that these methodologies can determine whether there is an enrichment of
the pathway without addressing the exact time point of this specific enrichment as well as they do not
take into account pathway correlations to detect possible interactions among them (Table 1). The
Subpathway-GM method is one approach of indentifying biologically interesting metabolic pathways by
integrating information from genes and metabolites, as well as specifying their location within the
topology of a pathway. The method incorporates data sets from different omics related to the disease’s
condition and studies in depth the respective enzymatic networks within the metabolic pathway [53]. In
the case of irreversible reactions, a substrate points to the corresponding enzyme while an enzyme points
to the corresponding product. In the case of reversible reactions, the opposite directions may occur. The
Topology Enrichment Analysis detects correlations between genes within enriched biologically important
pathways. The method extracts linear and non-linear sub-paths which are ultimately scored using specific
criteria for specialized data as well as for case-control studies [54].

Table 1. Omics analytical methods and findings in AD and PD.

Method type Disease  Highlights Reference

Genomics and AD new genes/loci associated with late-onset disease ~ Yan et al. [13]
transcriptomics progression, (NME8, FERMT2, PTK2B, CASS4,

analysis DGS2)

genome-wide AD new risk loci (FRMD4A, TP53INP1, IGHV1-67) Escott-Price et al. [14]

association study

genome-wide AD late-onset AD associated loci (BIN1, CD2AP, Van Acker et al. [16]
association study PICALM, PLD3)
genome-wide AD single nucleotide polymorphisms related to late-  De Roeck et al. [17]
association study onset disease progression (ABCA7, CD2AP,

CD33, PLD3
whole genome and AD complement response (CLU, BCA7, CD33, Reitz et al. [18]
whole exome CD2AP, EPHAL), inflammatory cascade
sequencing (EPHAL, INPP5D)
whole genome and AD new risk loci related to early-onset progression Bellenguez et al. [19]
whole exome (SORL1, R4H7)
sequencing

Continued on next page
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Method type Disease  Highlights Reference
transcriptome-wide AD accumulation of abnormal neuritic plaques, Ciryam et al. [20]
association studies synaptic transmission, endocytic APP trafficking,

immune response and apoptosis (CLU, PTK2B,

and CR1)
genome-wide AD PARK-SYNJ1, PARK-DNAJC6, PARK- Klein et al. [34]
association study FBXO7, CHCHDZ2, GBA
meta-analysis of AD MAPKS, CDC42, NDUFS1, COX4l1, SDHC Chietal. [35]
multiple gene and miR-126-5p, miR-19-3p, miR-29a-3p, lipid
expression arrays metabolism and mitochondrial dysregulation
datasets
transcriptome-wide AD 66 risk genes with predicted expression or Li et al. [36]
association study splicing levels (SNCA, CLASP2, TMEM175,

GPNMB, CTSB, CAMLG, and NUDT14)
genome-wide PD familial autosomal dominant PD (a-synuclein, O'Hara et al. [29]
association study tau and LRRK?2)
transcriptomics/meta  PD signaling pathways and protein-protein Kelly et al. [62]
analysis brain interaction networks (REST as an upstream
samples regulator)
transcriptomics/meta  PD changes in dopaminergic neuronal transcription,  Mariani et al. [63]
analysis brain NPTX2, DEFA3, DEFAL
samples
frontal cortex AD mitochondrial dysfunction, aspartate metabolism  Paglia et al. [43]
metabolic profiling variation
brain tissue metabolic ~ AD dysregulation in the metabolism of unsaturated Snowden et al. [44]
profiling fatty acids
plasma and CSF AD changes in the methionine cycle (homocysteine,  Guiraud et al. [45]
metabolic profiling S-adenosylmethionine, 5-methyltetrahydrofolic

acid)
plasma metabolic AD alterations in sphingomyelins and ether- Toledo et al. [46]
profiling containing phosphatidylcholines
plasma metabolomics AD alterations in 3-hydroxypalmitoleylcarnitine and ~ Mapstone et al. [48]

lyso phosphatidylcholines
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5.  Computational analysis and dynamic network models in ND

Computational biology and bioinformatics provide important assistance in biomedical research
for the analysis, clustering and validation of molecular and clinical indications, with the aim of
prognostic evidence, diagnostic markers identification and efficient treatment. The development of
high-throughput methodologies in accordance with state-of-the-art infrastructure and powerful tools
is highly important, whereas the establishment of bioinformatics platforms for data pre-processing
can support the storage and integration of clinical data, combination of up-to-date biomedical
knowledge with analytical pipelines and therapeutic development [55,56]. A computational
workflow for biomarker extraction is depicted in Figure 3. The proposed workflow consists of three
stages, namely the: (i) data curation stage, (ii) biomarker extraction stage, and (iii) validation stage.
The data curation stage involves automated functionalities for the detection of similarities among the
input medical data using covariance and correlation-based scores, as well as, functionalities for
outlier detection using both univariate (e.g., the interquartile range) and multivariate (e.g., the
isolation forests and the elliptic envelopes) methods and data standardization. In addition, the data
curation stage eliminates any data incompatibilities that are present within the data structure, as well
as, resolves data format issues that obscure data management and analysis [57]. The biomarker
extraction stage is then applied on the curated data and involves functionalities for: (i) the definition
of the target feature (i.e., the feature of interest), (ii) the application of class imbalance handling
methods by randomly down sampling the majority class (i.e., the group of controls) with replacement,
given a specific downsampling ratio, and (iii) the application of feature selection methods, such as,
the False Correlation Based Feature (FCBF) selection algorithm or feature ranking methods, such as
false detection rate (FDR) methods based on ANOVA scores, and the Information Gain (IG), among
others, to identify prominent features (biomarkers) that are highly associated with the pre-defined
target feature and less associated among them. The prediction performance of the extracted
biomarkers is validated against the performance of existing biomarkers in the validation stage, where
supervised machine learning algorithms are applied, to yield explainable and robust Al models for
disease prediction and patient risk stratification, among others [58].

Medical data

Dat
Similarity detection Outlier detection aa
Data standardization

curation

Detection of incompatibilities and data format issues

Curated
data

)

Definition of the Class-imbalance handling using random
target feature downsampling with replacement
Biomarker
extraction Application of feature selection Application of feature ranking
methods methods

I biomarkers

) {

Application of supervised machine Stratified k-fold cross-validation

Validation learning algorithms using the
extracted biomarkers as input

Robust disease
prediction models

Final decision-making process

[

Figure 3. A computational workflow for biomarker extraction.
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Another method for the identification of biomarkers, based on bioinformatics approaches is
through the estimation of the protein-protein interaction affinity (PPIA) from gene expression data
and further identification of a set of protein-protein interactions and single proteins as network
biomarkers for diagnosing/prognosticating diseases. Firstly, PPIA can be approximated by the law
of mass action. Then a model can be developed to indicate a set of PPIAs and single proteins as
network biomarkers, where theoretically each class or cluster of samples is depicted by an ellipsoid.
The selection of minimal numbers of PPIs and proteins can be extracted according to this process
to maximize the distance between different ellipsoids [59]. The "Expression Data UpStream
Analysis” (EDUSA), an innovative bioinformatics approach, has been developed for the
compelling analysis and categorization of the genomic pattern to assess a coherent explanation of
the PD mechanism, revealing the different levels of disease progress by summarizing data within a
single or multiple annotation [60]. As an example of EDUSA disease-oriented genomic expression
profiling data analysis, the methodology begins with sample collection, the analysis of
differentially expressed genes is the second step, followed by the categorization of over-
represented biological families using the Expression Analysis Systematic Explorer software as well
as the depletion of repeated groups applied to conjugated gene clusters and terminates by defining
a hierarchy of interactions between processes.

The advantages of this highly promising process may include the rapid identification of
pathways affected by disorder through tissue samples taken from both patient and non-PD groups.
Transcriptomic data related to neurological disorders have been also provided though a web portal
tool that included annotations to each study for in-depth investigation [61]. Moreover, a meta-
analysis approach was proposed to observe altered gene expression in PD brain microarrays
datasets as well as to compare these profiles with AD datasets, noting the similarities and cross-
talk between PD and AD differentially expressed genes in the same direction and pathways [62].
Another software called Transcriptome Mapper (TRAM) has been used in brain PD and microarray
data from healthy individuals, and meta-analysis has also been performed to determine changes in
dopaminergic neuronal transcription by integrating multiple datasets from independent trials.
Deregulation of characteristic genomic loci and regions involving neurodegenerative functional
pathways as well as genes and non-coding RNA transcripts can be ascertained by this methodology,
while genetic signatures with effective overexpression in substantia nigra like NPTX2, DEFA3 and
DEFA1 were reported [63]. Modifying known cellular pathways and investigating molecular
processes could verify system-level variations in omics datasets, and to address this issue, a variety
of pathways and approaches can be extracted from known databases such as KEGG (Kyoto
Encyclopedia of Genes and Genomes), Gene Ontology Resource, Reactome and BioCarta [64].
PANTHER and NCI-PID are also common pathway databases, while other complementary
methods follow network and GO analysis. Omics-based pathways were clustered into different
groups, while an over-representation analysis related to abundance evidence derived from omics
datasets were depicted and GSEA (Gene set Enrichment Analysis) limited the need to describe a
significant threshold. Network Module-based Pathway Analysis (NMPA) uses algorithms to
explore prior knowledge from intracellular networks as well as determine sub-network regions and
correlate them with common pathways. In addition, Network Topology-based Pathway Analysis
(NTPA) methodology utilizes molecular network mapping to achieve direct quantification of
pathway mappings and multiplicity of interconnections [65]. For each of these groups of pathway
analysis a variety of software applications can be provided and substantial and visible results can
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be extracted among them DAVID and GOToolBox over-representation analysis tools. Non-
topology-based approaches, known as gene set analysis techniques, should be highlighted
including either the overpresentation analysis followed by EASE, Onto-Express and WebGestalt or
the functional class scoring methods such as GlobalTest, GSA, PADOG, GSEA and FunCluster [66].
Additionally, PWEA, PathNet and ToPASeq, along with FunMOD, have been developed and can
be used for network topology- and network module-based pathway analysis in an attempt to
include all this important knowledge in the analysis. A crucial parameter could be also the
selection of the appropriate pathway process that is highly related to the prior computation of the
modified expression pattern for the individual molecular index within each omics dataset [67].
Furthermore, a detailed pathway analysis of genome wide association studies and the bias of
sequencing results related to the related imbalance and amount of gene sets should be noted. In an
effort to distinguish a PD-related modified molecular network, targeted software tools can be
included either for network disruption analysis or for causal reasoning clarification, while these
strategies are able to identify the regulatory network involved at a relevant biological level as well
as regulatory linkages between genes or protein cascades. These tools are Whistle and SiGNet for
causal reasoning and data analysis or GenePEN, BioNet/HEINZ and ClustEx for network
disturbances study [23]. However, for the categorization or clustering of diseased subfamilies,
machine learning for multilevel predictive modeling and high-dimensional data are extremely
necessary. Computational approaches, following machine learning models, may give the
opportunity to delineate the power of correlations between variables of interest or responses to
intervention. In order to predict specific clinical outcomes or diagnostics phenotypes model-based
and model-free approaches may be assessed. The application of model-based methods is highly
dependent on the a priori statistical statements, such as determining the relationship between
variables and model-specific assumptions associated with the process probability distributions
while model-free techniques have the capacity to construct non-parametric representations using
machine learning algorithms with fewer assumptions [68]. In addition, a variety of known software
tools can be included for machine learning analyses of omics data that provide pathway
categorization and visualization. Typical examples are Limma and RankProd, which are oriented
towards ranking and feature selection, ArrayMining for multipurpose machine learning analysis
and GGobi, which helps with visualization of low-dimensional data. WebGestalt and ToppGene
can also examine the regulatory characteristics of PD-related genes, can dissect the global
landscape mapping of molecular interactions, and unravel specific key genes with a highly
regulatory role in PD for further analytical investigation [69].

6. Conclusions

The continued progression of high-throughput approaches helps to increase the reproducibility
and the interpretation of biomedical data and results. In neurodegenerative disorders such as AD
and PD, integrated omics methods and network-based analyses play a significant role in the
discovery of new biomarkers, the analysis of disease states and the validation of potential
therapeutics. Biological pathways analysis, including a set of computational tools, is used to
extract knowledge from data resulting from multiple sequencing techniques, creating important
information that attempts to describe the underlying biological processes. Through these
approaches, the structure of the interactions that take place in neuronal environments and the
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response to possible disturbances can emerge, strengthening the data agreement with the
experimental findings.
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