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Abstract:  In this paper, optimized radial basis function neural networks (RBFNNs) are employed 

to construct a sliding mode control (SMC) strategy for quadrotors with unknown disturbances. At 

first, the dynamics model of the controlled quadrotor is built, where some unknown external 

disturbances are considered explicitly. Then SMC is carried out for the position and the attitude 

control of the quadrotor. However, there are unknown disturbances in the obtained controllers, so 

RBFNNs are employed to approximate the unknown parts of the controllers. Furtherly, Particle 

Swarm optimization algorithm (PSO) based on minimizing the absolute approximation errors is used 

to improve the performance of the controllers. Besides, the convergence of the state tracking errors 

of the quadrotor is proved. In order to exposit the superiority of the proposed control strategy, some 

comparisons are made between the RBFNN based SMC with and without PSO. The results show that 

the strategy with PSO achieves quicker and smoother trajectory tracking, which verifies the 

effectiveness of the proposed control strategy. 

Keywords: quadrotor; sliding mode control (SMC); radial basis function neural network (RBFNN); 

particle swarm optimization (PSO); disturbance 

 

1. Introduction  

Quadrotors have been widely used in military, photography, navigation and other application 

fields due to their properties of economy, portability and flexibility. Comparing with helicopter or 

airplane, quadrotors are with simpler structure, so they are more available for engineering [1]. 
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However, quadrotors are under-actuated systems, and how to design appropriate controllers for them 

have been attracting substantial attention. 

Sliding mode control (SMC) is a nonlinear robust control method, which is considered to be one 

of the effective methods against uncertainties and disturbances [2]. In [3], the principle of sliding 

mode control was introduced and specific control strategies were designed for a class of 

underactuated systems. In [4], comparisons were made between SMC and feedback linearization 

method, the results indicated SMC was more robust for noises and disturbances. In [5], the authors 

divided a quadrotor into fully actuated and underactuated subsystems, and second order SMC was 

employed for the design of the underactuated subsystems, whose coefficients were obtained by 

Hurwitz stability. In [6,7], terminal sliding mode control (TSMC) was designed for quadrotors, with 

which faster convergence of trajectory tracking was achieved. In [8], sliding mode observers were 

used to estimate all states of the quadrotor through the measurable attitude and position of the 

quadrotor, and PID SMC was employed to guarantee the convergence of the trajectory tracking. An 

integrated sliding mode control (ISMC) was proposed in [9], which divided the quadrotor model into 

inner and outer loops. The outer loop mainly generated reference signals for the roll and pitch angles, 

and the inner loop achieved the position and attitude tracking with ISMC. In [10], model-free TSMC 

was designed, where the model-free method guaranteed that the tracking error of the quadrotor was 

bounded, while the terminal sliding mode guaranteed the convergence of the error. In [11], adaptive 

SMC was proposed to realize finite-time stability of a quadrotor through self-tuning. In [12], a super 

twisting control algorithm was proposed to enforce the sliding mode of the attitude of a quadrotor on 

the desired manifold, therefore, the robustness of the attitude tracking was guaranteed. In order to 

realize the tracking of uncertain dynamical systems, an adaptive nonsingular fast terminal 

sliding-mode control (ANFTSMC) algorithm was proposed in [13]. In [14], the ANFTSMC was 

applied to a quadrotor which was subject to modeling uncertainties and unknown external 

disturbances. In [15], disturbance observer based adaptive SMC was applied to a quadrotor subjected 

to parametric uncertainties and external disturbances, the effectiveness of the control was tested by 

numerical simulations and experiments. In [16], the authors presented an adaptive dynamic surface 

SMC for a quadrotor, they used nonlinear observer to estimate the states of the quadrotor, and used 

minimum learning technology to reduce computational burden, the controller was designed to ensure 

all signals of the system were uniformly ultimately bounded. In [17], the position loop was 

controlled by backstepping method, and the attitude loop was controlled by the fast TSMC, both of 

these methods were combined with adaptive technology to estimate the controller parameters, and 

upper bounds of the uncertainties and disturbances.  

Neural network has been developed rapidly in recent years, and it has been introduced into the 

control of quadrotors to deal with nonlinearities and uncertainties. The authors of [18] combined 

neural networks with SMC, by adjusting the parameters of the sliding surface with back propagation 

algorithm, the overshoot of the system response and the steady state error were effectively reduced. A 

PID neural network control strategy was proposed in [19], where proportional, integral, and 

differential neurons were defined to construct a network, by which control inputs were designed to 

achieve quicker response of a quadrotor. Adaptive radial basis function neural networks (RBFNNs) 

were employed in [20] for the control of a quadrotor. In [21], RBFNN was used to generate the 

control signals of a quadrotor, by which the characteristic roots of the quadrotor system located in the 
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left half plane, so the stability of the system was guaranteed. Backstepping design was combined 

with neural network in [22] to realize the control of a quadrotor with unknown input saturation. 

In [23] a learning-based scheme with neural networks was used to obtain the optimal control law for 

a quadrotor with time-varying and coupling uncertainties, the stability of the closed-loop system was 

proved by theory. The authors of [24] proposed RBFNNs based proportional derivative-sliding mode 

control (RPD-SMC) for the outer loop for position tracking, and employed the robust integral of the 

signum of error (RISE) to guarantee attitude convergence. 

Optimization algorithms have been gradually employed to improve the performance of neural 

networks. Particle swarm optimization (PSO) algorithm base RBF network was designed in [25] to 

get better PID parameters. The authors of [26] used genetic algorithms to optimize RBFNNs for 

more accuracy modeling. In [27], genetic algorithm was also used for optimizing the 

hyperparameters of a two hidden layer neural network, by which the training and running time of the 

neural network was reduced. However, using the optimized neural networks in SMC to realize robust 

control of quadrotors has been rarely considered so far.  

This paper aims to improve robust tracking performance of a quadrotor with unknown 

disturbances. SMC is employed to design the position and attitude control laws in the inner and outer 

loops, RBFNNs are introduced to approximate the unknown parts of the control laws. The weights of 

the RBFNNs are updated by designed adaptive laws. Besides, the center and the width values of the 

RBFNNs are optimized by PSO. The proposed strategy can guarantee the stability and robustness of 

the controlled quadrotor.  

The rest of this paper is organized as follows: the dynamics model of a quadrotor is built in 

section 2. In Section 3, the position and attitude controllers are designed for the quadrotor based on 

RBFNN-SMC. PSO is conducted in section 4 to optimize the center and the width values of the 

RBFNNs. Simulation results are introduced in Section 5. Finally, Section 6 concludes the paper. 

2. Dynamic modeling of a quadrotor 

The physical structure of a quadrotor is presented in Figure 1. As the figure shows, there are two 

coordinate systems to describe the motion of the quadrotor [28], one is the body coordinate system, 

and the other is the inertial coordinate system. The transformation of the two coordinate systems can 

be realized by a rotation matrix. It depends on the three attitude angles of the quadrotor, that are the 

roll angle  , the pitch angle  , and the yaw angle  . All the attitude angles are bounded, the roll 

angle and the pitch angle belong to ( )- /2, /2  , and the yaw angle is constrained by ( )- ,  . 
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Figure 1. Structure Diagram of a Quadrotor. 

Based on the attitude angles, the rotation matrix 
E

BR  which transforms the position of the 

quadrotor in body coordinate system to inertial coordinate system can be expressed as (2.1). 

 
E

B

C C C S S S C S S C S C

R C S C C S S S S C C S S

S S C C C

           

           

    

− + + 
 

= + − +
 
 − 

 (2.1) 

where 𝐶 = 𝑐𝑜𝑠 ,𝑆 = 𝑠𝑖𝑛 . 

Let x, y, z be the position variables of the center of gravity of the quadrotor along the three axes 

of the inertial coordinate system. Define [ , , ]Tw x y z= , then from Newton's Second Law of Motion, 

one can gets that 

  10 0 [0 0 ]
TE T

Bmw R u mg f= − −  (2.2) 

where m is the mass of the quadrotor, g is the gravitational acceleration, u1 is the lifting force 

generated by the rotation of the propellers, and f is the air friction during the flying of the quadrotor. 

Owing to external disturbances existed, (2.2) should be rewritten as 

  10 0 [0 0 ]
TE T

B pmw R u mg f d= − − +  (2.3) 

where dp is the unknown external disturbance. 

Suppose that the quadrotor is a symmetric rigid body, and let p, q, r be the angular velocity of 

the quadrotor's rotation about the three axes of the body coordinate system. Define [ , , ]Tp q r = , 

then based on the Newton–Euler equation, one can obtain that 
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 ( )+
d

J J M
dt

   =  (2.4) 

where 
( , , )x y zJ diag I I I=

, is the diagonal matrix of moment of inertia, , ,x y zI I I  denote the moment 

of inertia of the three axes, M is the total rotation torque. By considering the components of M , 

(2.4) can be rewritten as 

 ( ) + +i f p r

d
J J M M M d

dt
  = −  + +  (2.5) 

where 
iM  represents the input torque, which is supplied by the rotation of the four propellers. fM  

represents the air friction torque, pM  is gyroscopic effect on the quadrotor, and 
rd  denotes the 

unknown external disturbance. 

Suppose the quadrotor is flying in small attitude angles, one has that p = , q = , r =  

and p = , q = , r = , the state equations of the quadrotor dynamics can be derived from (2.3) 

and (2.5) as 
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 (2.6) 

where ki (i = 1, …, 6) are the air resistance coefficients, l represents the distance of each propeller to 

the center of the quadrotor, 
2 3 4, ,u u u represent the input torques of roll, pitch and yaw respectively, 

C is the moment-force proportional coefficient, 
xd , 

yd , 
zd , d

, d , d  denote the unknown 

disturbances to the corresponding states, 
rJ denotes the inertia of the propeller, 

2 4 1 3r    = + − −  is the total residual speed of the propellers, with 
i  being the speed of the ith 

propeller, i = 1, …, 4. The relationships among 
i  and 

iu , i = 1, …, 4, are formulated as (2.7). 
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where b and k are thrust and drag coefficients, respectively. 

3. Flight control design 

This section introduces the design of sliding mode control with radial basis function neural 

networks. The control structure is shown in Figure 2. 

 

Figure 2. Control Structure of the Quadrotor. 

3.1. Position control 

At first, rewrite the state equation of the quadrotor’s position as follows. 
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with 
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From the above definition, one can see that all the control inputs ux, uy, uz are corresponding to 

the lifting force u1 because the quadrotor is an underactuated system. In the design showing below, 

the control input uz will be employed to derive the needed force u1, and ux, uy are auxiliary inputs to 

obtain the desired roll and pitch angles. 

As SMC is employed for the control design, three sliding surfaces are defined here as (3.2) - 

(3.4). 

 
1 1( ) ( )d d x xs c x x x x ce e= − + − = +  (3.2) 

 2 2 2( ) ( )d d y ys c y y y y c e e= − + − = +  (3.3) 

 
3 3 3( ) ( )d d z zs c z z z z c e e= − + − = +  (3.4) 

where  ci > 0 i = 1, 2, 3, are design coefficients, 
dx , 

dy , 
dz  are the desired position coordinates 

of the quadrotor, 
x de x x= − , 

y de y y= − , 
z de z z= −  are the tracking errors between the actual and 

the desired trajectories. 

According to the principle of SMC, if the control inputs are designed as follows, 

 
1 1 1 1 1 1 1= ( ( ) )x d d x

x
u m c x c x x k s sign s d

m
 − + + + − − −  (3.5) 

 2 2 2 2 2 2 2= ( ( ) )y d d y

y
u m c y c y y k s sign s d

m
 − + + + − − −  (3.6) 

 
3 3 3 3 3 3 3= ( ( ) )z d d z

z
u m c z c z z g k s sign s d

m
 − + + + + − − −  (3.7) 

with 0i   and 0i   being the design parameters. By the above control inputs, the derivative of 

is will satisfy that ( )i i i i is s sign s = − − , i = 1,2,3, which implies the convergence of the tracking 

errors. 

Since there are unknown disturbances in the designed control inputs, we introduce RBFNN to 

approximate the disturbances. Rewrite the expressions (3.5) - (3.7) as 

   
1 1 1 1 1 1( + ( ))xu m Q s sign s  = − −  (3.8) 

 2 2 2 2 2 2( + ( ))yu m Q s sign s  = − −  (3.9) 
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3 3 3 3 3 3( + ( ))zu m Q s sign s  = − −  (3.10) 

where Qi is obtained from a RBFNN, and 
i  represents the approximation error which is bounded, i 

= 1,2,3. The structure of a 3 layers RBFNN is shown in Figure 3.  

The three layers of the RBFNN are input layer, hidden layer and output layer [29]. The 

mappings from the input layer to the hidden layer are nonlinear, while the ones from the hidden layer 

to the output layer are linear. The inputs of the RBFNN are the desired variable D and its derivatives

D  and D , and the error between actual variable and the desired one e , as well as its derivative e . 

Generally, Gaussian functions are selected to form the nonlinear mappings of a RBFNN, then 

the output of the ith node of the hidden layer can be expressed as 

 𝛷𝑖 = 𝑒𝑥𝑝( −
∥𝜂−𝜊𝑖∥

2

𝜎𝑖
2 )  (3.11) 

where 
i  is the output of the hidden layer, = , , , ,e e D D D     is the input vector, 

i  is the center 

of the ith Gaussian function, and 
i  is the corresponding width, i = 1, …, 5. Since the output Q is a 

liner function of 
i , it can be written as 

 𝑄 = ∑ 𝑊𝑖
5
𝑖=1 𝛷𝑖 (3.12) 

where 
iW  is the weight of the RBFNN, i = 1, …, 5. 

 

Figure 3. The Structure of a RBFNN. 
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Because the weights of the RBFNNs are unknown for the approximation task, we should 

estimate their values online. By denoting ˆ
iW  as the estimation of 

iW , i = 1, …, 5, the estimated 

output of the RBFNN Q̂  can be obtained as 

 �̂� = ∑ �̂�𝑖𝛷𝑖
5
𝑖=1  (3.13) 

Employing ˆ
iQ , and considering the robustness of SMC, the position controllers are designed as 

 1 1 1 1 1
ˆ( ( ))xu m Q s sign s = − −  (3.14) 

 2 2 2 2 2
ˆ( ( ))yu m Q s sign s = − −  (3.15) 

 3 3 3 3 3
ˆ( ( ))zu m Q s sign s = − −  (3.16) 

The proof of the controllers’ stability, and the adaptive laws of the weights ˆ
iW , i = 1, …, 5, will 

be presented later. Based on the above controllers, the lifting force u1 and the desired roll and pitch 

angles are obtained as 

 1=
cos cos

zu
u

 
 (3.17) 

 
cos sin

arctan( )
x d y d

d

z

u u

u

 


+
=  (3.18) 

 
cos ( sin cos )

arctan( )
d x d y d

d

z

u u

u

  


−
=  (3.19) 

where 
d ,

d ,
d are the desired roll, pitch and yaw angles, with 

d  being given by the external 

order. 

3.2. Attitude control 

The purpose of attitude control is to guarantee the attitude angles converge to the desired ones. 

The convergence of   and   guarantees the tracking errors ex, ey move to zero quickly. 

  Similarly, the sliding surfaces are defined as (3.20) – (3.22) 

 4 4 4( ) ( )d ds c c e e    = − + − = +  (3.20) 
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 5 5 5( ) ( )d ds c c e e    = − + − = +  (3.21) 

 6 6 6( ) ( )d ds c c e e    = − + − = +  (3.22) 

where ci > 0, i = 4,5,6, are design coefficients, 
de  = − , 

de  = − , 
de  = −  are the 

tracking errors between the actual and the desired angles. 

The attitude control laws of the quadrotor are designed as 

 r
2 4 4 4 4 4 4( ( ) )

y zx
d r

x x x

I II Jpl
u c e qr k s sign s q d

l I I I
    

−
= − + − + − − − −  (3.23) 

 3 5 5 5 5 5 5( ( )+ )
y z x r

d r

y y y

I I I Jql
u c e pr k s sign s p d

l I I I
    

−
= − + − + − − −  (3.24) 

 4 6 6 6 6 6 6( ( ) )
x yz

d

z z

I II
u c e pq k s sign s d

C I I
 


  

−
= − + − + − − −  (3.25) 

with 0i  ,  0i  being the design parameters, i = 4, 5, 6. Based on the above control laws, the 

derivative of si satisfies that ( )i i i i is s sign s = − − , i = 4, 5, 6, which implies the convergence of the 

tracking errors.  

By employing RBFNNs to approximate the unknown disturbances in (3.23) - (3.25), and using 

their estimated output to construct the control laws, we can obtain the attitude control laws as  

 ˆ( ( ))j i i i i iu m Q s sign s = − −  (3.26) 

with j = 2, 3, 4, i = 4, 5, 6. 

In order to realize the control design, the weights of each RBFNN need to be updated. Therefore, 

the following adaptive law is designed. 

 ˆ - iW s=   (3.27) 

with  1 2 3 4 5=
T

W W W W W W  and  1 2 3 4 5=
T

       being the weight and the 

Gaussian function vectors of the used RBFNN. 

Assumption 3.1. The approximation error 
i  is bounded and satisfies that | |i i  , 1, , 6i = . 

Theorem 3.1. With the auxiliary inputs (3.14) – (3.16), and the control laws (3.17), (3.26), and the 

adaptive law (3.27) for updating the weight vector of the used RBFNN, all states of the quadrotor 

system in (2.6) are guaranteed to converge to their desired signals, and the trajectory of the 
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quadrotor can track the given reference. 

Proof. Let ˆ
i i iQ Q Q= − (i =1, … ,6) be the estimate error of the RBFNN’s output, and ˆW W W= −

be the corresponding estimate error of the weight vector. Choose a Lyapunov candidate function [30] 

as 

 
21

,( 1, ,6)
2

T

i iV s W W i= + =  (3.28) 

Take the time derivative of 
iV , one can get 

 

2

ˆ

ˆ ˆ    = ( s ( ))

ˆ    = s | |

T

i i i

T

i i i i i i i

T

i i i i i i i

V s s W W

s Q Q sign s W W

W s W s s

  

  

= +

− + − − − +

 + − − −（ ）

 (3.29) 

Taking the adaptive law (3.27) into (3.29), one can get that 

 2s | |i i i i i iV s s  = − − −  (3.30) 

According to Assumption 1, | |i i  , so 0V   can be guaranteed, which implies that si → 0, i = 

1, … ,6. By the definition of the sliding surfaces, and the characteristics of SMC, the convergence 

of ex, ey, ez, eϕ, eθ and eψ can be guaranteed, which means that all states of the quadrotor system 

converge to their desired signals, and the trajectory of the quadrotor tracks the given reference. 

4. Optimization of the sliding mode controller 

Based on the above control design, the stability of the quadrotor system can be guaranteed. 

However, the influence of the center 
i  and the width 

i  of the Gaussian function 
i , i 

=1, … ,5, cannot be ignored. In this section, particle swarm optimization algorithm (PSO) will be 

used to adjust these parameters offline for better control performance. 

PSO originates from the imitating of bird predation and has the advantages of simple 

implementation and fast convergence. Each bird or particle will carry the training parameters, and 

move according to the situations of itself and the whole group.  

An evaluation function is needed for PSO, which is used to evaluate the position of the current 

particle. Here we choose the sum of absolute errors as the evaluation function, which is shown in 

(4.1). 

 
1

| ( )|
n

e

i

f i
=

=  (4.1) 
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where 
ef  denotes the evaluation function, and ( )i  stands for the error between a sample value 

and the output of the corresponding RBFNN, i = 1, …, n, n is the number of training samples for 

PSO. The training samples are the parts of control inputs which are substituted by RBFNNs in (3.5) - 

(3.7) and (3.23) – (3.25) without disturbances. 

Then, define the number of iterations G and the size N of the particle swarm. Each particle in 

the PSO contains the following information: the current position X, which represents the parameters 

of RBFNN that are needed to be optimized; the moving velocity V, which represents the updating 

rate of a particle position; as well as the particle dimension H, which is determined by the total 

number of the optimized parameters. 

We also define the optimal value of the group as gb, and the optimal value of an individual 

particle as pb. At first, we initialize each pb by the value of the evaluation function at the initial 

position of the corresponding particle, and assign the smallest pb to gb, then update pb and gb by the 

following rules: for each particle, if the value of the evaluation function (4.1) is smaller than the 

value in last iteration, we will assign pb with the value at the current position, otherwise pb will be 

unchanged. And gb selects the smallest pb among all the particles.  

During each iteration, the position value of each particle is brought into the RBFNN to 

approximate the training samples, then the evaluation function can be calculated, by which pb and gb 

can be updated according to the rules mentioned above.  

The updating values of the velocity and the position of a particle are calculated as 

 
1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))i i i i i iv k v k C R pb k X k C R gb k X k+ = +   − +   −  (4.2) 

 ( 1) ( ) ( 1)i i iX k X k v k+ = + +  (4.3) 

where i=1, … , N, C1 , C2 are the learning factors which are generally set to be 2, and R1 , R2 are 

random numbers belong to [0,1].  

In order to improve the global optimization ability of the PSO, an inertia factor ρ and a scale 

factor λ are employed for the velocity and position updating of a particle.  

 
1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))i i i i i iv k v k C R pb k X k C R gb k X k+ =  +   − +   −  (4.4) 

 ( 1) ( ) ( 1)i i iX k X k v k+ = +  +  (4.5) 

Remark: In order to maintain the integrity of the employed RBFNN, the weights of each RBFNN 

are also placed in X for optimizing, but only the center value o and the width value σ are taken as the 

optimization result, since the weight W is estimated by the adaptive law (3.27). 

The parameters of our PSO are listed in Table 1. And the process of PSO is shown in Figure 4. 
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Table 1. Parameters of the PSO. 

Variable Quantity Value/Range 

G The number of iterations 250 

N  Population size 50 

H Particle dimension 15 

o Center value of RBF neural 

network 

[-3,3] 

σ Width value of RBF neural 

network 

0.3 

𝜌 Inertial factor 0.3 

C1,C2 learning factors 2 

λ Scale factor 0.7 

 

Figure 4. The process of PSO algorithm. 
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5. Simulation result 

Some simulation experiments are conducted to verify the effectiveness of the proposed control 

strategy, and the results of the experiments are demonstrated in this section. The parameters of the 

quadrotor model are given in Table 2. And the parameters of the designed sliding mode controllers 

are listed in Table 3. The disturbances for the simulation experiments are considered as follows, 

whose curves are plotted in Figures 5–6. 

 = = 0.5 sin(0.5 )x y zd d d t=   (5.1) 

 = = 0.25 cos( )d d d t   =   (5.2) 

In order to exposit the superiority of the designed sliding mode controllers which are based on 

RBFNNs with PSO(SMC-RBFNN-PSO), some comparisons are made between SMC-RBFNN-PSO 

and sliding mode controllers based on RBFNNs without optimization (SMC-RBFNN). The center 

and the width values of SMC-RBFNN are determined by the experience of the designer. The 

comparison results are shown in Figures 7–10.  

The trajectories of the controlled quadrotor with the two methods, together with the desired one are 

shown in Figure 7. The initial values of the position and attitude of the quadrotor are given in Table 4. 

Table 2. Parameters of the quadrotor model. 

Variables Value Unit 

m 2 kg 

l 0.21 m 

Ix 1.25 Ns2/rad 

Iy 1.25 Ns2/rad 

Iz 2.5 Ns2/rad 

k1,k2,k3 0.1 Ns/m 

k4,k5,k6 0.12 Ns/m 

b 0.5 Ns2 

k 2 N/ms2 

C 1  

Jr 0.2 Ns2/rad 

Table 3. Control Parameters. 

Variables Value 

c1,c2,c3,c4,c5,c6 10 

τ1,τ2 15 

τ3 55 

ξ1,ξ2,ξ3  0.1 

τ4,τ5,τ6  10 

ξ4,ξ5,ξ6  0.1 
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Table 4. The reference position and attitude. 

 Variable Quantity (Unit) Value 

Xd The desire trajectory of the X axis(m) 2*sin (0.1*t) 

Yd The desire trajectory of the Y axis(m)  2*cos (0.1*t) 

Zd The desire trajectory of the Z axis(m) 0.1*t 

[X0, Y0, Z0] Initial positions(m) [0,2,0] 

ψd The desire value of the yaw Angle(rad) 0 

[ϕ0, θ0, Ψ0] Initial angles(rad) [0,0,0] 

 

Figure 5. The curve of disturbances dx, dy, dz. 

 

Figure 6. The curve of disturbances dθ, dϕ, dψ. 
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In order to show more details of the flight trajectories, the position and angle variables of the 

quadrotor are shown in Figures 8–9. It can be seen that both of the control methods can drive the 

quadrotor to track the desired trajectory, but SMC-RBFNN-PSO can achieve quicker convergence of 

all the states. This fact indicates that the center and the width values of the neural networks are 

effectively optimized by the PSO. The desired roll angle and pitch angle are calculated by 

(3.18)–(3.19), which are related to the auxiliary inputs ,x yu u , so the angles   and  with the two 

methods are different, which can be seen in Figure 9. 

 

Figure 7. The flight trajectories of the quadrotor. 

 

Figure 8. The position curves of the quadrotor. 
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Figure 9. The attitude curves of the quadrotor. 

 

Figure 10. The errors of the position variables. 

 Figure 10 shows the tracking errors of the three position variables with the two methods. By 

SMC-RBFNN, the maximum absolute errors of x, y and z are 0.5775m, 0.09m and 0.8676m, 

respectively. And the errors converge to zero at 6.88s, 7.24s and 6.85s, respectively. It can be seen 

from Figure 10 that there are unexpected fluctuations in the position tracking of the quadrotor with 

SMC-RBFNN. However, by SMC-RBFNN-PSO, the quadrotor can track the desired trajectory more 

quickly and smoothly without fluctuation. 
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6. Conclusions 

A RBFNN based SMC strategy with PSO is proposed in this paper for the tracking control of 

quadrotors. Based on the SMC, the position and the attitude controllers can be designed at first. 

However, these controllers cannot be exerted directly because of the unknown disturbances. 

Therefore, the RBFNNs are employed to approximate some items of the control laws. The weights of 

the RBFNNs are updated by adaptive mechanism. Besides, the center and the width values of the 

RBFNNs are optimized by PSO, with which better trajectory tracking performance can be achieved 

for the quadrotor. Simulation results demonstrate the stability of the system and the convergence of 

the states to their desired signals. Also, the comparison results show obvious superiority of the 

proposed SMC-RBFNN-PSO to SMC-RBFNN. 
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