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Abstract: Idiopathic Parkinson’s Disease (iPD) is a common motor neurodegenerative disorder. It 

affects more frequently the elderly population, causing a significant emotional burden both for the 

patient and caregivers, due to the disease-related onset of motor and cognitive disabilities. iPD’s 

clinical hallmark is the onset of cardinal motor symptoms such as bradykinesia, rest tremor, rigidity, 

and postural instability. However, these symptoms appear when the neurodegenerative process is 

already in an advanced stage. Furthermore, the greatest challenge is to distinguish iPD from other 

similar neurodegenerative disorders, “atypical parkinsonisms”, such as Multisystem Atrophy, 

Progressive Supranuclear Palsy and Cortical Basal Degeneration, since they share many phenotypic 

manifestations, especially in the early stages. The diagnosis of these neurodegenerative motor 

disorders is essentially clinical. Consequently, the diagnostic accuracy mainly depends on the 

professional knowledge and experience of the physician. Recent advances in artificial intelligence have 

made it possible to analyze the large amount of clinical and instrumental information in the medical 

field. The application machine learning algorithms to the analysis of neuroimaging data appear to be 

a promising tool for identifying microstructural alterations related to the pathological process in order 

to explain the onset of symptoms and the spread of the neurodegenerative process. In this context, the 

search for quantitative biomarkers capable of identifying parkinsonian patients in the prodromal phases 

of the disease, of correctly distinguishing them from atypical parkinsonisms and of predicting clinical 

evolution and response to therapy represent the main goal of most current clinical research studies. 

Our aim was to review the recent literature and describe the current knowledge about the contribution 
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given by machine learning applications to research and clinical management of parkinsonian 

syndromes. 

 

Keywords: Machine Learning; Parkinsonism; Artificial Intelligence; Parkinson’s Disease; 
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Abbreviations 

iPD: idiopathic Parkinson’s Disease; APS: atypical parkinsonisms; MSA: multiple system atrophy; 

PSP: progressive supranuclear palsy; CBD: corticobasal degeneration; PPS: Parkinson plus 

syndromes; MRI: magnetic resonance imaging; AI: artificial intelligence; ML: machine learning; ROI: 

region of interest; PPMI: Parkinson’s Progression Markers Initiative; RBD: REM Sleep Behavior 

Disorder; CSF: cerebrospinal fluid; HCs: healthy controls; SVM: Support Vector Machine; CI: 

Confidence Interval; DTI: diffusion tensor imaging; QSM: Quantitative Susceptibility Mapping; GRE: 

gradient-echo; SNc: Substantia Nigra pars compacta; CNN: Convolutional Neural Network; AUC: 

area under the curve; ROC: receiver operating characteristic (curve); NMS-MRI: neuromelanin 

sensitive MRI; HD: hypokinetic dysarthria; MCPs: middle cerebellar peduncles; DWI: diffusion 

weighted imaging; ADC: apparent diffusion coefficient; FA: fractional anisotropy; PCA: principal 

component analysis; PSP-RS: Richardson syndrome ; PSP-P: parkinsonian-type PSP; MDS-UPDRS 

III: Movement Disorders Society Unified Parkinson’s Disease Rating Scale part III; PIGD: postural 

instability and gait difficulty; FSSAs: Feature Subset Selector Algorithms; LOLIMOT: Local Linear 

Model Trees; EEG: Electroencephalography; DFA: discriminant function analysis; ANNs: Artificial 

Neural Networks; RF: Random Forests; EL: Ensemble Learning; LASSO: least absolute shrinkage 

and selection operator 

1. Introduction  

Idiopathic Parkinson’s Disease is the most frequent neurodegenerative movement disorder in the 

general population, described for the first time as a “shaking palsy” by Doctor James Parkinson in an 

essay published in 1817. It is mainly caused by a loss of dopaminergic neurons in the substantia nigra 

causing a reduction in dopaminergic input to the striatum [1]. iPD’s clinical hallmark is the onset of 

cardinal motor symptoms such as bradykinesia, rest tremor, rigidity, and postural instability. 

Nevertheless, they only occur when at least 60% of the neurons of dopaminergic circuit have suffered 

irreversible damage [2]. Patient medical history can include other motor (hypomimia, dysarthria, 

dysphagia, sialorrhea, micrographia, shuffling gait, festination, freezing of gait, dystonia, glabellar 

reflexes) and non-motor prodromal features (autonomic dysfunction, sleep disorders and sensory 

abnormalities such as anosmia, paresthesia and pain) and psychological or cognitive deficits (cognitive 

decline, depression, anxiety) [3]. iPD diagnosis is still based on clinical criteria and a definite diagnosis 

is obtained only pathologically [4,5].  Thus, diagnostic process is complex and mainly based on the 

professional knowledge and clinical experience of the physician [6]. 
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When the initial assessment is performed by a movement disorder expert neurologist, the accuracy 

for clinical diagnosis is about 80% [7]. It is currently impossible to obtain greater diagnostic accuracy 

using only clinical criteria as iPD shares some clinical and pathological characteristics with other 

nosological entities, creating the wider spectrum of “parkinsonian syndromes”. The greatest challenge 

is to distinguish iPD from other similar neurodegenerative disorders, “atypical parkinsonisms”, such 

as multiple system atrophy, progressive supranuclear palsy and cortical basal degeneration, as well as 

other neurodegenerative disorders [8]. As atypical parkinsonism, also called “Parkinson plus 

syndromes”, often have a rapid progression and worse prognosis and even iPD in and of itself presents 

variants with different prognosis, it is necessary to identify biomarkers allowing to distinguish between 

these entities [9]. Research efforts are aimed at obtaining an exact and early diagnosis to promptly set 

up an appropriate therapy and inform the patient about the expected disease evolution [10–12].  

The use of Neuroimaging for research purposes is justified by the search within the image data of 

biomarkers, in the form of structural [13–16] and/or functional [10] variations, especially under the 

form of quantitative measurements [17–20], allowing an early identification of Parkinsonian patients 

and an accurate distinction between them and other neurodegenerative motor disorders [21–24]. 

In this context, brain magnetic resonance imaging is routinely performed in the parkinsonian 

diagnostic work-up, yet its role is essentially limited to rule out concomitant brain disorders rather than 

for diagnostic purposes. However, MRI can demonstrate morphological changes supporting the 

diagnosis of full-blown PD and atypical parkinsonian syndromes [25]. Moreover, it is current opinion 

that MRI data of parkinsonian patients contain information about microstructural changes [26] and, 

although they are not visible to the human eye, they could be identified with the use of recent artificial 

intelligence technologies, in particularly using machine learning algorithms. ML consists of algorithms 

capable of generalizing rules or patterns from a labeled set of input data and, using that knowledge, to 

generate predictions or classifications on data not seen before [27–29]. The advantage of applying ML 

algorithms to the biomedical field lies in the ability to process very large datasets, often containing 

numerous and different variables with possibly noisy and redundant information, challenging to 

analyze using a traditional statistical approach [30,31].  

Parkinson's disease is extremely complex and there are many aspects that are not completely clear 

therefore the research is carried out on several fronts, such as genetic, pathological, molecular, clinical 

and radiological and in each of these fields features can be found to be included in the ML algorithms 

to improve diagnosis and implement our knowledge [32,33]. 

In recent years numerous studies, which will be discuss further in detail, have published with the 

purpose of applying an ML-based approach to elaborate morphological and advanced neuroimaging 

data with the aim of identifying biomarkers able to distinguish between parkinsonian patients and 

healthy subjects [34–36], to help clinicians understand the underlined neurodegenerative pathological 

mechanisms [37–41], to differentiate the various subtypes of APS from each other [42–47] and to 

predict prognosis [48–50], clinical evolution [51,52] and response to therapies [53,54].  

Our aim was to review the recent literature and describe the current knowledge about the 

contribution given by ML applications to research and clinical management of parkinsonian syndromes.  

Using Pubmed database we entered in the search engine keywords such as "parkinson disease", 

"parkinsonism", "machine learning", "imaging", "magnetic resonance" and included all articles 

published up to August 2020 in English language that contained these words in the title and/or abstract. 
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This first search highlighted 58 articles and, after reading the abstracts, 22 articles were considered 

compatible with the purpose of our review. The main reasons for exclusion were the application of AI 

to other data, such as genetic or clinical ones, and/or only a marginal use of neuroimaging. 

2. Machine learning and Neuroimaging data 

In recent years, the number of publications concerning the application of AI in the 

neuroradiological field have increased exponentially [55,56].  The power of ML, a particular 

application of AI, lies in the ability to employ and analyze an enormous amount of data, much more 

efficiently than with classical statistical analyzes. Moreover, ML algorithms can learn and improve 

from experience over time [27,28]. Diagnostic images contain numerous information relevant for the 

diagnosis, for understanding the pathological mechanisms and predicting the clinical evolution of 

patients. Much of this information is currently underutilized but still contained in the imaging exams. 

As ML systems can extract wide features datasets within which identify markers and correctly classify 

patients without the need to make a priori selection of characteristics or regions of interest, the interest 

in ML algorithms in diagnostic imaging is rapidly increasing.  

Among the clinical-neuroradiological applications, those concerning neuro-oncology certainly 

represent the greatest number. In particular, several studies have been published on the detection and 

identification of prognostic and predictive markers in adult patients with gliomas [57], in pediatric 

brain neoplasms [58] and in patients with brain metastases [59]. A further field of interest is that of 

multiple sclerosis, in which efforts have been made to automate lesion load calculation and predict 

long-term disability in patients affected by this disease [60]. Finally, machine learning applied to 

imaging has shown promise in the identification of biomarkers of neurodegeneration [61] or 

psychiatric conditions [62], as well as in the study of cerebrovascular pathology [63]. 

3. Role of ML for early diagnosis  

iPD and PPS diagnosis are based on clinical criteria but motor symptoms, whose presence is 

necessary for the diagnosis, become evident only at an advanced disease stage leading to late, and not 

always correct, diagnosis.  

In recent years, clinical research has focused on the identification of prodromal symptoms, which 

may be used as a biomarker for the identification of subjects who will develop movement 

neurodegenerative disorders, to predict those who will benefit from an early treatment plan to slow 

down the neurodegenerative process [64,65]. 

Recent evidence, in fact, suggests that treatment of iPD could be more effective if started in the 

prodromal phase [66]. For this reason, several studies have been organized and it is currently known 

that pre-motor symptoms such as hyposmia, constipation, REM sleep behavior disorder and depression 

may antecede iPD motor symptoms for years [67]. However, none of these symptoms are sufficiently 

specific and sensitive to be used as a screening tool. Therefore, it is essential to continue in the search 

for potential biomarkers, such as genetical, biochemical or neuroimaging features, which alone or in 

combination can increase the possibility of identifying subjects at risk of developing parkinsonism. 

Since ML approach is known to be able to process a considerable amount of data in order to recognize 
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the most important features for classifying patients, it is easy to understand that its application in the 

field of early diagnosis and in the identification of microstructural alterations resulting from the 

neurodegenerative process is topical. While sensitivity of clinicians in looking for prodromal 

symptoms has significantly increased, there is a need to correlate these early symptoms to the 

underlining morpho-structural changes in order to use quantitative or standardized measure to 

precisely stratify the risk of subjects to phenoconvert to iPD. 

A large dataset of information, including genetic, biochemical, clinical and neuroimaging data, 

regarding ex novo iPD patients (i.e. subjects with a diagnosis of PD for two years or less who are not 

taking PD medications)  and “prodromal subjects” (i.e. subjects without Parkinson's disease who have 

a diagnosis of hyposmia or REM sleep behavior disorder), has been collected by PPMI and is currently 

available for researchers in order to identify biomarkers to help clinicians predict progression of 

neurodegenerative process [68]. Using PPMI dataset, Prashanth et al. [34] tried to find the best ML 

approach to identify early PD patients through the use of multimodal features such as non-motor 

features of RBD and olfactory loss, along with CSF measurements and dopaminergic imaging markers. 

They enrolled 183 HCs and 401 PD patients and tested several ML approaches such as Naïve Bayes, 

SVM, Boosted Trees and Random Forests classifiers. They observed that SVM classifier gave the best 

performance (96.40% of accuracy, 97.03% of sensitivity, 95.01% of specificity, and AUC of 98.88%). 

Also, Óscar Peña-Nogales et al. [35] have suggested that is possible to quantify neurodegenerative 

patterns of progression in the prodromal phase using longitudinal diffusion MRI connectivity data. 

Authors identified a ML algorithm that is capable, through a longitudinal brain connectome 

progression score, to discriminate between the progression of PD and control groups with an AUC of 

0.89 [95%; (CI): 0.81–0.96] and discriminate the progression of the high risk prodromal and control 

groups with an AUC of 0.76 [CI: 0.66–0.92]. 

To provide an early diagnosis is essential to identify the most appropriate imaging modality, 

capable to detect the most specific alterations. As diagnostic performance of various imaging 

modalities may vary across subjects with different phenotype stages, Liu et al. [36] have tried to apply 

ML algorithms to understand which imaging strategy was most appropriate for each patient. They 

aimed to obtain a “tailored imaging strategy” and reported interesting results regarding the role of 

fractional anisotropy of DTI studies.  

Although the role that brain iron accumulation plays in the neurodegenerative process is still not 

clear, many studies have demonstrated an abnormal and early increase of iron deposits in nigrostriatal 

dopaminergic system. Based on this assumption, Xiao et al. [20] used QSM, an imaging technique that 

can quantify the magnetic susceptibility value of brain tissue from GRE MRI data providing an 

excellent contrast between iron-rich areas and surrounding tissues to analyze SNc involvement using 

both a radiomic and a CNN based approach to support the diagnosis of PD. They found that the 

extraction of radiomics features and the CNN features were complementary to each other to improve 

the classification performance (obtaining an AUC of 0.96). 

This research field is important for early recognition of patients who may benefit from any 

neuroprotective treatment and delay the onset of disabilities related to associated motor and 

neurocognitive disorders. 
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4. The use of ML to identify unknown pathological changes 

As previously stated, the ability of ML models to identify biomarkers determines numerous 

advantages. First, using a reverse process it is possible to identify the most significant changes present 

only in affected subjects [27,28]. Consequently, trying to assess the role that these changes play in the 

onset of symptoms or in their clinical evolution is extremely helpful to understand the spread of the 

neurodegenerative process. Still to this day, our knowledge about the different brain areas involved in 

the onset and progression of symptoms is limited. Indeed, it is current opinion that morphological and 

advanced neuroimaging exams contain information not visible to the human eye regarding 

microstructural changes. This textural information is potentially probably capable of distinguishing 

patients and HCs, to classify different clinical phenotypes and hopefully to predict clinical evolution 

or therapy response [26]. 

In recent years, several magnetic resonance techniques have been developed to study the integrity 

of the mesencephalic substantia nigra since its initial damage is considered the pathological hallmark 

of iPD [69].  For this reason, Sumeet Shinde et al. [37] examined NMS-MRI of 41 PD, 20 PPS and 35 

HCs. Authors employed a boxed region around the brainstem on the axial slices of a Neuromelanine 

Sensitive-MRI 3D-T1w sequence as input to a 2D Convolutional Neural Network used to classify PD 

and HCs and found a cross-validation accuracy of 83.7% (AUC-ROC = 0.90) and test accuracy of 80% 

(AUC-ROC = 0.91). A separate CNN based classifier was constructed to discern PD from PPS (MSA 

and PSP) performing with a cross- validation accuracy of 81.8% and a test accuracy of 85.7%. The 

constructed algorithm has the capability to locate the most discriminative regions on the neuromelanin 

contrast images. These discriminative activations demonstrate that the left SNc, plays a key role in the 

classification in comparison to the right one. These findings agree with the frequent onset of 

asymmetrical motor symptoms in the initial stage of iPD, Peng et al. [38] used a multilevel-ROI-

features-based ML method to detect sensitive morphometric biomarkers in PD and found better results 

compared with other classification methods using single-level features. This study integrated several 

low-level ROI features (gray matter volume, cortical thickness, etc.) and high-level correlative features 

(connectivity between ROIs) in a single method and applied it to T1-weighted brain MRI of 69 PD 

patients and 103 HCs. This ML method has high performance in classification between PD patients vs 

normal controls with an accuracy of 85.78%, a specificity of 87.79%, and a sensitivity of 87.64%. The 

Authors have also concluded that the most sensitive biomarkers are mainly ROI-based features in the 

frontal lobe, parental lobe, limbic lobe, temporal lobe, and central region. 

Using morphological data of iPD patients such as cortical thickness, subcortical structure, and 

white matter volume, Chen et al. [39] analyzed the possible association of their pathological alterations 

with the onset of hypokinetic dysarthria (HD), a typical parkinsonian motor symptom affecting the 

speech, evidenced by reduced vocal loudness, monotone, reduced fundamental frequency range, 

consonant and vowel imprecision, breathiness, and irregular pauses. The presence of these speech 

deficits negatively impacts intelligibility, functional communication and, ultimately, social 

participation. Chen et al. found a significant association between the presence of this symptom and the 

atrophy of the right precentral cortex and the right fusiform gyrus. After feature selection, a machine-

learning model was established using a support vector machine in the training set to predict HD 
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severity obtaining optimal performance with a correlation coefficient (r) of 0.7516 and a coefficient of 

determination (R2) of 0.5649 (P value < 0.001). 

Since still there are not objective quantitative indicators to base parkinsonism diagnoses only on 

imaging data, a multi-features approach seems to be more effecting in discriminating patients from 

healthy subjects. Glaab et al. [40] demonstrated that integrating blood metabolomics data combined 

with PET data considerably enhances the diagnostic discrimination power between patients with PD 

and HCs. In fact, they have recruited 60 PD patients and 16 HCs, collected blood plasma samples and 

performed FDOPA PET and FDG PET. Data sets were then analyzed with two ML approaches (linear 

SVM or Random Forests within a leave-one-out cross-validation scheme). AUC was highest when 

combining standardized imaging features with those from the metabolomics data (SVM AUC for 

FDOPA + metabolomics: 0.98; SVM AUC for FDG + metabolomics: 0.91). By contrast, the 

performance was lower when using only the respective PET attributes (AUC for FDOPA: 0.94, AUC 

for FDG: 0.8) or only the metabolomics data (AUC: 0.66). A Random Forest approach for model 

building provided better or similar prediction results in all cases. This study suggests that the 

integration of different types of data allows to increase the diagnostic power of classifiers.  

5. Parkinsonian Syndromes and the role of ML in the differential diagnosis 

When PD is combined with other clinical signs, it is called "Parkinson plus," an overarching term 

that includes MSA, PSP and CBD [70]. We will briefly summarize the characteristics, not only of 

imaging, of those main parkinsonian syndromes and then discuss about the role of ML in 

differential diagnosis. 

5.1. Multiple System Atrophy 

MSA is an adult-onset sporadic neurodegenerative disorder that includes three disorders that were 

previously regarded as separate entities: striatonigral degeneration, olivopontocerebellar atrophy, and 

Shy-Drager syndrome. These disorders are all now recognized as clinical MSA subtypes and are 

identified by dominant symptomatology. When parkinsonian (i.e., extrapyramidal) symptoms 

predominate, the disease is designated MSA-P. If cerebellar symptoms such as ataxia predominate, the 

disorder is defined MSA-C. When signs of autonomic failure such as orthostatic hypotension, global 

anhidrosis, or urogenital dysfunction predominate, the condition is called MSA-A. Although there can 

be some overlap, the imaging findings for the two most common MSA subtypes are somewhat 

different. In patients with MSA-P, the putamina appear small and hypointense on T2WI and often have 

a somewhat irregular high signal intensity rim along their lateral borders on 1.5-T scans ("hyperintense 

putaminal rim" sign). T2* show significantly higher iron deposition in the putamen. DTI shows 

decreased FA in the pons and middle cerebellar peduncles. In patients with MSA-C, T1 scans show a 

shrunken pons and medulla, symmetric cerebellar atrophy, small concave-appearing MCPs and an 

enlarged fourth ventricle. T2/FLAIR scans demonstrate a cruciform hyperintensity in the pons termed 

the "hot cross bun sign” that results from selective loss of myelinated transverse pontocerebellar fibers 

and neurons in the pontine raphe. DWI shows elevated ADC in the pons, MCPs, cerebellar white 
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matter, and dentate nuclei. DTI demonstrates decreased volume of fiber bundles and reduced FA in 

the degenerated transverse pontocerebellar fibers and in corticospinal tracts [70]. 

5.2. Progressive Supranuclear Palsy 

PSP — also known as Steele-Richardson-Olszewski syndrome — is a neurodegenerative disease 

with a variable disease course and characterized by supranuclear gaze palsy, postural instability, and 

mild dementia. It is the most common of the Parkinson-plus syndromes with an insidious symptom 

onset, typically beginning in the sixth or seventh decade. Two PSP phenotypes are recognized: 

Richardson syndrome and parkinsonian-type PSP. PSP-RS is the classic, more common presentation 

with lurching gait, axial dystonia, and early ocular symptoms. Vertical supranuclear gaze palsy is the 

definitive diagnostic feature but typically develops years after disease onset. One-third of patients 

exhibit the PSP-P phenotype. Parkinsonism dominates the early clinical picture with bradykinesia, 

rigidity, normal eye movements, and transient response to levodopa. Sagittal T1- and T2-weighted 

images show midbrain atrophy with a concave upper surface (the "penguin" or "hummingbird" sign). 

Volumetric calculations show that the sagittal midbrain is less than 70 mm³ and that the midbrain/pons 

ratio is less than 0.15. Axial scans show a widened interpeduncular angle and abnormal concavity of 

the midbrain tegmentum [71]. In addition to a small midbrain, enlarged third ventricle, and prominent 

perimesencephalic cisterns, the quadrigeminal plate is often thinned. Cerebellar atrophy is common, 

and the superior cerebellar peduncles also frequently appear atrophic. DTI indices demonstrate 

widespread white matter abnormalities that are often mild or inapparent on T2/FLAIR. FDG PET 

shows glucose hypometabolism in the midbrain and along medial frontal regions [70]. 

5.3. Corticobasal Degeneration 

CBD is an uncommon sporadic neurodegenerative and dementing disorder that has multiple 

clinical phenotypes and different associated syndromes. It typically affects patients 50-70 years of age. 

CBD’s onset is both insidious and progressive. This disease can be associated with a broad variety of 

motor, sensory, behavioral, and cognitive disturbances. Levodopa-resistant, asymmetric, akinetic-rigid 

parkinsonism and limb dystonia (usually affecting an arm) are classic findings. Rigidity is followed 

by bradykinesia, gait disorder, and tremor. "Alien limb phenomenon" occurs in 50% of cases. 

Conventional imaging studies show moderate but asymmetric frontoparietal atrophy, contralateral to 

the side that is more severely affected clinically. The dorsal prefrontal and perirolandic cortex, striatum 

and midbrain tegmentum are the most severely involved regions. FLAIR scans may show patchy or 

confluent hyperintensity in the rolandic subcortical white matter. SPECT and PET demonstrate 

asymmetric frontoparietal and basal ganglia/thalamic hypometabolism [70]. 

5.4. ML in the differential diagnosis 

The most urgent and difficult clinical problem is not the classification of PD patients from healthy 

controls, but the discrimination of idiopathic PD versus those other atypical parkinsonisms. MRI 

studies show that there are different brain imaging changes in these diseases. Researchers have tried 

different MR features to train a classification model. Structural MRI was the most used modality [72].  
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For example, Salvatore et al. [42] have tried to identify patients with PD based on T1w MRI with 

accuracy, specificity, and sensitivity > 90%. In fact they took a ML algorithm based on combination 

of PCA and SVM with 28 PD patients, 28 HC subjects and 28 PSP patients and they found that voxels 

influencing classification between PD and PSP patients involved midbrain, pons, corpus callosum and 

thalamus. Correia et al. [43] have tried to compare different approaches to minimize bias in the feature 

selection for the classification of PD vs CBD and PSP using ML. They recruited a cohort of 69 HCs 

and 35 patients with iPD, 52 with PSP and 36 with CBD. Using standardized T1-w and DWI MRI, 

they suggested that using PCA for feature extraction provided higher classification accuracies when 

compared to a ROI-based approach. Also, Archer et al. [44] with an international study of 17 MRI 

tried to provide an objective, validated, and generalizable imaging approach to distinguish different 

forms of parkinsonian syndromes using multisite DWI MRI. They used images of 1002 patients and 

the Movement Disorders Society Unified Parkinson’s Disease Rating Scale part III to develop and 

validate disease-specific ML comparisons using 60 template regions and tracts of interest in Montreal 

Neurological Institute space between PD and atypical parkinsonism (MSA and PSP) and between 

MSA and PSP. Results demonstrated that the DWI MRI plus MDS-UPDRS III model (PD vs atypical 

parkinsonism: AUC of 0,962; MSA vs PSP: AUC of 0,897) and DWI MRI only model had high AUCs 

(PD vs atypical parkinsonism: AUC of 0,955; MSA vs PSP: AUC of 0,926), whereas the MDS-

UPDRS III only models had significantly lower AUCs (PD vs atypical parkinsonism: AUC of 0,775; 

MSA vs PSP: AUC of 0,582). Instead, Du et al. [45] used the ability of DTI and the apparent transverse 

relaxation rate (R2*) from the striatal, midbrain, limbic, and cerebellar regions of 106 subjects, and 

their combination for differentiating PD, MSA, PSP and HCs. The application of Elastic-Net revealed 

that DTI and R2* together were significantly better than DTI or R2* alone in separating controls from 

those with PD/MSA/PSP (AUC: 0.88; P value < 0.013); controls from those with PD (AUC: 0.91, P 

value <0.001); those with PD from those with MSA/PSP (AUC: 0.94, P value <0.038); and those with 

PD from those with MSA (AUC: 0.99; P value <0.006). Finally, using a complex neural approach and 

T1w-MPRAGE sequences, Amoroso et al. [46] aimed to study differences in brain connectivity in PD 

and HCs by dividing the brain volume of each subject in patches of 125 voxel and measured how 

different brain regions are correlated. They build a model including atrophy effects locally induced by 

the disease and accounting for whole-brain modifications thanks to the network framework. 

6. ML to establish the prognosis 

It is known that there are different iPD clinical phenotypes [73]. iPD patients can be divided into 

three subtypes according to their clinical symptoms: tremor dominant, bradykinesia/akineto-rigid, and 

postural instability and gait difficulty. Different phenotypical subtypes have varying responses to 

treatment and different prognoses. In particular,PIGD variant has a relative malignant course, including 

shorter life expectancy, faster progression, worse prognosis, and higher risk of complications [74]. Gu 

et al. [47] aimed to create a classifier using resting-state functional, 3D T1-weighted and DTI data to 

distinguish PIGD from others. Their classifier discriminated patients with the PIGD subtype with a 

diagnostic accuracy, sensitivity, and specificity of 92.31%, 84.21% and 96.97%, respectively. 

The necessity of classify patient according to the severity of clinical phenotype is even more urgent 

in PPS because they are known to have a more rapid and malignant course. Chen Y L et al. [51] tried 
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to develop a ML algorithm based on DTI to predict the clinical severity of PSP and found that it 

confidently predicts the clinical severity of PSP at the individual level (adjusted R2: 0.739 and 0.892, 

p < 0.001) and that the most involved regions for each severity clinical score analyzed (UPDRS motor 

section; PIGD staging; MHY, modified Hoehn and Yahr staging; LEDD, levodopa equivalent daily 

dose in unit of mg/day) mostly involved cortical motor areas and basal ganglia, fundamental areas for 

the correct planning and execution of voluntary movements. Moreover, it is difficult to classify the 

severity of the clinical picture on the sole basis of the medical examination as iPD patients present 

daily fluctuations in their clinical conditions in relation to the intake of medicines and its amount of 

absorption. In this context, independent and quantitative imaging biomarkers are desirable to improve 

the diagnostic accuracy and to quantify the clinical severity status. 

As thalamus plays an important role in iPD pathogenesis and onset of symptoms, Chen et al. [52] 

evaluated morphological changes in thalamic subnuclei using structural MRI data. They evaluated the 

volumes of 25 thalamic subnuclei using FreeSurfer and a newly developed thalamus segment 

algorithm. The individual PD diagnosis and clinical condition prediction were conducted on SVM 

classification or regression. Results demonstrated that with this ML approach an accuracy of 95% with 

sensitivity of 97.44%, and specificity of 90.48% can be achieved in PD diagnosis and that clinical severity 

and improvement prediction can be achieved based on morphology of thalamic subnuclei via ML. 

Using fMRI data of iPD on- and off-therapy and HCs performing task related to working memory, 

Poston et al. [41] elaborated an algorithm able to differentiate between PD off-therapy and HC 

participants with a 78.26% cross-validation accuracy. They used a linear SVM algorithm applied to a 

binary mask containing 8 spherical regions from cortical and subcortical areas that showed load-

dependent brain activation defined by the peak voxels detected in fMRI group analysis, they also 

demonstrated that intact working memory in cognitively unimpaired PD is associated with increased 

activation within the bilateral putamen and bilateral posterior insula. Critically, dopaminergic 

medications reduced putamen hyperactivation, and individual differences in loss of compensatory 

hyperactivation were associated with slower cognitive speed. 

ML algorithms have also been applied to nuclear medicine data for the study of stratification of 

parkinsonism severity status and prognosis prediction. Using clinical and nuclear medicine imaging 

features as predictors, Salmanpour et al. [48] demonstrated an excellent prediction of motor outcome 

in PD patients by employing automated hyperparameter tuning and optimal utilization of FSSAs for 

more systematic initial feature selection and predictor algorithms, such as the LOLIMOT predictor 

machine that resulted in the lowest absolute error (4.15 ± 0. 46). Furthermore, the intake of drugs could 

lead to changes in the neuronal connectivity of the dopaminergic circuits so patients should be studied 

before starting therapy.  

Waninger et al. [49] demonstrated that changes in cortico-cortical and cortico-thalamic coupling 

were observed as excessive EEG beta coherence in iPD patients, and correlated with UPDRS scores 

and dopamine transporter activity, supporting the potential for cortical EEG coherence to serve as a 

reliable measure of disease severity. Using ML approaches, an EEG DFA classifier was identified that 

parallels the loss of dopamine synapses as measured by dopamine transporter PET. The overall 

accuracy of the DFA classifier in discriminating the iPD and control groups in this study was 

compelling since only two of the 42 total subjects included in the analysis were misclassified, resulting 

in 95.24% specificity and 94.74% sensitivity. 
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The aim of the study of Tang et al. [50] was to predict the UPDRS III motor score at year 4 using 

92 imaging features extracted on 12 different brain regions from DaTscan SPECT data as well as 6 

non-imaging demographic and clinical measures at baseline (year 0) of 69 PD patients using SVM and 

Artificial Neuronal Networks. Results demonstrated that among non-imaging features only UPDRS 

III at year 0 reached a predictive accuracy of 70% if used individually but combining the top imaging 

features from the selected regions significantly improved the prediction accuracy to 75% (P value < 0.01). 

Prediction of clinical outcome and the efficacy of the therapies is another essential point in the 

management of the patient with parkinsonism. Chih-Chien Tsai et al. [53] used diffusion images data 

and a stepwise multivariate regression model to predict clinical evolution of iPD patients over a 2-year 

follow-up. The predicted UPDRS for everyone was consistent with the observed values at blind 

validation (adjusted R
2: 0.76) by using 13 features, such as mean diffusivity in lingual, nodule lobule 

of cerebellum vermis and fractional anisotropy in Rolandic operculum, and quadrangular lobule of 

cerebellum. Peralta et al. [54] tried to stratify patient clinical severity status using striatal shape 

alteration and a fully automated, cross-validated pipeline. The ML and data analysis quantified the 

relevance of shape displacements of putamen and caudate nucleus as diagnostic and staging 

biomarkers, benchmarking different classifiers and structures. All these studies suggest the need of 

identify quantitative and objective biomarkers to evaluate the progression and therapy response of 

motor disorders, since daily motor and cognitive status fluctuations of the patient, dictated by the intake 

and absorption of drugs, could make the clinical evaluation untrue. 

7. Results and limitations of the analyzed studies 

We reported in Table 1 the results achieved by the main studies included in our discussion. 

All the papers analyzed in this review were published in the last 5 years. This data can be explained 

by the fact that AI is a relatively recent and innovative field and its applications to the medical and 

non-medical fields is in continuous and rapid expansion. 

The most common ML algorithm used was SVM, one single study used deep learning, and no one 

used unsupervised learning. Despite the type of algorithm used, most of the algorithms reached an 

accuracy above >70%.  

However, some considerations about these results are needed and it is necessary to underline 

some limitations.  

Most studies were based on small size samples, especially the ones which aim was to provide 

biomarkers for a differential diagnosis. This can be explained by the fact that, despite the wide 

prevalence of iPD, the PPS are relatively rare.   

Moreover, given the reduced size of samples, most studies used a subset of data to train the ML 

algorithms while the ones with a large dataset mostly used the PPMI data. These conditions could lead 

to the possibility of “over-fitting”, this means that the ML algorithms have a high classification 

accuracy in the training set and reduced reliability in classifying when new data are provided. 

In addition, PD and PPS are a wide spectrum of neurodegenerative motor disorders with different 

clinical subtypes, and probably essential different underlying pathological changes. Most of the studies 

neglected the complexity of parkinsonian syndromes and often did not considered the presence of subtypes. 
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Table 1. Summary of studies using ML and neuroimaging data of in parkinsonian syndromes. 

Authors Article Aim ML Diagnostic Performance Year  

Salvatore 

C et al. 

Machine learning on brain MRI 

data for differential diagnosis of 

Parkinson’s disease and 

Progressive Supranuclear Palsy. 

Distinguish PD from HC 

and PSP. 

PCA  

 

SVM 

PD vs HC: Accuracy 85.8%, Sensitivity 86%, Specificity 

86% 

PSP vs HC: Accuracy 89.1%, Sensitivity 89.5%, 

Specificity 89.1% 

PSP vs PD: Accuracy 88.9%, Sensitivity 89.5%, Specifity 

88.5% 

2014 

Archer D 

B et al. 

Development and validation of 

the automated imaging 

differentiation in parkinsonism 

(AID-P): a multicentre machine 

learning study. 

Distinguish different forms 

of Parkinsonian 

Syndromes (PD, MSA, 

PSP) using multisite 

Diffusion-Weighted MRI 

cohorts. 

SVM Diffusion-weighted MRI plus MDS-UPDRS III 

model (PD vs atypical parkinsonism = AUC 0·962; MSA 

vs PSP = AUC 0·897) 

Diffusion-weighted MRI only (PD vs atypical 

parkinsonism = AUC 0·955; MSA vs PSP = AUC 0·926) 

2019 

Du G et 

al. 

Combined Diffusion Tensor 

Imaging and Apparent Transverse 

Relaxation Rate Differentiate 

Parkinson Disease and Atypical 

Parkinsonism. 

Assess the ability of DTI, 

the Apparent Transverse 

Relaxation Rate, and their 

combination for 

differentiating PD, MSA-

P, PSP and healty controls 

(HC). 

Elastic-Net ML HC vs PD, PSP, MSA: 

DTI + R2*= AUC 0.88; DTI=0.80; R2*=0.75 

HC vs PD 

DTI + R2*= AUC 0.91; DTI=0.82; R2*=0.78 

PD vs MSA-P/PSP 

DTI + R2*= AUC 0.94; DTI=0.89; R2*=0.87 

PD vs MSA-P 

DTI + R2*= AUC 0.99; DTI=0.89; R2*=0.91  

PD vs PSP 

DTI + R2*= AUC 0.99; DTI=0.97; R2*=0.87 

MSA-P vs PSP 

DTI + R2*= AUC 0.98; DTI=0.96; R2*=0.89 

2017 

Chen Y 

et al. 

Brain morphological changes in 

hypokinetic dysarthria of 

Parkinson's disease and use of 

machine learning to predict 

severity. 

Assess brain 

morphological changes 

that could be associated 

with hypokinetic 

dysarthria severity in PD 

using feature selection. 

SVM ROI method: 

r 0.7516; R² 0.5649 (P value < .001) 

Atlas method: 

r 0.2721; R² 0.0741 (P value < .001) 

 

2020 

                                                                                                                                                                                                                                                  Continuted on next page 
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Authors Article Aim ML Diagnostic Performance Year  

Correia 

M M et 

al. 

Towards accurate and unbiased 

imaging-based differentiation of 

Parkinson’s disease, progressive 

supranuclear palsy and 

corticobasal syndrome. 

Compare different 

approaches to minimize 

bias in the feature selection 

for the classification of PD 

vs CBD and PSP. 

SVM Mean classification accuracies in the range 44.37–71.87% 

for T1-weighted data and 57.63–90.49% for diffusion data. 

 

2020 

Glaab E 

et al. 

Integrative analysis of blood 

metabolomics and PET brain 

neuroimaging data for 

Parkinson's disease. 

Distinguish PD from HC 

integrating blood 

metabolomics data 

combined with PET data. 

linear SVM or 

RF 

AUC for best FDOPA + metabolomics model: 0.98. 

 

AUC for best FDG + metabolomics model: 0.91. 

 

2019 

Prashant

h R et al. 

High-Accuracy Detection of Early 

Parkinson’s Disease through 

Multimodal Features and 

Machine Learning. 

Find the best ML approach 

to identify early PD 

patients using multimodal 

features such as non-motor 

features of RBD and 

olfactory loss, along with 

CSF measurements and 

dopaminergic imaging 

markers. 

Naïve Baye, 

SVM, Boosted 

Trees and RF 

classifiers 

SVM classifier gave the best performance (96.40% of 

accuracy, 97.03% of sensitivity, 95.01% of specificity, and 

98.88% area under ROC). 

 

2016 

Salmanp

our M R 

et al. 

Machine learning methods for 

optimal prediction of motor 

outcome in Parkinson’s disease. 

Predict of motor outcome 

in PD patients by 

employing Automated 

Hyperparameter Tuning 

and optimal utilization of 

FSSAS and predictor 

algorithms. 

FSSAs 

LOLIMOT 

predictor 

machine 

LOLIMOT predictor machine resulted in the lowest 

absolute error 4.32 ± 0.19. 

2020 

Peng B 

et al. 

A multilevel-ROI-features-based 

machine learning method for 

detection of morphometric 

biomarkers in Parkinson’s 

disease. 

Use Multilevel-Roi-

Features-based ML 

method to detect sensitive 

morphometric biomarkers 

in PD 

Filter- and 

wrapper-based 

feature selection 

methods and 

multi-kernel 

SVM 

Accuracy: 85.78% 

Specificity: 87.79% 

Sensitivity: 87.64%. 

2017 

                                                                                                                                                                                                                                                  Continuted on next page 
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Authors Article Aim ML Diagnostic Performance Year  
Xiao B et 

al. 

Quantitative susceptibility 

mapping based hybrid feature 

extraction for diagnosis of 

Parkinson’s disease 

AI methods could 

successfully evaluate both 

iron increases and texture 

features to discriminate PD 

from HC. 

CNN CNN gives the best 

classification performance: AUC = 0.93, accuracy = 

0.85%, sensitivity = 0.86%, specificity = 0.83%.  

Combination of the radiomics features and CNN-based 

features:  

AUC = 0.96; accuracy = 0.90%; sensitivity = 0.93%; 

specificity = 0.86%. 

2019 

Tang J et 

al. 

Artificial Neural Network-Based 

Prediction of Outcome in 

Parkinson’s Disease Patients 

Using DaTscan SPECT Imaging 

Features. 

Predicting the motor 

outcome at year 4 from the 

baseline clinical measures 

and the DaT SPECT 

imaging measures. 

ANNs 

 

SVM 

The selected baseline imaging 

features: accuracy of 70 % if used individually,similar to 

that of using the non-imaging feature UPDRS III 

score at year 0 (p < 0.05).  

The combination of selected imaging features and UPDRS 

III score of year 0 significantly improved the 

prediction accuracy of using this motor score only, from 

70 to 

75 % (p < 0.01). 

2019 

Chen Y 

et al. 

The morphology of thalamic 

subnuclei in Parkinson’s disease 

and the effects of machine 

learning on disease diagnosis and 

clinical evalutation. 

The individual PD 

diagnosis, symptom, and 

clinical improvement 

prediction could be 

achieved based on 

morphology of thalamic 

subnuclei. 

SVM 

classification or 

regression 

Accuracy: 95% 

Sensitivity: 97.44% 

Specificity: 90.48%. 

2020 

Waninge

r S et al. 

Neurophysiological Biomarkers 

of Parkinson’s Disease 

Support the utility of EEG 

as a reliable method for 

monitoring PD progression 

and as a pharmacodynamic 

endpoint for PD therapy. 

DFA classifier PD vs HC: specificity 95.24%, sensitivity 94.74%  

 
2020 

Peña-

Nogales 

Ó et al. 

Longitudinal Connectomes as a 

Candidate Progression Marker 

for Prodromal Parkinson’s 

Disease. 

Quantify 

neurodegenerative patterns 

of progression in the 

prodromal phase of PD 

with Longitudinal 

Diffusion MRI 

connectivity data. 

Longitudinal 

brain 

connectome 

progression 

score 

Discriminate between the progression of PD and HC with 

an AUC of 0.89 [CI: 0.81–0.96].  

 

Discriminate the progression of the high-risk prodromal 

patients and HC with an AUC of 0.76 [CI: 0.66–0.92].  

 

2018 

                                                                                                                                                                                                                                                  Continuted on next page 
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Authors Article Aim ML Diagnostic Performance Year  
Liu Y et 

al. 

Estimating personalized 

diagnostic rules 

depending on individualized 

characteristics. 

Explore whether there are 

subgroups of PD patients 

whose measures from 

FDG-PET might be a 

better screening marker 

compared with DTI. 

weighted-SVM wSVM estimated a diagnostic rule with a higher AUC than 

using MD alone (93.7% compared to 87.3%). 
2016 

Shinde S 

et al. 

Predictive markers for 

Parkinson's disease using deep 

neural nets on neuromelanin 

sensitive MRI 

Create prognostic and 

diagnostic biomarkers of 

PD from NMS-MRI. 

deep CNNs The classification model for PD vs APS performed with a 

cross-validation accuracy of 81.8% and a test accuracy of 

85.7%. 

 

2019 

Amoroso 

N et al. 

Complex networks 

reveal early MRI markers of 

Parkinson's disease. 

Study differences in brain 

connectivity in PD and 

HC. 

RF 

 

SVM 

SVM had AUC = 0.97 ± 0.02, accuracy= 0.93 ± 0.04, 

sensitivity= 0.93 ± 0.06, specificity= 0.92 ± 0.07. 

 

2018 

Gu Q et 

al. 

Automatic Classification on 

Multi-Modal MRI Data for 

Diagnosis of the Postural 

Instability and Gait Difficulty 

Subtype of Parkinson's Disease 

Create a classifier using 

resting-state functional, 3D 

T1-weighted and DTI data 

to distinguish PIGD 

subtype of PD from others. 

SVM Accuracy = 92.31% 

Specificity = 96.97% 

Sensitivity = 84.21%  

AUC max = 0.9585. 

2016 

Chen Y 

L et al. 

Prediction of the Clinical Severity 

of Progressive Supranuclear 

Palsy by 

Diffusion Tensor Imaging 

Develop a ML algorithm 

based on DTI to predict the 

clinical severity of PSP. 

LASSO 

regression 

Linear 

regression 

adjusted R2: from 0.739 to 0.892,  

p < 0.001. 

2019 

Poston K 

L et al. 

Compensatory neural 

mechanisms in cognitively 

unimpaired Parkinson disease 

Use fMRI to determine 

whether cognitively 

unimpaired PD patients 

engage compensatory 

fronto-striatal activation 

during a working memory 

paradigm. 

SVM 78.26% cross-validation accuracy (p =0.019). 2016 
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Authors Article Aim ML Diagnostic Performance Year  
Chih-

Chien T 

et al. 

A Method for the Prediction of 

Clinical Outcome Using Diffusion 

Magnetic Resonance Imaging: 

Application on Parkinson’s 

Disease  

 

Propose a method that uses 

the baseline MRI, 

measuring diffusion 

parameters from multiple 

parcellated brain regions, 

to predict the 2-year 

clinical outcome in PD. 

LASSO adjusted R2 0.76 by using 13 features. 2020 

Peralta 

M et al. 

Striatal shape 

alteration as a staging biomarker 

for Parkinson's Disease. 

Distinguish different 

stages of PD based solely 

on shape analysis of the 

bilateral caudate nucleus 

and putamen and also 

comparing the 

performances of different 

classifiers. 

SVM with 

linear and radial 

basis kernels 

  

RF  

 

EL 

Highest-performing cluster is composed of the SVM with 

radial basis kernels and EL with balanced accuracies in the 

range of 59% to 85% 

2020 
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Lastly, most studies used as input data from a single modality of imaging technique since is 

difficult for ML algorithms manage simultaneously a huge number of variables. Nevertheless, it will 

probably be more helpful to use multimodality neuroimaging data or combine radiological with 

genetic, biological and clinical information. 

Consequently, for future studies we recommend using large samples, taking into account the 

various clinical phenotypes of diseases which often have different prognoses and trying to integrate 

different types of information in order to identify the most significant markers, for the classification 

and evaluation of parkinsonian disease, especially in the prodromal phase. 

Conclusions 

Artificial intelligence applied to neuroimaging studies is providing a significant contribution to 

shed light on the pathogenetic mechanisms underlying the onset of symptoms of parkinsonian 

syndromes. The application of ML algorithms to radiological data is also giving useful results to 

manage diagnosis, predict clinical evolution and distinguish PD from the other parkinsonism and 

neurodegenerative disorders. 
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