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Abstract: In this paper, an in-host HIV infection model with latent reservoir, delayed CTL immune
response and immune impairment is investigated. By using suitable Lyapunov functions and LaSalle’s
invariance principle, it is shown that when time delay is equal to zero, the immunity-inactivated
reproduction ratio is a threshold determining the global dynamics of the model. By means of the
persistence theory for infinite dimensional systems, it is proven that if the immunity-inactivated
reproduction ratio is greater than unity, the model is permanent. Choosing time delay as the bifurcation
parameter and analyzing the corresponding characteristic equation of the linearized system, the
existence of a Hopf bifurcation at the immunity-activated equilibrium is established. Numerical
simulations are carried out to illustrate the theoretical results and reveal the effects of some key
parameters on viral dynamics.
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1. Introduction

Combination antiretroviral therapy or highly active antiretroviral therapy (HAART) have led to a
substantial reduction in the incidence of HIV-related morbidity and mortality [1,2]. HAART consisting
of at least three different drugs has proved to be effective in suppressing the plasma viral load of
most patients to below 50 RNA copies/ml, which is the detection limit of current standard assays [3].
However, this does not mean that virus replication has been completely suppressed by the therapy
[4–6]. Even in patients whose plasma viral level has been below the detection limit for many years, a
low level of viremia can be detected in plasma by more sensitive assays [7]. Studies have shown that
this phenomenon may be related to the continuous release of virus particles, which are produced by
activating latently infected cells [8]. In the past decades, the activation of latently infected cells has
been incorporated into the modelling of HIV infection [9–13].

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2021087


1690

Rong et al. [13] considered a mathematical model including uninfected CD4+ T cells T , latently
infected CD4+ T cells L, actively infected CD4+ T cells T ∗ and free virus V to explore a hypothesis
about latently infected cell activation under the effect of therapy. The model takes the following form:

dT (t)
dt

= λ − dT T − (1 − ε)kVT,

dL(t)
dt

= αL(1 − ε)kVT − dLL − aL,

dT ∗(t)
dt

= (1 − αL)(1 − ε)kVT − δT ∗ + aL,

dV(t)
dt

= NδT ∗ − cV.

(1.1)

In (1.1), λ is the production rate of uninfected cells, dT is the death rate coefficient of uninfected cells,
k is the infection rate coefficient at which uninfected cells are infected by free virus, and ε (0 ≤ ε ≤ 1)
is an overall therapy efficacy. αL is the proportion of cells progress from uninfected to latently infected,
a is the rate coefficient at which latently infected cells translate to actively infected cells, and dL is the
death rate coefficient of latently infected cells. δ is the death rate coefficient of actively infected cells,
N is the number of virus particles produced by an actively infected cell during its life time, and c is the
rate coefficient at which free virus is cleared.

Noting that in system (1.1), the cytotoxic T-lymphocyte (CTL) immune response is ignored. Faced
with viral infection, the immune system has a strong CTL immune response, which attacks actively
infected cells to reduce viral load and protect infected individuals from virus-related diseases [14, 15].
In addition, it is noteworthy that the generation of CTL cells at time t may depend on the number
of actively infected cells at time t − τ, where the nonnegative constant τ represents a time delay of
CTL immune response. Accordingly, a large number of HIV infection models with CTL immune
response given by delay differential equations have been studied by several scholars, mainly focusing
on the effect of time delay on the dynamics of the model, bifurcations, and several complex dynamical
behaviors (see, for example, [16–18]). In [17], Wang et al. proposed a viral model with delayed
immune response, where the specific expression of CTL cells is as follows:

ż(t) = cy(t − τ) − bz(t),

in which y and z represent the numbers of actively infected cells and CTL cells, respectively. The
parameters c and b are the coefficients of proliferation rate and dacay rate of CTL cells, respectively.

Furthermore, in most viral infection models, it is assumed that the presence of antigen can only
simulate the immune response, and ignore the immune impairment. In fact, several human pathogens
have the ability to suppress immune responses, allowing them to establish a persistent and productive
infection that eventually lead to diseases [19–21]. Under this assumption, many researchers have
carried out further researches on HIV infection [22–24], which helps us to understand the biological
interactions between virus and immune system. In [24], Wang et al. considered a delayed viral model
with immune impairment, where the specific expression of CTL cells is as follows:

ż(t) = cy(t − τ) − bz(t) − myz.

Motivated by the works of Rong et al. [13] and Wang et al. [24], in the present paper, we are
concerned with the joint effects of latent reservoir, delayed CTL immune response and immune
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impairment on the transmission dynamics of HIV infection. To this end, we consider the following
delay differential equations:

dx(t)
dt

= λ − dx(t) − βx(t)v(t),

du(t)
dt

= qβx(t)v(t) − (µ + δ)u(t),

dy(t)
dt

= (1 − q)βx(t)v(t) + δu(t) − ay(t) − py(t)z(t),

dv(t)
dt

= Nay(t) − σv(t),

dz(t)
dt

= cy(t − τ) − bz(t) − my(t)z(t).

(1.2)

In [25], Wodarz et al. found that the decay rate of free virus is much faster than that of infected cells.
This allows us to make a quasi steady-state assumption: dv/dt = 0, which implies v = Nay/σ, in other
words, the number of free virus is proportional to the number of actively infected cells. Therefore, the
number of actively infected cells y(t) can also be considered as a measure of free virus v(t), then system
(1.2) can be described as the following system:

dx(t)
dt

= λ − dx(t) − βx(t)y(t),

du(t)
dt

= qβx(t)y(t) − (µ + δ)u(t),

dy(t)
dt

= (1 − q)βx(t)y(t) + δu(t) − ay(t) − py(t)z(t),

dz(t)
dt

= cy(t − τ) − bz(t) − my(t)z(t),

(1.3)

where the descriptions of all variables and parameters in system (1.3) are shown in Table 1, and values
of all parameters are positive constants.

For system (1.3), the suitable phase space is R × R × C × R, where C = C([−τ, 0],R) is the Banach
space of all continuous functions mapping the interval [−τ, 0] into R, with norm ‖φ‖ = sup−τ≤θ≤0 |φ(θ)|
for φ ∈ C. The nonnegative cone of C is C+ = C([−τ, 0],R+). The initial condition for system (1.3)
takes the form

x(θ) = ϕ1(θ), u(θ) = ϕ2(θ), y(θ) = ϕ3(θ), z(θ) = ϕ4(θ),
ϕi(θ) ≥ 0, θ ∈ [−τ, 0), ϕi(0) > 0, i = 1, 2, 3, 4.

(1.4)

It is well-known by the fundamental theory of functional differential equations [26], system (1.3) has
a unique solution (x(t), u(t), y(t), z(t)) satisfying initial condition (1.4).

The organization of this paper is as follows. In section 2, we show the positivity and boundedness of
solutions of system (1.3), and establish the existence of feasible equilibria of system (1.3). In section 3,
we investigate the global asymptotic stability of each of feasible equilibria. In section 4, we verify that
system (1.3) is permanent if the immunity-activated equilibrium exists. In section 5, we establish the
existence of Hopf bifucation at the immune-activated equilibrium. In section 6, we present numerical
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simulation to illustrate the theoretical results, and explore the effects of some key parameters on viral
dynamics by sensitivity analysis. The paper ends with a brief conclusion in section 7.

Table 1. The descriptions of all variables and parameters in system (1.3).

Variables Biological meaning
x(t) The number of uninfected CD4+ T cells at time t
u(t) The number of latently infected CD4+ T cells at time t
y(t) The number of actively infected CD4+ T cells at time t
z(t) The number of CTL cells at time t
Parameters Biological meaning
λ The production rate of uninfected cells
d The nature death rate coefficient of uninfected cells
β The infectious transmissibility coefficient
q The proportion of cells progress from uninfected to latently infected
µ The natural death rate coefficient of latently infected cells
δ The rate coefficient at which latently infected cells translate to actively infected cells
a The natural death rate coefficient of actively infected cells
p The remove rate coefficient of actively infected cells due to CTL immune responses
τ The time delay of CTL immune response
c The proliferation rate coefficient of CTL cells
b The dacay rate coefficient of CTL cells
m The rate coefficient of immune impairment

2. Preliminaries

In this section, we demonstrate that system (1.3) with initial condition (1.4) is well-posed, and
establish the existence of feasible equilibria.

2.1. Positivity and boundedness of solutions

Theorem 2.1. All solutions of system (1.3) with initial condition (1.4) are defined on [0,+∞) and
remain positive for all t ≥ 0 in R × R × C × R.

Proof. Firstly, we prove that x(t) is positive for all t ≥ 0. Assume the contrary and let t1 > 0 be
the first time such that x(t1) = 0. Then from the first equation of system (1.3), we have ẋ(t1) = λ > 0,
which indicates that x(t) < 0 for t ∈ (t1 − ε1, t1), where ε1 is an arbitrarily small positive constant. This
contradicts with the fact of x(t) > 0 for all t ∈ [0, t1). It follows that x(t) > 0 for all t ≥ 0.

Similarly, we show that u(t), y(t) and z(t) are positive for all t ≥ 0. Assume the contrary and let
t2 > 0 be the first time such that y(t2) = 0. Then from the third equation of system (1.3), we have
ẏ(t2) = δu(t2). Solving u(t) in the second equation of system (1.3), we obtain

u(t2) =

(
ϕ2(0) + qβ

∫ t2

0
x(s)y(s)e(µ+δ)sds

)
e−(µ+δ)t2 > 0,
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which yields ẏ(t2) > 0. It follows that y(t) > 0 for all t ≥ 0. Accordingly, from the second and fourth
equations of system (1.3), we get

u(t) =

(
ϕ2(0) + qβ

∫ t

0
x(s)y(s)e(µ+δ)sds

)
e−(µ+δ)t > 0,

and

z(t) = ϕ4(0)e−
∫ t

0 (b+my(s))ds + c
∫ t

0
y(ξ − τ)e−

∫ t
ξ

(b+my(s))dsdξ > 0,

respectively. This completes the proof.

Theorem 2.2. Any positive solution of system (1.3) is ultimately bounded, and the following set

Ω =

{
(x, u, y, z) ∈ R+ × R+ × C

+ × R+ : ‖x + u + y‖ ≤
λ

min{d, µ, a}
, ‖z‖ ≤

cλ
b min{d, µ, a}

}
,

is positively invariant for system (1.3).

Proof. Define B(t) = x(t)+u(t)+y(t). Calculating the derivative of B(t) in respect to t along positive
solution of system (1.3), it follows that

Ḃ(t) = λ − dx(t) − µu(t) − ay(t) − py(t)z(t) ≤ λ −min{d, µ, a}B(t),

which yields

lim sup
t→+∞

B(t) ≤
λ

min{d, µ, a}
= Production rate of uninfected CD4+ T cells
×max{Lifespan of uninfected, latently infected or actively infected CD4+ T cells}.

Hence, for ε > 0 sufficiently small, there is a T1 > 0 such that if t > T1,

x(t) + u(t) + y(t) = B(t) ≤
λ

min{d, µ, a}
+ ε.

Furthermore, we derive from the fourth equation of system (1.3), for t > T1 + τ,

ż(t) = cy(t − τ) − bz(t) − my(t)z(t) ≤
cλ

min{d, µ, a}
+ cε − bz(t),

which yields

lim sup
t→+∞

z(t) ≤
cλ

b min{d, µ, a}
+

cε
b
.

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude that

lim sup
t→+∞

z(t) ≤
cλ

b min{d, µ, a}
.

Therefore, x(t), u(t), y(t) and z(t) are uniformly ultimately bounded. This completes the proof.
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2.2. Reproduction ratio and feasible equilibria

System (1.3) is an autonomous differential equation system with a fixed time delay. It always admits
a unique infection-free equilibrium E0 = (x0, 0, 0, 0), where x0 = λ/d. In the following, applying the
method in Diekmann et al. [27] and van den Driessche et al. [28], we compute the immunity-inactivated
reproduction ratio R0 of system (1.3).

The infected compartments in system (1.3) are u and y, ordered (u, y). The nonlinear terms with
new infection F and the outflow termV are given by

F =

(
qβxy

(1 − q)βxy

)
, V =

(
(µ + δ)u

−δu + ay + pyz

)
.

Evaluating the derivatives of F andV at the equilibrium E0 leads to the following matrices

F =

(
0 qβλ

d
0 (1−q)βλ

d

)
, V =

(
µ + δ 0
−δ a

)
.

Therefore, we obtain the following next-generation matrix

FV−1 =

 qβλδ
ad(µ+δ)

qβλ
ad

(1−q)βλδ
ad(µ+δ)

(1−q)βλ
ad

 .
One of the eigenvalues of matrix FV−1 is 0, the other one gives the immunity-inactivated reproduction
ratio of system (1.3)

R0 = ρ(FV−1) =
(1 − q)βλ

ad
+

qβλδ
ad(µ + δ)

,

where ρ(FV−1) denotes the spectral radius of matrix FV−1. Besides, R0 represents the number of newly
actively infected CD4+ T cells generated from one actively infected CD4+ T cell in a totally susceptible
cells during its lifespan.

It is easy to see that if R0 > 1, in addition to the equilibrium E0, system (1.3) has an immunity-
activated equilibrium E∗ = (x∗, u∗, y∗, z∗), where

x∗ =
λ

d + βy∗
, u∗ =

qβλy∗

(µ + δ)(d + βy∗)
, z∗ =

cy∗

b + my∗
,

and y∗ is a unique positive real root of the following algebraic equation:

A1y2 + A2y + A3 = 0,

in which

A1 = β(µ + δ)(am + pc) > 0,
A2 = mad(µ + δ)(1 − R0) + (µ + δ)(abβ + dpc),
A3 = bad(µ + δ)(1 − R0) < 0.
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3. Global stability

In this section, by using suitable Lyapunov functionals and LaSalle’s invariance principle, we are
concerned with the global asymptotic stability of each of feasible equilibria to system (1.3).

Theorem 3.1. If R0 ≤ 1, then the infection-free equilibrium E0 = (x0, 0, 0, 0) of system (1.3) is globally
asymptotically stable for any time delay τ ≥ 0.

Proof. Let (x(t), u(t), y(t), z(t)) be any positive solution of system (1.3) with initial condition (1.4).
Define

W1(t) = x(t) − x0 − x0 ln
x(t)
x0

+
δ

µ(1 − q) + δ
u(t) +

µ + δ

µ(1 − q) + δ
y(t) +

ε

c
z(t) + ε

∫ t

t−τ
y(θ)dθ, (3.1)

where ε =
βλ

d

(
1
R0
− 1

)
≥ 0 and λ = dx0. Calculating the derivative of W1(t) along positive solutions of

system (1.3), it follows that

Ẇ1(t) = −
d

x(t)
(x(t) − x0)2 −

βλ

d

(
1
R0
− 1 −

εd
βλ

)
y(t) −

εb
c

z(t) −
(

p(µ + δ)
µ(1 − q) + δ

+
εm
c

)
y(t)z(t)

= −
d

x(t)
(x(t) − x0)2 −

εb
c

z(t) −
(

p(µ + δ)
µ(1 − q) + δ

+
εm
c

)
y(t)z(t).

(3.2)

It follows from (3.2) that W ′
1(t) ≤ 0. By Theorem 5.3.1 in reference [29], solutions limit to M1, the

largest invariant subset of {(x(t), u(t), y(t), z(t)) : W ′
1(t) = 0}. Clearly, we see from (3.2) that W ′

1(t) = 0
if and only if x = x0 and z = 0. Noting thatM1 is invariant, for each element inM1, we have x(t) = x0

and z(t) = 0. It follows from the first equation of system (1.3) that 0 = x′(t) = −βx0y(t), which yields
y(t) = 0. Furthermore, it follows from the third equation of system (1.3) that 0 = y′(t) = δu(t), which
leads to u(t) = 0. Hence, W ′

1(t) = 0 if and only if x(t) = x0, u(t) = 0, y(t) = 0 and z(t) = 0. Accordingly,
E0 is globally asymptotically stable follows from LaSalle’s invariance principle. This completes the
proof.

Theorem 3.2. If R0 > 1, then the equilibrium E0 is unstable and the immunity-activated equilibrium
E∗ = (x∗, u∗, y∗, z∗) of system (1.3) is globally asymptotically stable when τ = 0.

Proof. The characteristic equation of system (1.3) at the equilibrium E0 is

(s + d)(s + b)
[
s2 +

(
µ + δ + a +

(q − 1)βλ
d

)
s + a(µ + δ)(1 − R0)

]
= 0. (3.3)

It is clear that (3.3) always has two negative real roots λ1 = −d, λ2 = −b, and other roots are determined
by the following equation:

f (s) = s2 +

(
µ + δ + a +

(q − 1)βλ
d

)
s + a(µ + δ)(1 − R0) = 0. (3.4)

If R0 > 1, it is easy to see that

f (0) = a(µ + δ)(1 − R0) < 0 and lim
s→+∞

f (s) = +∞.
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Noting that f (s) is a continuous function in respect to s, so (3.4) has at least one positive real root.
Accordingly, (3.3) has at least one positive real root, and E0 is unstable.

Let (x(t), u(t), y(t), z(t)) be any positive solution of system (1.3) with initial condition (1.4). Define

W2(t) =x(t) − x∗ − x∗ ln
x(t)
x∗

+
δ

µ(1 − q) + δ

(
u(t) − u∗ − u∗ ln

u(t)
u∗

)
+

µ + δ

µ(1 − q) + δ

(
y(t) − y∗ − y∗ ln

y(t)
y∗

)
+

µ + δ

µ(1 − q) + δ

p
2(c − mz∗)

(z(t) − z∗)2.

(3.5)

Calculating the derivative of W2(t) along positive solutions of system (1.3), it follows that

Ẇ2(t) =

(
1 −

x∗

x(t)

)
(λ − dx(t) − βx(t)y(t))

+
δ

µ(1 − q) + δ

(
1 −

u∗

u(t)

)
(qβx(t)y(t) − (µ + δ)u(t))

+
µ + δ

µ(1 − q) + δ

(
1 −

y∗

y(t)

)
((1 − q)βx(t)y(t) + δu(t) − ay(t) − py(t)z(t))

+
(µ + δ)

µ(1 − q) + δ

p
c − mz∗

(z(t) − z∗)(cy(t) − bz(t) − my(t)z(t)).

(3.6)

On substituting

λ = dx∗ + βx∗y∗,

(µ + δ)u∗ = qβx∗y∗,

ay∗ = (1 − q)βx∗y∗ + δu∗ − py∗z∗,

cy∗ = bz∗ + my∗z∗

(3.7)

into (3.6), we have

Ẇ2(t) = −
d

x(t)
(x(t) − x∗)2 +

(µ + δ)(1 − q)βx∗y∗

µ(1 − q) + δ

(
2 −

x∗

x(t)
−

x(t)
x∗

)
+

δqβx∗y∗

µ(1 − q) + δ

(
3 −

x∗

x(t)
−

y∗

y(t)
u(t)
u∗
−

x(t)
x∗

y(t)
y∗

u∗

u(t)

)
−

µ + δ

µ(1 − q) + δ

p
c − mz∗

(b + my(t))(z(t) − z∗)2.

(3.8)

It follows from (3.8) that W ′
2(t) ≤ 0. By Theorem 5.3.1 in reference [29], solutions limit to M2, the

largest invariant subset of {(x(t), u(t), y(t), z(t)) : W ′
2(t) = 0}. Clearly, we see from (3.8) that W ′

2(t) = 0
if and only if x = x∗, u = u∗, y = y∗ and z = z∗. Accordingly, the global asymptotic stability of E∗

follows from LaSalle’s invariance principle. This completes the proof.

4. Permanence

In this section, we explore the permanence of system (1.3) referring to the persistence theory on
infinite dimensional systems developed by Hale and Waltman [30].
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Let X be a complete metric space with metric d. Assume that T is a continuous mapping from
[0,+∞) × X into X with the following properties:

Tt ◦ Ts = Tt+s, T0(x) = x, t, s ≥ 0, x ∈ X,

where Tt(x) = T (t, x). The distance d(x,Y) from a point x ∈ X to a subset Y of X is defined by

d(x,Y) = inf
y∈Y

d(x, y).

Recall that the positive orbit γ+(x) through x is defined as γ+(x) = ∪t≥0T (t)x, and its ω-limit set is
ω(x) = ∩s≥0∪t≥s{T (t)x}. Define W s(A) the strong stable set of a compact invariant set A as

W s(A) = {x : x ∈ X, ω(x) , ∅, ω(x) ⊂ A}.

Suppose that X0 is an open set in X, X0 ⊂ X, X0 ∩ X0 = ∅ and X0 ∪ X0 = X. Moreover, T (t) is a
C0−semigroup of X satisfying

T (t) : X0 −→ X0, T (t) : X0 −→ X0. (4.1)

Let T∂(t) = T (t)|X0, and A∂ be the global attractor for T∂(t). The following result is provided.

Lemma 4.1. Suppose that T (t) satisfies (4.1) and the following conditions (Hale & Waltman [30]):

(i) There is a t0 ≥ 0 such that T (t) is compact for t > t0.

(ii) T (t) is point dissipative in X.

(iii) Ã∂ =
⋃

x∈A∂ ω(x) is isolated and has an acyclic covering M̃, where M̃ = {M1,M2, · · · ,Mn}.

(iv) W s(Mi) ∩ X0 = ∅, i = 1, 2, · · · , n.

Then X0 is a uniform repeller with respect to X0, that is, there is an ε0 > 0 such that for any x ∈ X0,
lim inft→+∞ d(T (t)x, X0) ≥ ε0, where d is the distance of T (t)x from X0.

We are now in a position to state and prove our result on the permanence of system (1.3) with initial
condition (1.4).

Theorem 4.1. If R0 > 1, then system (1.3) is permanent.

Proof. Let X = C([−τ, 0],R4
+0). Define

X0 ={(φ1, φ2, φ3, φ4) ∈ C([−τ, 0],R4
+0) : φ1(θ) ≥ 0, φ2(θ) ≡ 0, φ3(θ) ≡ 0, φ4(θ) ≡ 0},

X0 =X/X0.

It is easy to see that X0 ∩ X0 = ∅ and X0 ∪ X0 = X. For any (φ1, φ2, φ3, φ4) in X, define T (t) for t ≥ 0 as
T (t)(φ1, φ2, φ3, φ4) = (x(t), u(t), y(t), z(t)), where (x(t), u(t), y(t), z(t)) is a solution of system (1.3) with
initial condition (φ1, φ2, φ3, φ4). Then {T (t)}t≥0 is a C0−semigroup generated by system (1.3). By the
definition of X0 and X0, we verify that X, X0 and X0 are all positively invariant.
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According to Theorem 2.2, we obtain that condition (ii) of Lemma 4.1 is satisfied. Noting that the
functions in right side of system (1.3) are in C1 and the solution of system (1.3) with initial condition
(1.4) is ultimately bounded, using the smoothing property of solutions of delay differential equations
introduced in Kuang (Theorem 2.8) [31], it follows that condition (i) of Lemma 4.1 is satisfied.

Note that system (1.3) admits one boundary equilibrium E0 = (λ/d, 0, 0, 0) in X0. For any solution
of system (1.3) with initial condition (φ1(θ), φ2(θ), φ3(θ), φ4(θ)) ∈ X0, we have u(t) = 0, y(t) = 0,
z(t) = 0 and x(t) → λ/d as t → ∞. Hence {E0} contains all ω−limit sets in X0. By Theorem 3.2, E0 is
unstable if R0 > 1. Accordingly, {E0} is isolated and has an acyclic covering satisfying the condition
(iii) in Lemma 4.1.

We now show that W s(E0) ∩ X0 = ∅. Assume W s(E0) ∩ X0 , ∅. Then there is a positive solution
(x(t), u(t), y(t), z(t)) with limt→+∞(x(t), u(t), y(t), z(t)) = (λ/d, 0, 0, 0). Since R0 > 1, we can choose
ε1 > 0 sufficiently small satisfying

λ

d
− ε1 >

a(µ + δ)
β[(1 − q)µ + δ]

+
p(µ + δ)ε1

β[(1 − q)µ + δ]
. (4.2)

For ε1 > 0 sufficiently small satisfying (4.2), there is a t0 > 0 such that if t > t0, we have

x(t) >
λ

d
− ε1 and z(t) ≤ ε1.

Hence, it follows from system (1.3) that, for t > t0,

du(t)
dt
≥ qβ

(
λ

d
− ε1

)
y(t) − (µ + δ)u(t),

dy(t)
dt
≥ (1 − q)β

(
λ

d
− ε1

)
y(t) + δu(t) − ay(t) − pε1y(t).

Consider the following auxiliary system

du1(t)
dt

= qβ
(
λ

d
− ε1

)
y1(t) − (µ + δ)u1(t),

dy1(t)
dt

= (1 − q)β
(
λ

d
− ε1

)
y1(t) + δu1(t) − ay1(t) − pε1y1(t).

(4.3)

Clearly, (0, 0) is the unique equilibrium of system (4.3). The characteristic equation of system (4.3) at
the equilibrium (0, 0) is

g(s) = s2 + G1s + G2 = 0,

where

G1 = µ + δ + a + pε1 − (1 − q)β
(
λ

d
− ε1

)
,

G2 = (µ + δ)(a + pε1) − β
(
λ

d
− ε1

)
((1 − q)µ + δ).

It is easy to see that G2 < 0 when R0 > 1. Accordingly, g(s) = 0 has at least one positive root λ∗. In this
case, u1 → ∞ and y1 → ∞ as t → ∞. By comparison arguments, it is shown that u→ ∞ and y→ ∞ as
t → ∞. This contradicts limt→+∞(x(t), u(t), y(t), z(t)) = (λ/d, 0, 0, 0). Hence, we have W s(E0)∩ X0 = ∅

satisfying the condition (iv) in Lemma 4.1. This completes the proof.
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5. Hopf bifurcation

In this section, we are concerned with the effect of time delay τ on the stability of the immunity-
activated equilibrium E∗ = (x∗, u∗, y∗, z∗).

The characteristic equation of system (1.3) at the equilibrium E∗ is

s4 + h3s3 + h2s2 + h1s + h0 + (l2s2 + l1s + l0)e−sτ = 0, (5.1)

where

h0 =β2x∗y∗(b + my∗)[δ + (1 − q)µ] − pmy∗z∗(µ + δ)(d + βy∗),

h1 =(d + βy∗)(b + my∗)
(
µ + δ +

δu∗

y∗

)
+ β2x∗y∗[δ + (1 − q)(µ + b + my∗)]

− pmy∗z∗(µ + δ + d + βy∗),

h2 =(b + d + my∗ + βy∗)
(
µ + δ +

δu∗

y∗

)
+ (d + βy∗)(b + my∗) + β2x∗y∗(1 − q) − pmy∗z∗,

h3 =µ + δ + d + b + my∗ + βy∗ +
δu∗

y∗
,

l0 =pcy∗(µ + δ)(d + βy∗),
l1 =pcy∗(µ + δ + d + βy∗),
l2 =pcy∗.

When τ > 0, if s = iω (ω > 0) is a root of characteristic equation (5.1), separating real and imaginary
parts, we have

ω4 − h2ω
2 + h0 = − l1ω sinωτ + (l2ω

2 − l0) cosωτ,
h3ω

3 − h1ω =(l2ω
2 − l0) sinωτ + l1ω cosωτ.

(5.2)

Squaring and adding the two equations of (5.2), it follows that

ω8 + C3ω
6 + C2ω

4 + C1ω
2 + C0 = 0, (5.3)

where

C0 = h2
0 − l2

0, C1 = h2
1 + 2l0l2 − 2h0h2 − l2

1, C2 = h2
2 + 2h0 − 2h1h3 − l2

2, C3 = h2
3 − 2h2.

Letting z = ω2, (5.3) becomes

h(z) = z4 + C3z3 + C2z2 + C1z + C0 = 0. (5.4)

Denote

P =
8C2 − 3C2

3

16
, Q =

C3
3 − 4C3C2 + 8C1

32
, D0 =

Q2

4
+

P3

27
,
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and

z∗1 = −
C3

4
+

3

√
−

Q
2

+
√

D0 +
3

√
−

Q
2
−

√
D0, D0 > 0,

z∗2 = max
{
−

C3

4
− 2

3

√
Q
2
,−

C3

4
+

3

√
Q
2

}
, D0 = 0,

z∗3 = max
{
−

C3

4
− 2Re{ξ},−

C3

4
+ 2Re{ξν},−

C3

4
+ 2Re{ξν}

}
, D0 < 0,

where ν = (−1 +
√

3i)/2 and ξ is one of cubic roots of the complex number −Q/2 +
√

D0. By [32], we
have the following results.

Lemma 5.1. For polynomial equation (5.4), the following conclusions are valid (Yan & Li [32]):

(i) If C0 < 0, then (5.4) at least has one positive root.

(ii) Assume that C0 ≥ 0, then (5.4) has no positive roots if one of the following conditions holds:
(1) D0 > 0 and z∗1 < 0;
(2) D0 = 0 and z∗2 < 0;
(3) D0 < 0 and z∗3 < 0.

(iii) Assume that C0 ≥ 0, then (5.4) at least has one positive root if one of the following conditions
holds:
(1) D0 > 0, z∗1 > 0 and h(z∗1) < 0;
(2) D0 = 0, z∗2 > 0 and h(z∗2) < 0;
(3) D0 < 0, z∗3 > 0 and h(z∗3) < 0.

Without loss of generality, we assume that (5.4) has four positive real roots, which are denoted as
z1, z2, z3 and z4, respectively. Then (5.3) has positive roots ωk =

√
zk (k = 1, 2, 3, 4). From (5.2) we

have

τ(n)
k =

1
ωk

arccos
[
(ω4

k − h2ω
2
k + h0)(l2ω

2
k − l0) + l1ωk(h3ω

3
k − h1ωk)

(l2ω
2
k − l0)2 + l2

1ω
2
k

]
+

2nπ
ωk

,

where k = 1, 2, 3, 4 and n = 1, 2, · · · . Therefore, (5.1) has a pair of purely imaginary roots of the form
±ωki with τ = τ(n)

k . Let s(τ) = ψ(τ) + iω(τ) be a root of (5.1) satisfying ψ(τ(n)
k ) = 0, ω(τ(n)

k ) = ωk.
Denote

τ0 = min
k∈{1,2,3,4}

{τ(0)
k }, ω0 = ωk0. (5.5)

Differentiating (5.1) with respect τ, it follows that(
ds
dτ

)−1

=
4s3 + 3h3s2 + 2h2s + h1

−s(s4 + h3s3 + h2s2 + h1s + h0)
+

2l2s + l1

s(l2s2 + l1s + l0)
−
τ

s
.
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Hence, a direct calculation shows that

sign
{

d(Res)
dτ

}
s=iω0

=sign

Re
(
ds
dτ

)−1


s=iω0

=sign
{ (h1 − 3h3ω

2
0)(h1 − h3ω

2
0) + (2h2 − 4ω2

0)(−ω4
0 + h2ω

2
0 − h0)

(h1ω0 − h3ω
3
0)2 + (−ω4

0 + h2ω
2
0 − h0)2

−
l2
1 + 2l2

2ω
2
0 − 2l0l2

l2
1ω

2
0 + (l0 − l2ω

2
0)2)

}
.

We derive from (5.2) that

(h1ω0 − h3ω
3
0)2 + (−ω4

0 + h2ω
2
0 − h0)2 = l2

1ω
2
0 + (l0 − l2ω

2
0)2.

Hence, it follows that

sign
{

d(Res)
dτ

}
s=iω0

= sign
{

4ω6
0 + 3C3ω

4
0 + 2C2ω

2
0 + C1

l2
1ω

2 + (l0 − l2ω2)2)

}
= sign

{
h′(ω2

0)

l2
1ω

2
0 + (l0 − l2ω

2
0)2

}
.

From what has been discussed above, we have the following result.

Theorem 5.1. Let ω0 and τ0 be defined by (5.5). Assumed that R0 > 1, we have

(i) the equilibrium E∗ is locally asymptotically stable for all τ ≥ 0 if the condition as stated in Lemma
4.1(ii) is satisfied.

(ii) the equilibrium E∗ is locally asymptotically stable for τ ∈ [0, τ0) if the condition as stated in
Lemma 4.1(i) or Lemma 4.1(iii) is satisfied.

(iii) system (1.3) undergoes a Hopf bifurcation at the equilibrium E∗ when τ = τ0 if the condition as
stated in (ii) is satisfied and h′(ω2

0) > 0.

6. Numerical simulation

In this section, numerical simulations will be given to illustrate the theoretical results in Theorem
5.1, and sensitivity analysis is used to determine key parameters affecting HIV infection. In addition,
parameter values of system (1.3) are listed in Table 2.

Table 2. Parameter values of system (1.3) used in numerical simulations.

Parameters Values Units Sources Parameters Values Units Sources
λ 270 cells day−1 [24] d 0.02 day−1 [24]
β 0.001 cells−1 day−1 Assumed q 0.001 − [13]
µ 0.004 day−1 [13] δ 0.1 day−1 [13]
a 0.8 day−1 [24] p 0.04 cells−1 day−1 [24]
c 0.025 day−1 Assumed b 0.2 day−1 Assumed
m 0.005 cells−1 day−1 Assumed τ − day Variable
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6.1. Dynamics of system (1.3)

We choose parameter values as listed in Table 2. By calculation, we get R0 = 16.8744 > 1, ω0 =

0.4838, τ0 = 3.7708 and h′(ω2
0) = 0.0593 > 0. In this case, Theorem 5.1 ensures that the equilibrium

E∗ = (973.1423, 2.4090, 257.4517, 4.3276) is locally asymptotically stable if τ < τ0, unstable if τ > τ0,
and system (1.3) undergoes a Hopf bifurcation at E∗ when τ = τ0. Figure 1 shows the phase diagram
of system (1.3) with initial conditions x(0) = 873.1423, u(0) = 1.4090, y(0) = 207.4517 and z(0) =

3.3276. It is worth mentioning that the solutions of all variables in system (1.3) are created by the
command of dde23 in Matlab. Figure 1(a) shows that the solution of system (1.3) approaches E∗ as t
goes to infinity when τ = 3.5, and Figure 1(b) illustrates that E∗ losses its stability when τ = 4. When
τ varies from 3 to 5, the bifurcation diagram of system (1.3) is shown in Figure 2. From Figure 2, we
obtain that the time delay τ can cause the equilibrium E∗ to be unstable when τ crosses τ0 to the right.
It should be noted that the bifurcation diagram of system (1.3) is created by integrating the differential
equation forward in time and plotting the maximum and minimum values of the periodic solutions
using Matlab.
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Figure 1. The temporal solution found by numerical integration of system (1.3) with initial
condition x(0) = 873.1423, u(0) = 1.4090, y(0) = 207.4517, z(0) = 3.3276, and parameter
values are listed in Table 2, in which (a) τ = 3.5 < τ0 and (b) τ = 4 > τ0.

3 3.5 4 4.5 5

τ

1

1.5

2

2.5

3

3.5

4

m
in

u
(t
)-
m
a
x
u
(t
)

3 3.5 4 4.5 5

τ

0

500

1000

1500

m
in

y
(t
)-
m
a
x
y
(t
)

Figure 2. The bifurcation diagram of system (1.3) with the initial condition x(0) = 873.1423,
u(0) = 1.4090, y(0) = 207.4517, z(0) = 3.3276. Parameter τ varies from 3 to 5, and other
parameters are listed in Table 2.
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6.2. Sensitivity analysis

Studies have shown that the new generation of broadly neutralizing anti-HIV antibodies (bNAbs)
can suppress new infection by blocking entry of virions, and current inducers can activate the latently
infected cells both in vitro and in vivo [33]. More specifically, in our model, bNAbs mainly influence
parameter β, and inducers affect parameter δ. Therefore, in this subsection, we analyze the effect of
parameters β and δ on HIV infection.

From Theorems 3.1, 3.2 and 5.1, the immunity-inactivated reproduction ratio R0 is a threshold to
determined whether actively infected cell dies out or prevails. Hence, we first explore the effects of
parameters β and δ on R0 by Latin hypercube sampling with 1000 samples and Partial Rank Correlation
Coefficient (see Figure 3). Figure 3 shows the Partial Rank Correlation Coefficients of R0 in respect to
β and δ, which implies that β and δ are both positive correlative variables with R0, and β contributes
more to R0 compared to δ.

-1 -0.5 0 0.5 1

β

δ

Figure 3. The tornado chart of PRCC for coefficients associated with R0.

Then, we perform the effects of β and δ on the number of actively infected cells by decreasing the
same proportion of parameter values (see Figure 4). As shown from Figure 4, decreasing the values of
β are more conducive to reduce the number of actively infected cells, while the values of δ has little
effect, which is in agreement with Figure 3.
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Figure 4. The effects of the parameters β and δ on the number of actively infected cells with
initial condition x(0) = 873.1423, u(0) = 1.4090, y(0) = 207.4517, z(0) = 3.3276, τ = 2.5
and other parameters are listed in Table 2.
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7. Conclusions and discussion

In this paper, we consider an HIV infection model with latent reservoir, delayed CTL immune
response and immune impairment. Assuming that the number of actively infected cells y(t) can be
considered as a measure of free virus v(t), then system (1.2) can be transformed into system (1.3).
By a vigorous mathematical analysis, the threshold dynamics of system (1.3) is established and it
can be determined by the immunity-inactivated reproduction ratio R0. If R0 < 1, the infection-free
equilibrium E0 of system (1.3) is globally asymptotically stable for any CTL immune delay τ ≥ 0. If
R0 > 1, the immunity-activated equilibrium E∗ of system (1.3) is globally asymptotically stable when
CTL immune delay τ = 0. In addition, we see that a threshold τ0 for the CTL immune delay was
identified to characterize the existence of Hopf bifurcation at the immunity-activated equilibrium E∗

when the CTL immune delay cross it. This implies that the introduction of the CTL immune delay τ
plays an important role in destabilizing the the immunity-activated equilibrium and leading to periodic
oscillation. Numerical simulations vividly illustrate our main results of stability analysis for system
(1.3). In addition, we perform the sensitivity analysis of threshold parameters R0 and the number of
actively infected cells y in respect to the parameters β and δ, which provides some suggestions for
clinical treatment of HIV-associated diseases.

If the latent reservoir is not considered in our model, then system (1.3) becomes the model proposed
in [24], the specific form is as follows:

dx(t)
dt

= λ − dx(t) − βx(t)y(t),

dy(t)
dt

= βx(t)y(t) − ay(t) − py(t)z(t),

dz(t)
dt

= cy(t − τ) − bz(t) − my(t)z(t),

(7.1)

where the descriptions of all variables and parameters in system (7.1) are consistent with system (1.3).
By calculation, the immunity-inactivated reproduction ratio of system (7.1) is given as R0 = λβ/(ad).
Compared with the works in [24], it is found that incorporating the latent reservoir into an in-host
HIV infection model could reduce the immunity-inactivated reproduction ratio, but the dynamics of
the model does not change. If the latent reservoir and immune impairment are not considered in our
model, then system (1.3) becomes the model proposed in [17]. Compared with the works in [17], it
is found that the immune delay could cause stable switching even if the latent reservoir and immune
impairment are not considered in the HIV infection model.

In addition, studies have found that uninfected cells can be infected through indirect virus-to-cell
infection or direct cell-to-cell transmission [34, 35]. Combining both virus-to-cell infection and cell-
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to-cell transmission into the model considered in this paper, we obtain the following system

dx(t)
dt

= λ − dx(t) − β1x(t)v(t) − β2x(t)y(t),

du(t)
dt

= fβ1x(t)v(t) + ηβ2x(t)y(t) − (δ + µ)u(t),

dy(t)
dt

= (1 − f )β1x(t)v(t) + (1 − η)β2x(t)y(t) + δu(t) − ay(t) − py(t)z(t),

dv(t)
dt

= Nay(t) − σv(t),

dz(t)
dt

= cy(t − τ) − bz(t) − my(t)z(t).

(7.2)

It may be difficult to study the dynamics of system (7.2) without any assumptions, which is also what
we need to break through in the future.
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