
MBE, 18(2): 1670–1688. 

DOI: 10.3934/mbe.2021086 

Received: 14 December 2020 

Accepted: 01 February 2021 

Published: 04 February 2021 

http://www.aimspress.com/journal/MBE 

 

Research article 

An enhanced diagnosis method for weak fault features of bearing 

acoustic emission signal based on compressed sensing 

Cong Wang1,2, Chang Liu1,2,*, Mengliang Liao1,2 and Qi Yang1,2 

1 School of Mechanical and Electrical Engineering, Kunming University of Science and Technology, 

Kunming 650093, China 
2 Key Laboratory of Advanced Equipment Intelligent Manufacturing Technology of Yunnan Prov-

ince, Kunming University of Science and Technology, Kunming 650093, China 

* Correspondence: Email: liuchang3385@gmail.com. 

Abstract: Aiming at the problems of data transmission, storage, and processing difficulties in the 

fault diagnosis of bearing acoustic emission (AE) signals, this paper proposes a weak fault fea-

ture enhancement diagnosis method for processing bearing AE signals in the compressed domain 

based on the theory of compressed sensing (CS). This method is based on the frequency band 

selection scheme of CS and particle swarm optimization (PSO) method. Firstly, the method uses 

CS technology to compress and sample the bearing AE signal to obtain the compressed signal; 

then, the compressed AE signals are decomposed by the compression domain wavelet packet 

decomposition matrix to extract the characteristic parameters of different frequency bands, and 

then the weighted sum of the characteristic parameters is carried out. At the same time, the PSO 

method is used to optimize the weight coefficient to obtain the enhanced fault characteristics; 

finally, a feature-enhanced-support vector machine (SVM) fault diagnosis model is established. 

Different feature parameters are feature-enhanced to form a feature set, which is used as input, 

and the SVM method is used for pattern recognition of different types and degrees of bearing 

faults. The experimental results show that the proposed method can effectively extract the fault 

features in the bearing AE signal while improving the efficiency of signal processing and analysis 

and realize the accurate classification of bearing faults. 
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1. Introduction 

Bearing is an important component of rotating machinery and has been widely used in various 

fields such as automation and medical treatment. Due to the harsh and complex working environ-

ment, it has become one of the most vulnerable parts of mechanical equipment. Its running state di-

rectly affects the safety, reliability, and service life of the whole mechanical system [1]. Therefore, it 

is extremely important to conduct fault diagnosis research on bearings. Bearing fault diagnosis is 

very complicated, especially since its early fault signal is extremely weak, which is easy to be sub-

merged in the noise signal of other components and cannot be detected [2]. However, the 

above-mentioned traditional vibration analysis method and current analysis method mainly classify 

the bearing faults at high speed, and it is difficult to accurately classify the vibration signals buried in 

noise and the current signals in the low-speed bearing faults. Compared with vibration analysis [3–5] 

and current signal analysis [6], AE signal has the following advantages: a) It is not affected by me-

chanical background noise; b) It is more sensitive to early and low-speed bearing faults; c) It is sen-

sitive to the location of the fault; d) It can provide good trend parameters; e) It has the characteristics 

of high frequency and obvious frequency [7]. Due to the above advantages, bearing fault diagnosis 

based on AE signals has been widely used, and some research results have been obtained. However, 

AE technology has the disadvantages of a large amount of time-domain data and difficulty in storage 

and processing. At the same time, high-frequency AE signals are accompanied by high sampling 

rates, and the combination of high sampling rates and massive data will bring greater challenges to 

the cost of acquisition hardware. This time-domain signal obtained based on the Nyquist sampling 

theorem has a large amount of redundant information, and then the workload of feature extraction 

and analysis for such a huge amount of data has increased exponentially. Therefore, fundamentally 

reducing the amount of data becomes an urgent problem to be solved by the AE signal fault diagno-

sis method. 

The CS theory proposed in recent years uses the transform space projection method to realize 

the compressed sampling of the original signal [8–10]. Most of the information contained in the 

original signal is obtained with very few measured data, thereby greatly improve the data transmis-

sion efficiency and reduce the data storage space, which provides a new idea for bearing AE signal 

fault diagnosis. At present, the bearing fault diagnosis method based on CS has received widespread 

attention.  

There are many application research of compressed sensing fault diagnosis focus on the opti-

mized feature extraction method. Literature [11] proposed a bearing fault diagnosis method based on 

CS and matching pursuit (MP) reconstruction algorithm. Literature [12] proposed a CS framework 

for characteristic harmonics to detect bearing faults. This method uses a compressed MP strategy to 

detect characteristic harmonics from sparse measurements under the condition of incomplete signal 

reconstruction. Literature [13] proposed a bearing fault diagnosis method based on CS. This method 

trains multiple over-complete dictionaries through the dictionary learning method. These dictionaries 

are effective for the sparse decomposition of signals in each specific state, while signals in other 

states cannot be sparsely decomposed. This method uses this characteristic to determine the fault 

state of the bearing. Literature [14] proposed a sparse representation classification strategy, which 

combined sparse representation with random dimensionality reduction to extract and classify the 

fault features of rotating machinery. Literature [15] proposed a fault diagnosis method based on 

sparse representation of time-frequency features, which can reconstruct the time-frequency features 

of fault signals from a small amount of compressed sampled data containing noise. Literature [16] 

proposed a method to directly extract the acoustic emission signal compression feature (AECF) from 
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the CS data, and the AECF trend is used to evaluate the running state of the bearing. Literature [22] 

proposed a fault diagnosis method based on SAE, which combines CS and wavelet packet energy 

entropy. 

Another hot-spot about compressed sensing fault diagnosis focus on the design classifica-

tion method. Literature [17] uses three methods to process the compressed data and the com-

pressed measured value is directly used as the input of the classifier to diagnose bearing faults. 

Literature [18] proposed a new intelligent classification method, which uses sparse 

over-complete features and a deep neural network (DNN) with an unsupervised feature learning 

algorithm based on sparse autoencoders (SAE) to classify bearing faults in compression meas-

urement. Literature [19] proposed a method for bearing fault diagnosis in a fluctuating environ-

ment based on the theory of compressed sensing. The proposed method can effectively reduce the 

amount of data required for bearing diagnosis and maintain similar accuracy to the current 

method. Moreover, the reconstructed signal can be used for other fault diagnosis methods. Liter-

ature [20] proposed a bearing fault diagnosis method based on CS and heuristic neural networks. 

Literature [21] proposed a new type of intelligent diagnosis method based on CS and deep learn-

ing. It uses the advantages of CS and deep learning to obtain high recognition accuracy with a 

small amount of measurement data.  

The characteristics of bearing fault diagnosis technology based on compression perception 

above were comprehensively analyzed. Based on the research in reference [16], this paper optimizes 

and improves the signal decomposition method and feature extraction method in the compressed 

domain. This method obtains the compressed signal by projecting the signal from the time domain to 

the compressed domain and is regarded as the original measurement signal; the wavelet packet de-

composition of the measured signal is carried out using the wavelet packet change matrix in the 

compression domain. The characteristic parameters of each frequency band information obtained are 

taken as feature vectors; the PSO algorithm is used to optimize the weighted coefficient of the fea-

ture vector to obtain the fault feature with enhanced feature; the SVM is used to identify and classify 

bearing fault types. The accuracy and practicability of the method are verified by fault experiments. 

The contribution of this method is as follows: 

a. A fault diagnosis method combining CS technology and AE signals is proposed. Compressed 

sampling greatly reduces the amount of AE data and retains most of the effective information of the 

signal for fault diagnosis. The problem of high hardware requirements for the AE signal due to large 

data volume is solved. 

b. The transform matrix of wavelet packet decomposition in the compression domain is derived 

from the time domain wavelet packet decomposition matrix, which is used to perform wavelet packet 

decomposition of the compression signal. The fault features of the compression domain of different 

frequency bands are extracted. 

c. Feature weighting is adopted to deal with fault features in the compression domain. The 

PSO algorithm is used to optimize the weighting coefficient of the fault features. This method 

realizes the enhancement of weak fault features and avoids the uncertainty of diagnosis results 

caused by the subjective and one-sided selection of feature information of different frequency 

bands. 

d. Experimental verification shows that the proposed method has a more satisfactory diag-

nostic performance for bearing fault diagnosis under low-speed conditions compared with the 

traditional method. 
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2. Theoretical background 

2.1. Compressed sensing theory 

CS was proposed by Candes et al. [8,9]. It makes use of the sparse characteristic of signals in a 

certain transformation domain to compress data while sampling the signal. The compressed data re-

tains most of the information of the original signal, and the reconstruction algorithm uses the obser-

vation data to reconstruct the original signal. Most signals in nature are not sparse signals, but a spe-

cific transform domain   can be found to make the signal sparse. CS theory points out that if the 

measured signal Nx R  is sparse in a certain transform domain  , a measurement matrix 
M NR   ( )M N  that is not related to the transform domain can be used to linearly project the 

measured signal to obtain the compressed signal 
Ny R . Then the original signal x̂  is recon-

structed with high probability by solving the optimization problem. The sparse representation of a 

signal x  on the orthogonal basis 
N NR   is 

 x s=  (1) 

where the transform coefficient  is sparse and contains only ( )k k N  non-zero elements. We 

select the measurement matrix   that is not related to  . The signal x  is projected to the meas-

urement matrix  . Then the reduced-dimensional projection data y  is expressed as 

 y x As= =  (2) 

where A =  is the perception matrix. To carry out effective and unique signal reconstruction, 

the expression is often solved by optimizing 1l  norm [23] and the greedy algorithm 

 
1

      x̂ arg min x s.t. As y= =  (3) 

2.2. Random projection distance preservation 

The signal Nx R  uses a random measurement matrix   of size M N  for compression 

measurement to obtain compressed data y  of size 1M  . Then the relationship between the origi-

nal signal and the compressed data can be expressed as 

 ( ) ( )
2 2 2

1 1x y ( x y ) x y  − −  −  + −  (4) 

where (0,1)  , the original signal x  has approximate distance preserving in Euclidean space be-

fore and after projection. Thus, sufficient effective information of the original signal is preserved in 

the compressed data, which provides a theoretical basis for the feature extraction method of the 

compressed domain in this paper. 

When the measurement matrix meets the requirement of random projection distance preserving, 

the signal can be accurately reconstructed. In this paper, the Gaussian random matrix that satisfies 

the random projection distance preserving property with a high probability is used as the measure-

ment matrix to compress and sample the signal. The measurement matrix is constructed by generat-

ing a matrix   with the size of M N , so that each element   independently obeys a Gaussian 

distribution with a mean value of 0 and a variance of 1 M  [24,25]. This measurement matrix is a 
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random measurement matrix, which is not related to most orthogonal bases or orthogonal dictionar-

ies, and the number of measurements required for accurate reconstruction is small. 

3. Compressed domain feature enhancement 

The reduction of signal feature information after original signal compression will affect the ef-

fect of subsequent fault diagnosis. This paper proposes a week feature enhancement method for im-

proving the accuracy of fault classification. 

3.1. Compressed domain transformation matrix based on random projection preservation 

Original Signal

Wavelet Packet 

Decomposition

Compressed 

Signal 

Wavelet Packet 

Decomposition 

Time Domain Compressed domain

Compressed domain 

transform matrix 

 

Figure 1. Schematic diagram of the compressed domain transformation matrix based on 

random projection distance preservation. 

Wavelet packet decomposition can decompose the signal into different frequency bands adap-

tively, without leakage, and without overlapping according to the feature of the signal. It not only 

improves the time-frequency resolution of the signal but also obtains more detailed information 

about the signal. In this paper, wavelet packet transform is used to decompose the compressed signal 

to extract signal features. The time-domain wavelet packet transform matrix of the original signal 
Nx R  is 

N NT R  , then the decomposition process of the original signal x  can be expressed as 

 f Tx=  (5) 

where 
Nf R  is the signal component of the signal x  after wavelet packet decomposition in time 

domain space. Similarly, the wavelet packet transform matrix of the compressed signal 
My R is 

ˆ M MT R  , then the decomposition process of the compressed signal is 
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 ˆ ˆf Ty=  (6) 

where 
Mf̂ R  is the signal component of the compressed signal y  after the wavelet packet de-

composition in the compressed space. According to the distance preserving property of random pro-

jection, the dimension reduction observation vector f̂  is obtained by projecting the transformation 

vector f  on the random measurement matrix  . Similar to the original signal transformation 

process, the dimensionality reduction observation vector f̂  is regarded as the compressed data y  

obtained through signal transformation, then the compressed domain signal transformation can be 

expressed as ˆ ˆf Ty= . The premise of analyzing the dimensionality reduction observation vector is to 

obtain the compression domain transformation matrix T̂ , then the solution formula is 

 ˆ ˆf f Tx T x  = = =  (7) 

 1=T̂ T  −  (8) 

In Eq (8), the random measurement matrix   is not a square matrix, and the least-squares ap-

proximation solution needs to be solved by pseudo-inverse 
1 −
 so as to solve the transformation 

matrix T̂  in the compression domain. In this paper, the compression domain transformation matrix 

is firstly used to decompose the compressed signal, and then the signal features are extracted. As 

shown in Figure 1, the schematic diagram of the compression domain transformation matrix based 

on random projection distance preservation is presented. Therefore, the method in this paper can ex-

tract the characteristic information of the compressed signal for diagnostic analysis on the premise of 

ensuring that the compressed signal retains enough effective information of the original signal. 

3.2. Feature enhancement process 

The compressed signal is decomposed by wavelet packet to obtain signal features of different 

frequency bands. Since different frequency bands all contain the local feature information of the sig-

nal, if this feature information can be fully utilized, the accuracy of fault classification can be further 

improved. Therefore, this paper proposes to weight the decomposed signal features, and the PSO 

method is used to optimize the weight coefficient so as to realize the adaptive selection of the signal 

features of different frequency bands. 

The PSO algorithm is an intelligent optimization algorithm that tracks the optimal particles in 

the solution space for searching by simulating the predation behavior of birds. Assuming that there 

are  particles in the D -dimensional search space, where the position of the i -th particle 

is 1 2( , , , )i i i iDX x x x= , and the velocity of the corresponding i -th particle is 1 2( , , , )i i i iDV v v v= . 

The best position experienced by the -th particle individual is 1 2( , , , )i i i iDpbest p p p= , the best 

position experienced by the population is 1 2( , , , )Dgbest g g g= , then the velocity and position up-

date formula of each particle is 

 
1

1 1 2 2( ) ( )k k k k

id id id id d idv wv c r pbest x c r pbest x+ = + − + −  (9) 

 
1 1k k k

id id idx x v+ += +  (10) 

where  is the inertia weight; 1c
， 2c

 are acceleration factors; 1r ，2r  are random numbers between 
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[0, 1]; 1,2, ,d D= ; 1,2, ,i D= ; k  is the current iteration frequency. 

Table 1. PSO algorithm parameter settings. 

Allowable 

Error 

The Maximum 

Number of Itera-

tions 

Particle 

Swarm Size 

 

Acceleration 

Factor  

Acceleration 

Factor  

Inertia 

Weight 

0.0001 400 700 1.5 1.5 0.8 

Start

Input training set 

compressed data

Compressed domain wavelet 

packet decomposition

Calculate the fitness value of 

each particle

Compare fitness value, 

update individual history, 

global best position

Update the position and 

velocity of each particle

Number of 

iterations 

reached ?

Output optimal 

weight coefficient

Yes

No

Initialize particle swarm

End
 

Figure 2. Flow chart of feature enhancement algorithm based on PSO. 
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In the optimization process of the particle swarm optimization algorithm, each particle has a 

fitness function to determine whether the position it has experienced so far is optimal, and then the 

position is updated after comparison. The distribution of signal feature weight coefficients directly 

affects the fault classification effect. At this time, it is necessary to ensure that the distance between 

compressed signal feature classes is as large as possible. Therefore, this paper takes the average dis-

tance between compressed signal feature classes as the fitness function, and the expression is as fol-

low 

 
, 1

1

1

n

i ij

i j
i j

D d
n =



=
−
  (11) 

where iD  is the average distance between the i -th type and other classes, ijd  is the distance be-

tween the i -th type feature and the j -th type feature, and n  is the number of fault types. 

The particle swarm optimization algorithm steps are as follows: 

Step 1: Initialize the particle swarm and set various parameters. 

Step 2: Evaluate the fitness of each particle according to the fitness function. 

Step 3: Compare the fitness value and update the individual historical best position pbest  and 

the global best position gbest . 

Step 4: Update the position x  and velocity v  of each particle according to Eqs (9) and (10). 

Step 5: Turn to step 2 to loop iteratively until the number of iterations is satisfied or within the 

allowable error range, and output the best fitness value and particle position. 

The flow chart of the feature enhancement algorithm based on PSO is shown in Figure 2. When 

setting the parameters of the particle swarm, the main parameter values are shown in Table 1. 

4. Fault diagnosis method of bearing acoustic emission signal 

By combining CS theory with the PSO algorithm, the problem of AE signal data redundancy can 

be effectively solved, and the frequency band features containing the main feature information can be 

adaptively selected to avoid the uncertain influence of subjective parameter setting on experimental 

results. After the original signal is compressed and sampled, the amount of data is reduced. The 

compressed signal is decomposed by the wavelet packet in the compressed domain. The PSO algo-

rithm is used to adaptively select the obtained frequency band features, and the fault features are en-

hanced. Finally, the faults are classified by the SVM. The basic process of bearing AE signal feature 

enhancement fault diagnosis is shown in Figure 3. The specific steps of the method for enhancing the 

diagnosis of bearing AE signal weak fault features based on CS are as follows: 

a. AE signals of different fault states of the rolling bearing are collected by the AE acquisition 

system to form a data sample set. 

b. The Gaussian random matrix is selected as the measurement matrix  . Using Eq (2), 

the N -dimensional AE signal x  is projected to obtain the M -dimensional measurement value y . 

c. The wavelet packet decomposition matrix T̂  in the compressed domain is obtained by Eq (7). 

The transformation matrix T̂  is used for wavelet packet decomposition of the measured value y . 

The time domain and frequency domain features of different frequency bands are extracted to form the 

feature set of the compression domain. 

d. The PSO algorithm is used to calculate the weight of signal features of each frequency band 

so as to obtain feature sets with sufficient distance between classes. 
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e. Input the enhanced feature set into the SVM classifier for training and testing, and finally re-

alize the fault diagnosis of the rolling bearing. 

 

Figure 3. Flow chart of fault diagnosis for bearing AE signal feature enhancement. 

Drive device Transmission device Test device Loading device

Rail deviceProtective device

AE sensor

 

Figure 4. Bearing failure test bench. 

5. Experimental verification and analysis 

In order to verify the effectiveness of the method in this paper, thrust ball bearings are used for 

fault simulation experiments, which simulate three states of normal bearing, raceway failure, and 

rolling element failure. The ball bearing is installed on the bearing failure simulation test bench, 



1679 

Mathematical Biosciences and Engineering  Volume 18, Issue 2, 1670–1688. 

which is composed of six parts: drive device, transmission device, test device, loading device, guide 

rail device, and anti-overload protection device. AE sensors are used to collect bearing AE signals. 

The AE acquisition system consists of sensors, preamplifiers, data acquisition cards, hosts, and dis-

play. The layout of the test bench and sensors is shown in Figure 4. The experiment uses electrical 

discharge machining technology to process single-point pits on the central position of the bearing 

raceway and rolling elements to simulate the weak bearing fault. The corresponding fault diameters 

are 0.5 mm, 1 mm, 1.5 mm, and the depth is 0.65 mm, as shown in Figure 5. The spindle speed of the 

test bench is 400 rpm, the preamplifier is set to 60 dB, the sampling frequency is 1 MHz, and the 

number of data points is 1,638,400. 

0.5mm

1.5mm

1mm

0.5mm

1.5mm

1mm

 

Figure 5. Failure diagram of bearing parts. 

5.1. Feature enhancement based on compressed sensing 

This paper mainly studies the AE signal with reduced data volume after compression. The AE 

signal is obtained by constructing a Gaussian random measurement matrix and performing random 

projection compression on it. Figure 6 shows the time domain waveform diagram and frequency 

spectrum of the AE signal before and after compression of a sample under the three states of normal, 

race failure, and rolling element failure. It can be seen from Figure 6 that compared with the original 

AE signal, the compressed AE signals in the three states exhibit relatively similar random character-

istics in both the time domain and the frequency domain. The obvious periodic fault features of the 

original signal cannot be well-reflected. This is due to the loss of some time-domain features of the 
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signal during the compression measurement process. At this time, conventional AE signal analysis 

methods cannot accurately and effectively perform feature extraction and classification. 

 

(a)                                      (b)    

 

(c)                                      (d)                      

Figure 6. Time-domain waveforms and spectrograms of three states before and after AE 

signal compression. (a) Original AE signal waveform; (b) Original AE signal spectrum; (c) 

Compressed measurement data waveform; (d) Compressed measurement data spectrum. 

Since compressed data shows randomness in amplitude, in order to obtain enough feature in-

formation of compressed domain signals, this paper extracts features from compressed data in the 

time domain and frequency domain. This paper extracts twenty-eight fault features including thir-

teen-time domain parameters ( 1~ 13T T ) and fifteen-frequency domain parameters ( 14 ~ 28T T ) 

from the wavelet packet decomposition components of the compressed data. The specific feature pa-

rameter names and calculation formulas are shown in Table 2. 19T  and 20T  indicate the change of 

the position of the main frequency band and 21~ 25T T  indicate the degree of dispersion or con-

centration of the spectrum. In Table 2, kX  is the spectrum of signal x , where 1,2, , / 2.56k N=  

is the number of spectral lines, and N  is the number of sampling points of signal  

x .
2 2[ ] 2 KPS k X N= , 2.56 sf f k N=  , 1 2M N= + , 

/2.56

1
[0] [ ]

N

k
P PS PS k

=
= + , 
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/2.56

0
0 ( [ ] ) /

N

k
P PS k f P

=
=  . 

Table 2. Characteristic parameter table 

Serial Number Feature Name Serial Number Feature Name 

1T  Absolute mean 15T  Spectral mean 

2T  Mean 16T  Spectral skewness index 

3T  Peak index 17T  Spectral kurtosis index 

4T  Margin index 18T  Root mean square frequency 

5T  Kurtosis index 19T  1P  

6T  Skewness index 20T  2P  

7T  Zero peak 21T  3P  

8T  Impulse indicator 22T  4P  

9T  Peak-to-peak 23T  5P  

10T  Effective value 24T  6P  

11T  Waveform index 25T  7P  

12T  Variance 26T  Frequency center 

13T  Square root amplitude 27T  Spectral variance 

14T  Total spectrum 28T  Amplitude spectral entropy 

/2.56 2

0
( [ ])

1

N

k
f PS k

P
P

=


=


 ,

/2.56 2

0

/2.56 4
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P
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=

=


=

 




 ,

/2.56 3

0

/2.56 2 3

0

1 ( [ ] )
3

(1 ( [ ] ) )

N

k

N

k

M PS k P M
P

M PS k P M

=

=

−
=

−




 ,

/2.56 4

0

/2.56 2 2

0

1 ( [ ] )
4

(1 ( [ ] ) )

N

k
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k

M PS k P M
P
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=

=

−
=

−
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 ,
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2.56 (( 0) [ ])
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f P PS k

P
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=
−
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

 ,
5

6
0

P
P

P
=  ,

/2.56 3

0
(( 0) [ ])

7
5

N

k
f p PS k

P
P

=
−

=


  

According to the feature enhancement method in this article, firstly, the AE data of different 

states are obtained. Two hundred sets of data are taken from each state, and 8192 sample points are 

intercepted from each set of data. Secondly, the AE data is compressed and measured, and a total of 

600 sets of data are compressed and projected to obtain compressed data with a length of 4096 

(downsampling rate 2R = ). Then feature extraction is carried out for the compressed domain data. 

According to experience, three-layer wavelet packet decomposition is selected, and each group of 

sample signals will generate 8 component signals of different frequency bands so that there are 4800 

component signals of 600 × 8. Twenty-eight eigenvalues of each group of sample wavelet packet 

decomposition data are calculated to obtain an eigenmatrix of the sample signal compression domain 

with a size of 4800 × 28. Finally, most of the multi-component signals of these compressed data 

contain low-frequency information and high-frequency noise signals of bearing operation, and the 

fault information contained therein is masked, which has a strong interference effect on fault identi-

fication. Therefore, in order to improve the classification accuracy of compressed data, weaken the 

interference of high-frequency noise, and enhance the weak fault characteristic signal, the PSO 
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method can be used to optimize the characteristic weight coefficients of the eight components of the 

wavelet packet decomposition of each sample to realize the characteristic enhancement and obtain a 

600 × 28 eigenvalue matrix. 

One feature that is relatively obvious in comparison among the three sample data is selected. As 

shown in Figure 7, the signal feature is extracted directly after compression and the Characteristic 

parameters of the signal after the fault feature is enhanced. It can be seen from Figure 7(a) that the 

compressed feature parameters are in disorder and difficult to classify. In Figure 7(b), the com-

pressed signal is decomposed by wavelet packet by the method of this paper, and the features of each 

compon-ent signal are extracted for weighted summation. It can be seen that the characteristic pa-

rameters of different types of faults obviously have certain laws. Normal and faulty bearings are ef-

fectively separated. The two faults of the raceway and rolling element are relatively poor, but they 

can still be clearly identified. This paper takes different types of fault features as input and selects a 

suitable proportion of training set and test set. The fault type and classification accuracy are deter-

mined by the matching degree of training set prediction classification and test set classification. 

 

(a)                                      (b)                      

Figure 7. Comparison of features extracted directly from compressed domain and feature 

parameters after feature enhancement. (a) Compressed domain feature parameters; (b) 

Feature parameters after fault feature enhancement. 

5.2. Bearing fault diagnosis with enhanced compression domain features based on SVM 

The feature set is formed by feature extraction and enhancement of the compressed data, and the 

feature vector matrix is divided into the training set and the test set by 4:1. The kernel function of 

SVM selects the Gaussian radial basis function, and the results of classification using this method are 

shown in Table 3. It can be seen from Table 3 that the data samples are divided into three categories. 

The test sample numbers 1–40, 41–80, 81–120 are a group of samples corresponding to normal, race 

failure, and rolling element failure. The 120 samples in the test set use the weak fault feature en-

hancement algorithm to accurately identify various fault samples with a classification accuracy of 

100%.  
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Table 3. Classification results of different types of faults. 

Fault Type Speed/rpm 
Fault Diame-

ter/mm 

Sample 

Number 

Classification Ac-

curacy Rate/% 

Normal 400 0 1-200 100 

Race failure 400 0.5 201-400 100 

rolling element failure 400 0.5 401-600 100 

Table 4. Different degrees of seat ring/rolling element failure parameter table. 

Fault State Speed/rpm Fault Diameter/mm Sample Number 

Race/rolling element 

failure degree 

400 0 1–200 

400 0.5 201–400 

400 1 401–600 

400 1.5 601–800 

 

(a)                                      (b)    

  

(c)                                      (d)  

Figure 8. Compressed domain features of different experimental types enhance the front and 

back feature parameters. (a) Feature parameters directly extracted from race faults; (b) Feature 

parameters after enhanced race fault features; (c) Feature parameters directly extracted from 

rolling element faults; (d) Feature parameters after enhanced rolling element fault features. 



1684 

Mathematical Biosciences and Engineering  Volume 18, Issue 2, 1670–1688. 

In order to further verify the effectiveness of the method in this paper, the different faults of 

bearing races and rolling elements are diagnosed. When the spindle speed is 400 rpm, the diameter of 

the race failure and the rolling element failure are respectively 0.5 mm, 1 mm and 1.5 mm. There are 

three types of failure samples. The specific parameter settings are shown in Table 4. After the same 

compression measurement, three-layer wavelet packet decomposition, feature enhancement, and 

classification process, the ratio of the training set to the test set is 4:1. The experimental characteris-

tic parameters of different degrees of failure before and after the compression domain feature en-

hancement are shown in Figure 8. It can be seen from Figure 8(a) and (c) that feature extraction is 

conducted on the compressed data obtained from the race fault degree experiment and the rolling 

element fault degree experiment, and the characteristic parameters of different fault types are all 

mixed, irregular and difficult to separate. From Figure 8(b) and (d), it can be seen that the feature 

parameters of different fault levels obtained by the feature enhancement method of the PSO algo-

rithm to optimize the weight coefficients show more regularity, better classification and recognition, 

and larger class spacing. So as to provide more accurate classification information for subsequent 

bearing fault diagnosis and greatly improve the accuracy of diagnosis. The classification results of 

the fault feature enhancement diagnosis method are shown in Table 5. The weak fault feature en-

hancement method based on the proposed method can accurately identify faults of different degrees 

with 100% classification accuracy for different experimental types. Therefore, the four different de-

grees of race faults and rolling element faults can be accurately identified with 100% classification 

accuracy for fault diagnosis using this method. 

Table 5. Classification results of different degrees of seat/rolling element failure. 

Experiment Type 
Training 

Samples 
Test Sample 

Identify the 

Sample 

Diagnostic Accuracy 

Rate/% 

Race failure degree test 640 160 160 100 

Rolling element failure 

degree experiment 
  640 160 160 100 

Through the verification of experimental data, we can see that the fault diagnosis method in this 

paper has obtained perfect results. It can not only correctly classify various faults but also identify 

different degrees of faults, and the recognition accuracy of each fault can reach 100%. It shows that 

the method proposed in this paper is effective, which can accurately diagnose different types of 

bearing faults while reducing the amount of data. 

The compression rate reflects the degree of compression of the original signal. Restricted by the 

constrained equidistance condition, an excessively large compression rate under the condition of a 

limited number of sampling points will cause serious information loss of the compressed signal. The 

signal reconstruction error of the normal bearing AE signal under different compression ratios is 

shown in Figure 9. It can be seen that as the compression rate increases, the reconstruction error of 

the signal gradually increases, and the reconstruction error is basically in the range of 30 to 50%. 

When the compression ratio is in the range of 2–4, the OMP method can obtain a smaller reconstruc-

tion error, and the reconstruction effect has become better. When the compression ratio is greater 

than 10, the reconstruction error is large, and the feature information in the compressed data is great-

ly reduced. 

Discrete Cosine Transform (DCT) is an orthogonal projection transformation method that trans- 
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forms a signal from the time domain to the frequency domain. The key information of the signal is 

mainly concentrated on a few low-frequency coefficients. DCT is suitable for sparse representation 

of local singular parts and has a good effect on sparse representation of low-frequency parts. It has 

strong energy concentration characteristics and decorrelation performance and has good robustness 

to noise. The Orthogonal Match Pursuit (OMP) algorithm is an iterative greedy algorithm and a clas-

sic algorithm for solving the 1l  norm. The algorithm calculates the current optimal solution in each 

iteration, updates the residuals, and finds the optimal global solution through continuous iterations. 

The calculation speed is fast, and it is easy to implement. It is very suitable for signal reconstruction. 

According to the above analysis, the DCT method is used to sparsely represent the original AE 

signal, the OMP method is used to reconstruct the signal, and the compression rate R = 2 is selected 

to reconstruct the original signal. The signal reconstruction error is 0.31, and the signal-to-noise ratio 

is 5, indicating that the reconstruction method using CS can restore the original signal more accu-

rately. Therefore, the effective key information in the original signal is retained in the compressed 

measurement data, and the original signal can be reconstructed with a lower reconstruction error. 

This provides sufficient feature information for feature extraction in the compressed domain. 

 

Figure 9. Signal reconstruction errors under different compression rates. 

5.3. Compare with existing methods 

In order to further verify the effect of the bearing AE signal fault feature enhancement method 

based on CS, we selected several bearing fault diagnosis methods to compare with the method in this 

paper. Mainly include: a) Input the compressed data directly into the neural network and use the 

Softmax classifier to classify; b) Extract the features from the compressed data and input the support 

vector machine; c) The original AE signal input the support vector machine after extracting the fea-

tures. Under the conditions of the same parameters, the classification accuracy of the four bearing 

AE signal fault diagnosis methods is shown in Figure 10. 

It can be seen from Figure 10 that four-fault diagnosis methods are used for different degrees of 

seat ring failure, different degrees of rolling element failure, and different types of failures. The 

method in this paper has high diagnostic efficiency in the three types of experiments. The accuracy 

rate reaches 100%, which can realize accurate diagnosis of different fault states. The accuracy of the 

compressed data input neural network method is low under the three experimental conditions; the 

method of direct classification of compressed domain feature extraction has the lowest diagnostic 
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accuracy, and the lowest is only 57.5%; the diagnostic accuracy of the method of extracting features 

from the original AE signals for classification is relatively high, up to 96.67%, but fluctuates greatly 

under different experiments. In summary, compared with the traditional methods, the method in this 

paper has obvious advantages by enhancing the weak fault characteristics after CS. No matter in 

terms of diagnostic accuracy and the wide applicability and stability of the diagnostic method, the 

method in this paper shows good results. 

 

Figure 10. Classification results of different methods under three experimental types. 

The reason why the method in this paper is superior to other methods is that the processing ob-

ject of this paper is to compress the signal, and the less signal contains most of the characteristic in-

formation of the original time-domain signal. Then the weak fault features of the compressed signal 

can be enhanced by some adaptive selection of frequency band information, and the classification 

accuracy can be higher with fewer data; however, the traditional signal classification method based 

on time-frequency statistical feature parameters cannot accurately obtain all the information of the 

signal, so the diagnosis accuracy rate is low when combined with the SVM classifier; in addition, the 

compression signal classification method based on neural network is limited by the number of hidden 

layers, the number of training samples and the training method, resulting in unstable network per-

formance and low diagnostic recognition rate. 

6. Conclusions 

Aiming at the problems of high cost and difficulty in data processing caused by a large amount 

of data transmission in the fault diagnosis of bearing AE signal, this paper proposes an enhanced di-

agnosis method for weak fault features of bearing AE signal based on CS. The method presented in 

this paper is successfully applied to the fault diagnosis of rolling bearings under the condition of en-

suring high diagnostic accuracy. The method directly deals with the AE signal in the compression 

domain of the rolling bearing fault. The wavelet packet decomposition and the PSO method are used 

to realize the intelligent selection of frequency bands with more fault feature information. It not only 

solves the problem of the large data volume of AE signal data processing in fault diagnosis but also 

solves the problem of weak fault characteristics of compressed data. The signal appears in a random 
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and disordered state in the compressed domain. The components decomposed by wavelet packet 

contain a large amount of feature information. The method of adaptive feature weighting is used to 

extract effective and enhanced fault information, which avoids the blindness of component selection. 

The effectiveness of the proposed fault feature enhancement diagnosis method is verified by bearing 

fault experiments. The method in this paper can accurately identify different types of faults and dif-

ferent degrees of faults. The appropriate compression ratio is selected through the reconstruction er-

ror curve of the compression ratio so as to prove that the compression domain signal has enough 

feature information, and ensure the effectiveness of feature enhancement and the accuracy of fault 

diagnosis. Finally, compared with the other three traditional fault diagnosis methods, the method in 

this paper has better performance in terms of the stability of diagnosis and the accuracy of recogni-

tion. The method proposed in this paper provides a new idea for the fault diagnosis of compressed 

signal processing. At the same time, it provides a new diagnosis method for equipment fault diagno-

sis under big modern data, which has a high engineering application value. 
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