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Abstract: Community detection is a complex and meaningful process, which plays an important role
in studying the characteristics of complex networks. In recent years, the discovery and analysis of
community structures in complex networks has attracted the attention of many scholars, and many
community discovery algorithms have been proposed. Many existing algorithms are only suitable
for small-scale data, not for large-scale data, so it is necessary to establish a stable and efficient
label propagation algorithm to deal with massive data and complex social networks. In this paper,
we propose a novel label propagation algorithm, called WRWPLPA (Parallel Label Propagation
Algorithm based on Weight and Random Walk). WRWPLPA proposes a new similarity calculation
method combining weights and random walks. It uses weights and similarities to update labels in
the process of label propagation, improving the accuracy and stability of community detection. First,
weight is calculated by combining the neighborhood index and the position index, and the weight is
used to distinguish the importance of the nodes in the network. Then, use random walk strategy to
describe the similarity between nodes, and the label of nodes are updated by combining the weight
and similarity. Finally, parallel propagation is comprehensively proposed to utilize label probability
efficiently. Experiment results on artificial network datasets and real network datasets show that our
algorithm has improved accuracy and stability compared with other label propagation algorithms.
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1. Introduction

With the rapid development of the Internet, social networks are quickly entering people’s life, which
makes the idea of ”all things interconnected” possible. The surge in the number of users has led to a
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massive increase in online personal information, which has formed a variety of network structures from
simple to complex. Personal information includes trajectories of their activities and connections with
other individuals or groups, and the opinions and ideas they express are rapidly gaining popularity with
the emergence of online social networks [1]. With the increasing popularity of sina weibo, WeChat,
Facebook and Twitter, as a new product, social network has attracted the attention of many scholars in
the field of data mining and analysis. Studying the communities in the network can help understand the
structure and function of the entire network, analyze and predict the interactions between the elements
of the entire network. Social networks, as a new type of communication model for people, usually
contain a large amount of content data and link data that can be used for analysis [2, 3]. Content
data may contain text, images, audio, and other multimedia data, and the nature of link data is the
communication among entities. Therefore, this new communication mode provides unprecedented
rich data for data mining research, from which huge benefits can be obtained through analysis and
research [4, 5].

Community detection plays an important role in multiple areas such as e-commerce, precision
advertising, and epidemic prevention and control [6]. With the development of community detection
technology, great achievements have been made by studying data from various industries [7]. While
the data changes people’s life style, the huge amount of data brings great challenges, the network
structure becomes more complex, and the research of stable and efficient algorithm becomes an urgent
problem. At present, there are many community detection algorithms, but these algorithms are only
suitable for small datasets. When dealing with massive data, there are some disadvantages, such as
slow speed, instability, poor scalability and so on [8]. Therefore, it is necessary to conduct a deeper
research on the network to cope with this change.

In this paper, we propose an algorithm based on the Label Propagation Algorithm (LPA). Firstly,
the LPA algorithm automatically updates the label of the node until it converges. In the process of
label selection, how to select the neighbor node and select which neighbor node to update the label of
the current node will affect the partitioning of the label propagation algorithm. Therefore, weight is
used to distinguish the influence of nodes. Generally speaking, the nodes with higher weights are more
important in the network. Through the calculation of weights, the stability of the algorithm is greatly
improved. Secondly, the method of parallelizing the algorithm to adapt for the large dataset is another
point, and the parallel algorithm has good performance on the large data set.

Generally, the main contributions of our paper are as follows:
1). On the basis of label propagation, we propose Label Propagation Algorithm based on Weight

and Random Walk (WRWLPA), which calculates the weights for each node, and combines the idea of
random walks to calculate similarity.

2). After computing weights and similarities, we further parallelize the algorithm and propose
Parallel Label Propagation Algorithm based on Weight and Random Walk (WRWPLPA).

3). We have done comparative experiments on artificial network datasets and real network datasets
to prove the effectiveness of WRWPLPA algorithm, improves accuracy and stability compared to other
label propagation algorithms.

The rest of the paper is organized as follows. Section 2 briefly presents the related works in the field
of community detection, the original label propagation algorithm and its shortcomings are described.
Section 3 gives a detailed introduction to the new improved parallel label propagation algorithm based
on weights and random walk (WRWPLPA), followed by experiments and its results in Section 4.
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Finally, the conclusion and future work are discussed in Section 5.

2. Related works

In recent years, community detection algorithms have become a hot topic in social networking, and
have achieved very gratifying results in various fields, such as 5G networks [9]. Early community
detection algorithms include graph partitioning algorithm [10], hierarchical clustering algorithm [11],
partition clustering algorithm [12]. Nguyen et al. [13] improved the greedy algorithm K-L algorithm,
the core idea is to use the greedy algorithm to maximize the cost function, so as to achieve the purpose
of community partitioning.

The idea of hierarchical clustering method is to divide the whole network into a hierarchical
community structure according to the similarity among nodes in the network, also known as the split
method. The split method considers the whole network as a large community at the beginning, and
gradually deletes the edge between the lowest similar nodes in the network, thus dividing the network
into a small community until the terminating condition is reached. In addition, according to the
specific scenarios and demands, we can choose the partition result at any time as the final partition
result. In 2002, Newman et al. [14] propose the classical GN algorithm, which is the most typical
top-down method. GN algorithm achieves the goal of community partition by removing the largest
number of edges in the network. Since the time complexity of GN algorithm is high, it is only
applicable to small scale networks. At the beginning of the condensation method, each node is
regarded as a separate community, and a small community is merged by a certain custom standard.

In 2004, the concept of modularity was proposed to evaluate the quality of community
detection [15]. The more obvious the community structure is, the higher the modularity is. After that,
modularity has become a standard to measure the quality of community detection algorithm, and the
problem of community detection has been transformed into the problem of modularity optimization.
The algorithm FN [15] combines the communities with the highest modularity increment in each
iteration, and divides the corresponding modules into the final result. Then there are many modularity
optimization variants, such as greedy algorithm [15], simulated annealing algorithm [16], extreme
optimization algorithm [17] and spectral optimization algorithm [18]. Steve Gregory et al. [19]
proposed an algorithm named CONGA that uses node splitting to discover overlapping communities,
and introduces the concept of local intermediation based on CONGA, proposes an improved
algorithm called CONGO [20]. Although modularity is widely used, it still has certain limitations.
For example, when modularity is maximized, small communities cannot be found [21]. In addition,
extreme degradation of modularity also exists, which requires further exploration by researchers [22].

In 2005, Palla et al. [23] propose a CPM (Clique Percolation Method) algorithm based on the
problem described by the overlapping community. CPM uses a connected complete subgraph (Clique)
to discover the structure of the overlapping community. The time complexity of the algorithm is high
because of the search for K-Clique in the network. On the basis of CPM, many scholars and researchers
have made improvements, one of which is to extend the CPM algorithm to weighted networks and the
bipartite graphs. In addition, Kumpula et al. [24] also proposed a fast factional filtering algorithm SCP,
which is limited to the selection of initialization parameter K, and the community structure is different
according to different K values.

In 2007, Raghavan et al. [25] proposed a classic label propagation algorithm. In each iteration, the
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algorithm selects the label that appears most frequently in the neighbor nodes. The time complexity is
linear, which can quickly discover the community, so it can be applied to large complex networks. In
2009, Leung et al. [26] introduce the weight value (score) for each label to measure the propagation
capacity of the label. In 2011, Xie et al. [27] introduced the concept of speaker and listener on the label
propagation algorithm. The core idea is to select a node as a listener in the process of updating the
node, all of its neighbor nodes are its speakers. Multiple speakers send label information to the listener.
Users need to customize the rules for listener to accept the label. At the same time, the algorithm saves
the label of the node selected in each iteration, it calculates the frequency of each label in the history
labels after stopping the iteration. The label with higher frequency is the label of this node. Tinghuai
Ma et al. [28] propose a label propagation algorithm based on probability and similarity, using the
propagation probability between nodes to discover the community and achieved good results.

COPRA [29] is proposed based on the label propagation algorithm in 2010. By specifying a global
parameter k, each node is allowed to have k labels, that is, belonging to multiple communities. This
is the first time to apply the label propagation algorithm to the overlapping community detection. In
2012, Zhihao Wu et al. [30] proposes a balanced multi-label propagation algorithm, which introduced
the concept of the belonging coefficient under the conditions that each node allowed to belong to
multiple communities. In the process of label propagation, each node gets the list of the label of
its neighbor nodes, and accumulates the corresponding belonging coefficient, then normalizes and
filters, and circulates the process until the stop condition is reached. Based on structural clustering,
overlapping communities can also be found. Tinghuai Ma et al. [31–33] proposes an overlapping
community detection algorithm LED (Loop Edges Delete), which has good performance in accuracy
and efficiency. Imen et al. [34] introduced a Node Importance based Label Propagation Algorithm
(NI-LPA) to detect overlapping communities in networks.

In recent years, many researchers try to discover community structure by different methods such as
density-based and clustering, subgraph-based method [35,36]. Kai Lei et al. [37] propose a knowledge
graph based solution for QEDL and developed a system consists of Question Entity Discovery (QED)
module and Entity Linking (EL) module. Zijing Liu et al. [38] present a graph-theoretical approach
to data clustering, which combines the creation of a graph from the data with Markov Stability, a
multiscale community detection framework. Recently, Jia Li et al. [39] extend the adversarial graphs to
more difficult community detection problems, focusing on black box attacks, and aim to hide targeted
individuals from the detection of deep graph community detection models. Zhang et al. [40] proposed
a Graph Layout based Label Propagation Algorithm to avoid the inaccurate and unstable in community
detection as the node order of label updating and the mechanism of label propagation are random. And
also, they used this algorithm as a Core Drug Discovery method in Traditional Chinese Medicine [41].

Researchers have made many attempts in community detection, incorporating advanced algorithms
and techniques into community detection. Nevertheless, the current algorithm still has problems such
as inability to process large-scale data, and lack of accuracy and stability. Different from the previous
algorithms, this paper proposes a new similarity calculation method based on node weights and random
walks in community detection, and uses the weights and similarities to update labels during the label
propagation process. This makes the model proposed in this paper have better performance in accuracy
and stability.
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Figure 1. General procedures of WRWPLPA.

3. Parallel label propagation algorithm based on weight and random walk

3.1. Label propagation algorithm based on weight and random walk

In the traditional label propagation algorithms, every node updates its labels by considering the
labels of its neighbors, there is no difference between neighbor nodes and they are all treated equally. In
fact, even for the same node, different neighbor nodes may have different influence, so it is reasonable
to assign a weight to each node. In our previous work [28], we proposed a parallel label propagation
algorithm based on probability and similarity, which can effectively weight nodes in large-scale social
networks. In this paper, we use the existed node weight calculation method [28] and propose a parallel
label propagation algorithm based on weight and random walk (WRWPLPA). We select and update
labels in the following steps. First, we use the method in our previous work to measure the weight of
nodes. Where after, we use the concept of random walk to describe the similarity between each pair of
nodes. Finally, weight and similarity are combined to update nodes’ labels.

The general procedures of our algorithm are shown in Figure 1.

3.2. Parallel label propagation algorithm based on weight and random walk

In this paper, we use GraphX [42] for parallelization. GraphX is a component in Spark for graphs
and graph-parallel computation. GraphX extends the Spark RDD as VertexRDD and EdgeRDD to
support graph computation. While we calculating the weight of each node, the GraphX can provide
Map-Reduce operators to parallel computing. The GraphX also provide bulk-synchronous parallel
messaging mechanism to synchronize the super steps. What we realize the parallelization is use the
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operators of Graphx.
The parallelization of WRWLPA (label propagation algorithm based on weight and random walk)

contain four steps: graph construction and neighbor collection, node weighting, similarity calculation
using random walk as well as node label initialization and selection.

3.2.1. Parallel graph construction and neighbor collection

Nowadays, social network datasets are so large that a single computer does not have enough
memory to store information. Typically, it is stored in a distributed file system, such as the HDFS
(Hadoop Distributed File System) or HBase (Hadoop database). Based on the parallel computation
framework Spark, GraphX can load the network data from the distributed file system and establish the
adjacency list with the given operator. There are many existing operators in GraphX: edgeListFile
operator provides a way to load a graph from an edge list, such as a txt format file, where each line
contains two node IDs; collectNeighbors and collectNeighborsIds operators can easily calculate the
ID of the neighbor node and the label information it carries. When a graph is constructed, each node
has an attribute with a default value of 1. In original graph, the tuple (a, 1) means the node ID and its
default attribute. The default attribute of each node can be changed by other operators, such as
collectNeighborIds operator can change the default value to NID, which represents the ID of the
node’s neighbor.

3.2.2. Parallel nodes weighting

In our previous work, we proposed an efficient method to measure weight of nodes. Nodes located
in the core of the network are the most important nodes. These nodes can be discovered by the k-shell
decomposition method. However, we can not use only K-shell method to calculate the weight of nodes.

Degree centrality is a typical type of local metric, which is very simple but ignores the information
carried by the node itself. For example, if the importance of a node is measured only by its degree,
all leaf nodes in the network will have the same importance. In fact, the importance of different leaf
nodes is different. At the same time, the location of nodes in the network also affects its importance. In
general, the nodes in the core of the network tend to be more influential. In this paper, the neighborhood
index and position index are calculated by combining the neighborhood attribute and location attribute
of nodes. We combine the two indexes to get the final weight of nodes.

Definition 1. Given a complex social network G(V, E), for any node ni ∈ V , the capability of node
ni to influence the neighborhood attribute is denoted as ICN(ni), is given by:

ICN (ni) =
d(ni) +

∑
n j∈N(ni) d(n j)

max
ni∈V

(d(ni) +
∑

n j∈N(ni) d(n j))
(1)

where, the degree of node ni and n j are d(ni), d(n j), respectively. N(ni) represents the neighbor of
ni, ICN(ni) denotes the neighborhood index and ICN(ni) ∈ [0, 1]. ICN can effectively distinguish the
nodes with the same degree. The higher the ICN value, the more important the node is.

Definition 2. Given a complex social network G(V, E), each node is given Ks value through the k-
shell decomposition method. For the node ni ∈ G, the Ks value of ni is assumed to be k. For each round
of K-shell decomposition, it is assumed that the number of iterations is m, and node ni is removed in
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the nth iteration of the k-degree process, 1 ≤ n ≤ m. W(ni) denotes the weight of node ni, defined as
follows:

W(ni) = Ks ∗ eICN(ni)+n/m (2)

In Eq (2), n/m denotes the position index, the neighborhood index and position index are combined
to calculate the weight of nodes. Ks is K-shell value, it means the node important, and the ICN(ni)
indicate the important around the neighbor, and the n/m means the centrality of ni, we use exponential
form to enlarge the weight value. For every Ks , the weight vary from Ks to Ks ∗ e2.

3.2.3. Calculation of similarity using random walk

The random walk model is proposed as random move [28], is an irregular diffusion process. In the
real world, many scenes can be expressed as random walk models, such as trajectories of ants walking,
brown movement of pollen, node-to-node propagation paths in social networks and so on. Although
these scenes are not completely random, the transition from the current state to the next state is random.

Due to the idea of label propagation, a node can propagate its own label to another node in a social
network. Random walk is a Markov model [43], which can also be called a special case of the Markov
chain. In a social network, a series of sequences accessed by a node can be obtained by random walks.
The mathematical expression of random walk process is as shown in Eq (3):

Xt = Xt−1 + et (3)

Where Xt represents the value at time t, Xt−1 represents the value at time t − 1, and et represents the
error between these two moments.

In this section, a random walk strategy will be used to describe the similarity between nodes. Except
using random walks to calculate similarity, there are other different measures, which are the ACT
(average commute time) [44] and MFPT (mean first passage time) [45]. These two methods are easy
to understand, but they are not suitable for large-scale network computing due to their high complexity.

The core idea of random walk based label propagation algorithm (RWLPA) [46] is to use random
walk to measure the distance between nodes. The farther apart the two nodes are, the less likely
they are to belong to the same community. According to the method described in the RWLPA, the
algorithm initially places a randomly walking walker on any node in the network and randomly selects
the next walk position according to the Markov model. For convenience of description, Pxy is used to
represent the probability that a random walker walks from node x to y in one step, and πxy(t) is used
to represent the probability that random walker walks from node x to node y through t steps, and uses
πx(t) represents the row vector of the x-th row of the matrix π(t). Pxy and πx(t) are calculated as follows:

Pxy =
axy

d(x)
(4)

πx(t) = πx(t − 1) · P (5)

Where Pxy is an element of the x-th row and y-column of the probability transfer matrix P. If there is
an edge between node x and node y in the network, the value of axy is 1; if there is no edge connection,
the value of axy is 0. The value of d(x) represents the degree of node x. Pxy means that Walker will
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randomly select the next node according to the degree of the node x. If there is no edge connected
between node x and node y, the value of Pxy is 0. In other words, walker in the random walk cannot get
from node x to node y directory. But after t step iteration, Pxy maybe is not 0. Use Simxy to represent
the similarity between node x and node y. The mathematical calculations are as follows:

Simxy(t) = d(x) · πxy(t) + d(y) · πyx(t) (6)

In the above expression, the value of d(x) represents the degree of node x. We use this form to
indicate the profanities from node x transfer to node y and from node y to node x, means whatever
node x and node y has connectivity, they have similarity. Assuming that node x and node y belong to
the same community, the theoretical similarity should be very high. However, due to the random nature
of random walks, a walker may walk to other communities or nodes that are far away, resulting in a
low degree of similarity between node x and node y. This is contrary to the fact and cannot achieve the
expected effect. In order to solve this problem, we can use a random walk strategy to accumulate the
similarity of the asynchronous numbers, and then calculate the average value to reduce the uncertainty
of a random walk. The mathematical formula for accumulating the averaging is as follows:

Sum AvgSimxy =

∑t
i=1 Simxy(t)

t
(7)

The importance of all nodes in RWLPA is the same, ignoring some inherent information of nodes
in the network, which leads to the inaccuracy of the final community division result. To solve this
problem, nodes must be assigned weights to distinguish between important and unimportant nodes in
the network. We combine the weights of nodes based on the similarity of random walk calculations,
so that the similarity between nodes can be calculated more accurately. Assuming that the weights of
node x and node y in the network are calculated as W(x) and W(y) by the Eq (2). We combine the
weighted and similarity together, to calculated the similarity of node y according to node x as follows:

NewSim(x,y) =
W(y)

W(x) + W(y)
+ Sum AvgSimxy (8)

Based on the above calculation of node weight and similarity between nodes, Label Propagation
Algorithm based on Weight and Random Walk (WRWLPA) is proposed. The pseudo-code of the
algorithm is shown in algorithm 1.

3.2.4. Parallel Label Propagation Algorithm based on Weight and Random Walk

Combine with the above steps, we propose Parallel Label Propagation Algorithm based on Weight
and Random Walk (WRWPLPA). Firstly, the probability transfer matrix between nodes is calculated
through random walk. As the number of steps t increases, the probability transfer matrix will tend to
a stable state. If the probability transfer matrix at this time is used to calculate the similarity between
nodes, the similarity does not depend on other parameters, but only on the degree of nodes. Therefore,
a higher value of t does not mean that the obtained similarity matrix is more accurate. The empirical
value t = 5 is used here [28]. Assume that the probability transfer matrix at time t = 0 is A, then
the probability transfer matrix at time t = 1 is AA = A2, and so on. Finally, the probability transfer
matrix Ai(i = 0, 1, 2, 3, 4, 5, · · ·) at each moment is calculated, then the similarity matrix S is obtained
according to Eq (7).
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Algorithm 1: Pseudo-code of WRWLPA
Input: G = (V, E).
Output: community structure of the network.

1 load data;
2 for n in V do
3 give the node a unique ID value;
4 end
5 calculate the weight of each node according to equation(2);
6 calculate the similarity of each node according to equation(8);
7 while 1 do
8 for n in V do
9 find the most frequent labels among the neighbours of node n;

10 if multiple labels have appeared most times then
11 find the node that maximizes NewSim and update the labels of the node n based on

maximizes NewSim node;
12 if multiple nodes with the highest similarity then
13 find the node with the highest weight among neighbors;
14 update label according to the node with maximum weight;
15

16 else
17 update label according to the node with maximum similarity;
18 end
19 else
20 update label according to the node with the most frequent labels;
21 end
22 end
23 flag = true;
24 for n in V do
25 if the label of the node is inconsistent with the most frequent labels in the neighbor nodes

then
26 set flag=false;
27 end
28 end
29 if flag=true then
30 reach stop condition and then end;
31 end
32 end
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Figure 2. After incorporating the weights, the running time of the model on different cores.

Then, using Spark’s broadcast mechanism, the similarity matrix S is broadcast to the entire cluster.
According to Eq (8), each node can calculate the updated similarity matrix S new by combining the
weights. After the weight and similarity matrix have been calculated, the label can be propagated.

In the label initialization stage, two-tuple (labeli, p) is used to replace the default attribute value of
node, where labeli represents the label of node, generally its node ID, and p is the probability that the
node belongs to this label. Since each node is a separate community, it is initialized using a two-tuple
(NID, 1.0), where NID is the ID of the node. In the label propagation phase and label selection phase,
the Pregel operator is used to send the label list information to its neighbor nodes. Three custom
functions need to be implemented in the Pregel operator. The sendMessage function and the
mergeMessage function are used to send messages and merge messages respectively; the
VertexProgram function is used to implement a custom node update strategy.

All the steps above are combined to achieve the parallelization of the algorithm WRWLPA. The
pseudo-code of the algorithm is shown in Algorithm 2.

3.3. Time complexity analysis

WRWPLPA can significantly improve the accuracy and stability of the label propagation algorithm
by adding the weights of nodes and incorporating the concept of random walk. This section analyzes
its time complexity. Assume that the network has m edges, n nodes and the average degree of the
nodes is k. As we all know, the label propagation algorithm can be performed using a linear time.
The WRWPLPA proposed in this section is not as good as the label propagation algorithm in time
efficiency, but it performs better in accuracy and stability.

For the initialization of each node as a separate community, the time complexity is O(n). In the
calculation of node weights, the K-Shell method is used, and the time complexity is also linear. As
shown in Figure 2, as the number of CPUs increases, the runtime of the algorithm decreases.

However, when using random walk to calculate the similarity matrix, the time complexity is O(n3),
which greatly increases the time cost of our method. Because our method is mainly dedicated to
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Algorithm 2: Pseudo-code of WRWPLPA
Input: G = (V, E).
Output: community structure of the network.

1 // Graph Construction and Neighbor Node Information Collection;
2 constructing a graph using the edgeListFile operator;
3 collect node degree information using outerJoinVertices operator;
4 collect neighbor node ID information using the collectNeighborIds operator;
5 // Calculate node weights;
6 k = 1, iter = 1;
7 while graph is not empty do
8 find nodes with degree of k;
9 while graph is not empty do

10 add the found node and iter values to the collection;
11 iter = iter + 1;
12 calculate sub-graph after removing nodes;
13 get the node set of degree k;
14 end
15 k = k + 1;
16 end
17 calculate node weights according to equation(2);
18 for nodes in graph do
19 get similarity matrix Sim from broadcast variables; according to formula (6)
20 receive weights, calculate updated similarity matrix NewSim; according to formula (8);
21 end
22 //Node initialization;
23 for nodes in graph do
24 the initialization label is the node’s own ID;
25 end
26 //Label propagation and selection;
27 while not reach the maximum number of iterations do
28 for nodes in graph do
29 Send label list;
30 end
31 for nodes in graph do
32 update the label according to the logic of label update in Algorithm 1;
33 end
34 end
35 Output the final community;

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1609–1628.



1620

improving accuracy and stability, based on comprehensive considerations, the time cost is not described
too much. The time complexity of each label propagation is O(m). In summary, the time complexity
of WRWPLPA is O(n3 + m · iter) (iter is the number of iterations of the algorithm).

4. Experimental design and results analysis

There are two ways to measure the quality of community division. For the real network datasets, it
is usually unable to accurately measure the community to which each entity belongs, so the modularity
is used to measure the accuracy of community division. The higher the modularity is, the better the
community division is. For the artificial network datasets, various parameters can be specified, such
as the number of specified partitions, the size of partitions and so on. After the algorithm divides
the community, the difference between the division results and the preset values can be evaluated by
calculating the normalized mutual information value between the two results. The algorithms in this
section will be validated and evaluated on the artificial network datasets and the real network datasets.
All algorithms run on a 2.6 GHz i7 processor, 16 GB computer.

4.1. Real network dataset

There are many real network datasets that have been abstracted into the realm of community
division. For example, the karate club network [47], which is a classic network dataset, is small and
representative. This network dataset has 34 nodes and 78 edges, the nodes represent the members of
the club, and the edges represent the relationship between members and members. Figure 3 shows the
network structure of the karate club. As shown in Figure 3, the entire network is divided into two
communities. Among them, node 1 represents the coach, and node 34 represents the club manager. In
addition to karate clubs, we also selected two network datasets, namely Polbooks Network
dataset [48] and Dolphin Network dataset [49]. The Polbooks dataset contains 105 nodes and 441
edges. The nodes of the network represent books related to US politics sold on the Amazon Online
Bookstore, and the edges of the network represent the number of readers who bought both books at
the same time. For the dolphin network dataset, it is a network of 62 nodes with 159 edges.

Figure 3. Karate club network.
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In this section, the three real network datasets will be used to evaluate the algorithms. The
algorithms used are the WRWPLPA proposed in this section, as well as the GN algorithm, the FN
algorithm, the label propagation algorithm LPA and the RWLPA mentioned in related works section.
In addition, we also compared with LPALC (Label Propagation Algorithm based on Local
Cycles) [50] and NILPA (New Improved Label Propagation Algorithm) [51]. The LPALC algorithm
improves the random selection process that exists in the LPA algorithm. When random selection is
required, the label of the neighbor node with the smallest node ring is selected. NILPA improves
model performance by incorporating weights in label propagation algorithms. We use modularity to
measure the performance of the algorithm on different datasets. Table 1 shows the comparison of
experimental results for different algorithms on different datasets.

Table 1. The modularity obtained by each algorithm on three datasets.

Datasets Q(GN) Q(FN) Q(LPA) Q(LPALC) Q(RWLPA) Q(NILPA) Q(WRWPLPA)

Karat Club 0.3581 0.3461 0.3894 0.4235 0.3916 0.3715 0.3918
Dolphin 0.5104 0.4803 0.4845 0.5037 0.5037 0.5265 0.5286
PolBooks 0.5168 0.5020 0.4986 0.4069 0.5081 0.5209 0.5274

From Table 1, it can be seen that the WRWPLPA algorithm proposed in this section has achieved
higher modularity on most case except Karat Club datasets. Karat Club dataset has obvious two
communities and the network topology is simple. It means for simple, small network, our algorithm
has no advantages. The experimental results show that the WRWPLPA algorithm is superior to the
four baselines on real network datasets in most cases.

4.2. Artificial network dataset

In this section, we use artificial datasets to verify the algorithm. The dataset uses the LFR
benchmark network [52]. We can set the parameter to generate the networks which meet our demand,
where n is the number of nodes, m is the number of edges, mu is the mixing parameters, k is the
average degree of nodes, maxk is the maximum degree of nodes, on is the number of overlapping
nodes, om is the number of memberships of the overlapping nodes, minc is the minimum community
size and maxc is the maximum community size. In particular, a network with a high value of mu
means the community is difficult to be uncovered correctly. The mixing coefficient is set to 0.1 to 0.8.
At the same time, the network size is set to 500, 1000, 1500, and 2000. The specific parameters are
shown in Table 2. NMI (Normalized Mutual Information) is an important measure of community
detection. NMI is often used to measure the similarity of two clustering results, which can objectively
evaluate the accuracy of a community division compared with the standard division. The range of
NMI is 0 to 1. The higher the NMI value, the more accurate the division.

Defining a confusion matrix N, where the rows stand for the real communities and the columns
stand for the found communities which had been found. The member of N, Ni j is simply the number of
nodes in the real community i that appear in the found community j. The number of real communities
is denoted cx and the number of found communities is denoted cy, the sum over row i of matrix Ni j is
denoted Ni and the sum over column j is denoted N j. NMI is defined as:

The calculation formula of NMI is as follows:

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1609–1628.



1622

Table 2. main parameter in LFR network

Datasets Parameter

Dataset scale n = 500,1000,1500,2000,
LRF Artificial network mu = 0.1 to 0.8, k = 20, maxk = 100, minc = 50,

maxc = 100, on = 0.1n, om = 3
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Figure 4. Result of 500-node network with different mu.

NMI(X,Y) =
−2

∑cx
i=1

∑cy

i=1 Ni j log
(Ni jN

NiN j

)
∑cy

i=1 N j log
(N j

N

)
+

∑cx
i=1 Ni log

(
Ni
N

) (9)

In the experiment, we set the mixing coefficient to vary from 0.1 to 0.8. When mu is from 0.1 to
0.5, the change range is 0.1; when mu is from 0.5 to 0.8, the change range is 0.05. In other words, for
each scale, there will be 11 networks with different mixing coefficients. For each network, use LPA,
LPALC, RWLPA, NILPA, WRWPLPA for analysis and evaluation of experiments.

Figure 4 shows the results of an experiment on a 500-node network. It can be seen from the figure
that when the mixing coefficient mu is less than 0.4, all three algorithms can obtain higher values. When
mu is small, the community structure is obvious, so the algorithm can usually get better community
division. When mu value is greater than 0.4, the value of LPA begins to decline. When mu is equal to
0.6, four baselines are no longer able to identify the communities, but WRWPLPA can also obtain a
good detection of community structure. When the value is greater than 0.65, all the algorithms cannot
find the community structure because the network becomes more complicated.

Figure 5 shows the network of 1000 nodes. It can be seen from the figure that all algorithms have
good accuracy when mu is less than 0.4; when mu is greater than 0.55, the value obtained by LPA and
LPALC decreases rapidly, which means that the algorithm is difficult to find the community structure;
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Figure 5. Result of 1000-node network with different mu.
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Figure 6. Result of 1500-node network with different mu.

when mu is greater than 0.6, RWLPA, NILPA, and WRWPLPA have a certain degree of decline, but
the NMI value obtained by RWLPA and NILPA falls faster.

Figures 6 and 7 show the network of 1500 and 2000 nodes, respectively. The comparison of the
values obtained by the various algorithms can be summarized as follows: When mu is less than 0.4,
the algorithm can get better community division; when mu is more than 0.4, the quality of community
classification obtained by the algorithm shows a downward trend, but the WRWPLPA declines more
slowly, which fully demonstrates the accuracy and stability.
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Figure 7. Result of 2000-node network with different mu.

5. Conclusions

The existing algorithms have the disadvantages of slow speed, instability and poor scalability when
dealing with massive data. In this work, we present a Parallel Label Propagation Algorithm based on
Weight and Random Walk (WRWPLPA). On the basis of calculating the weight of nodes, the idea of
random walk is fused, and WRWLPA is proposed by combining the idea of label propagation, which
has excellent performance in precision and accuracy.

Although the algorithm proposed in this paper have good performance in accuracy and stability,
there is still space for improvement, such as WRWLPA does not optimize the label propagation
algorithm thoroughly and cannot detect the dynamic network structure. Although the proposed
algorithm has been parallelized, in the actual cluster, there are still many places that can be optimized.
Future research can be conducted from the following aspects:

• It is hoped that in the future work, the characteristics of dynamic networks can be studied in
depth, the incremental similarity computation can be designed to adapt to dynamic networks, and
improve the practicability of the label propagation algorithm.
• We can study the optimization of the algorithm in parallelization, such as how nodes and edges

are partitioned to improve efficiency of the algorithm, and how to dynamically add nodes in the
network.
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44. W. Liu, L. Lü, Link prediction based on local random walk, EPL, 89 (2010), 58007.

45. P. Hanggi, P. Talkner, First-passage time problems for non-markovian processes, Phys. Rev. A, 32
(1985), 1934–1937.

46. X.-K. Zhang, C. Song, J. Jia, Z.-L. Lu, Q. Zhang, An improved label propagation algorithm based
on the similarity matrix using random walk, Int. J. Mod. Phys. B, 30 (2016), 1650093.

47. W. W. Zachary, An information flow model for conflict and fission in small groups, J.
Anthropological Res., 33 (1977), 452–473.

48. W. Li, C. Huang, M. Wang, X. Chen, Stepping community detection algorithm based on label
propagation and similarity, Phys. A, 472 (2017), 145–155.

49. D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, S. M. Dawson, The bottlenose
dolphin community of doubtful sound features a large proportion of long-lasting associations,
Behav. Ecol. Sociobiology, 54 (2003), 396–405.

50. X. K. Zhang, S. Fei, C. Song, X. Tian, Y. Y. Ao, Label propagation algorithm based on local cycles
for community detection, Int. J. Mod. Phys. B, 29 (2015), 1550029, 2015.

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1609–1628.



1628

51. T. Ma, Z. Xia, An improved label propagation algorithm based on node importance and random
walk for community detection, Mod. Phys. Lett. B, 31 (2017), 1750162.

52. A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for testing community detection
algorithms, Phys. Rev. E, 78 (2008), 046110.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1609–1628.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Related works
	Parallel label propagation algorithm based on weight and random walk
	Label propagation algorithm based on weight and random walk
	Parallel label propagation algorithm based on weight and random walk
	Parallel graph construction and neighbor collection
	Parallel nodes weighting
	Calculation of similarity using random walk
	Parallel Label Propagation Algorithm based on Weight and Random Walk

	Time complexity analysis

	Experimental design and results analysis
	Real network dataset
	Artificial network dataset

	Conclusions

