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Abstract: This paper tackles a recent challenge in smart city that how to improve the accuracy of
short-term natural gas load forecasting. Existing works on natural gas forecasting mostly reply on
a combined forecasting model by simply integrating several single-forecasting models. However,
due to the existence of redundant single-forecasting models, these works may not attain a higher
prediction accuracy. To address the problem, we design a new natural gas load forecasting scheme
based on ensemble multilayer perceptron (EMLP) with adaptive weight correction. Our method
firstly normalizes multi-source data as original data set, which is further segmented by a window
model. Then, the abnormal data is removed and subsequently interpolated to form a complete
normalized data set. Furthermore, we integrate a series of multilayer perceptron (MLP) network
to construct an ensemble forecasting model. An adaptive weight correction function is introduced
to dynamically modify the weight of the previous predicted result. Since the correction function
can match well the volatility characteristics of load data, the prediction accuracy is significantly
improved. Extensive experiments demonstrate that our method outperforms existing state-of-the-art
load forecasting schemes in terms of the prediction accuracy and stability.
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1. Introduction

With the rapid development of Internet of things, big data, cloud computing and the energy
revolution [1], the concept of “smart gas” has emerged as an important part of smart city. Smart gas is
oriented by the construction of intelligent pipe networks and user experience, and finally realize the
intelligence of gas network. Accordingly, how to ensure the reliability of natural gas supply has
become an urgent issue in smart city [2]. Since the reliable supply depends on the accurate prediction
of gas load, load forecasting plays a critical role in the maintenance of smart natural gas development.
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The gas load is a dynamic system and may be changed with different regions and different times.
Accordingly, it is very difficult for forecasters to choose an appropriate forecasting model that can
match well the law of load development in this region. It is still an open problem to accurately select a
prediction model suitable for local conditions. A number of researchers have reported many works. In
these solutions, traditional mathematical algorithms and statistical prediction methods, e.g.,
regression analysis [3, 4], are employed to address the above challenges. Nevertheless, economic
development and different user habits always lead to a large fluctuation in the total gas load.
Accordingly, traditional regression methods cannot adapt to the non-linearity variability of the current
gas daily load data [5], resulting in that the forecast results are far from the actual gas consume. With
the rise of deep learning methods, some researchers use deep neural network to build gas load
forecasting models [6–8], which can overcome the problem that traditional schemes converge slowly
and easily fall into local minima. However, these solutions rarely consider complexity requirements
when they are designed, leading to a high time-consuming [8]. Another research is the combined
forecasting [9–11] that employs two or more single load forecasting methods to build a integrated
model, and then select the linear or nonlinear weight coefficient to realize combined forecasting.
Combined forecasting model, however, is also difficult to give a satisfactory solution due to the
following two pitfalls. First, some redundant models maybe appear when combined forecasting
involves a large number of single models. This leads to a decrease in prediction accuracy. Second, the
forecasting results of the same model in different time periods are significantly different. If the
weights of different single models in combined forecasting model always keep the same values, the
forecast results cannot meet completely with the actual situation.

One might think that traditional mature load forecasting methods, e.g., power load forecasting [12–
15], can also solve the above problem. Nevertheless, power load forecasting technology is hard, at least
inconvenient, to directly apply in our context. This is because, compared with power load data, gas
load data has a wider range of fluctuations so that the prediction process prone to over-fitting. Although
some power load forecasting works use packet loss technology to solve the over-fitting problem [16,
17], it further leads to the destruction of the integrity of data set and finally affects the prediction results.

Obviously, gas load forecasting cannot directly apply existing industry forecasting methods, it may
require some special processing. We are thus motivated to design a new gas load forecasting scheme
based on ensemble multilayer perceptron with adaptive weight correction. Proposed scheme can not
only provide a higher prediction accuracy for short-term gas load, but also effectively avoid the over-
fitting problem in training procedure.

In general, the contributions of the paper are as follows:

• We design a new gas load forecasting scheme based on ensemble learning, which can not only
achieve high performance in short-term load forecasting, but can effectively avoid the over-fitting
problem caused by gas load fluctuations in training procedure.
• Our method can work over multiple gas equipments. The abnormal values in original data set are

firstly cleaned by designing a window function to form a complete normalized data set. This
makes the original data set can be forecasted correctly. Subsequently, a series of multilayer
perceptron networks are integrated to construct an ensemble forecasting model, in which a
correction function is further introduced to dynamically modify the weight of the prediction
result. Since the introduced correction function can match well the volatility and increasing
characteristics of daily gas load data, the prediction accuracy is significantly improved.

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1590–1608.



1592

Figure 1. The daily gas load data of a city of southern China from 2017 to 2019. The red
boxes indicate the part of abnormal load data in heating season and non-heating season.

• We perform comprehensive experiments by comparing with multiple well-known learning
methods. Experimental results show that our scheme can accurately forecast the daily gas load
and outperforms the state-of-the-art in terms of the prediction accuracy.

The rest of this paper is organized as follows. Section 2 introduces the previous gas load
forecasting works. The detailed procedure of proposed scheme are shown in Section 4. Subsequently,
comprehensive experiments are performed to evaluate the performance of proposed scheme. The
experimental results and corresponding discussions are presented in Sections 5. Finally, Section 6
concludes the paper.

2. Related works

Existing combined forecasting solutions mainly includes two categories: horizontal combination
forecasting model and vertical combination forecasting model. The former uses two or more load
forecasting methods to predict separately, and then introduce linear or nonlinear weight coefficient to
achieve combined forecasting, while the latter mainly employs the results of one or more prediction
methods to guide the parameter selection or result correction in other prediction methods. We briefly
introduce existing works according to these two categories.

Regarding the horizontal combination forecasting model, several state-of-the-art forecasting
schemes have been developed [9–11, 18]. Ervural et al. [9] combined autoregressive moving average
method and genetic algorithm to construct model and implement daily gas load forecasting. This
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combined model has a strong robust and better than any single model in terms of average relative
error and cost function value. Panapakidis et al. [10] tested the robustness of a novel hybrid
computational intelligence predictions model by combining the Wavelet Transform (WT), Genetic
Algorithm (GA), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Feed-Forward Neural
Network (FFNN), and final obtained a combination prediction model with better prediction effect.
Qiao et al. [11] designed a hybrid prediction model that integrates an improved whale swarm
algorithm (IWOA) and relevance vector machine (RVM). Proposed scheme has a higher prediction
accuracy when the amount of data is larger or smaller, but, the calculation time is relatively long. Yu
and Xu et al. [18] proposed an appropriate combinational approach which is based on improved BP
neural network for short-term gas load forecasting, and the network is optimized by the real-coded
genetic algorithm. As a result, the integration model improved by modified additional momentum
factor gets more ideal solutions for short-term gas load forecasting.

Regarding the vertical combination forecasting model, a considerable literature has grown up
around this theme [19–21]. Ulrich et al. [19] improved the kernel function of support vector machine
(SVM) and grid search of MLP networks by wavelet analysis, and then get a significant improvement
of forecasting performance. Taspinar et al. [20] employed the residual value sequence calculated by
the gray theory model and the output vector obtained by the fuzzy theory to build the input vector of
recurrent neural network model. The forecasting performance is superior to original recurrent neural
network model. Zu et al. [21] used autoregressive integrated moving average model (ARIMA) and BP
neural network to perform load forecasting, and then employed information entropy theory to weight
the results.

According to the above discussion, combined forecasting methods have been developed to address
the gas load forecasting problem. many existing methods have made great efforts to improve the
forecasting accurate by introducing existing data processing technology, such as regression analysis,
wavelet analysis and neural network. Nevertheless, these existing methods still have several obvious
disadvantages: (1) The over-fitting problem for small-scale load data set still exists. (2) The
generalization performance of existing prediction model is relatively weak. (3) The prediction
accuracy needs to be improved further. This makes that they cannot match well the actual
characteristics of gas load data, and thus may have a weak forecasting ability. Some works may
simply borrow the idea from the power load forecasting methods [10, 18], but, different from power
load data, gas load data has a wider range of fluctuations, the forecasting process can easily fall into
an over-fitting state and thus do not perform well. To the best of our knowledge, too little gas load
forecasting work can offer a satisfactory solution for the above disadvantages. This paper tries to fill
these gaps.

3. Motivating observation

The gas load data is considered as the total gas consumption of all users in the gas company, whose
unit is usually defined as

(
m3 • d−1

)
. Since natural gas is usually used for urban heating, the load data

is greatly affected by temperature, that is, when the temperature changes significantly, the daily load
data will generally change accordingly.

The following experiments can verify the relationship between temperature and the daily gas load
data. Figure 1 shows the actual daily gas load data of a city of southern China from 2017 to 2019. The
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Figure 2. The framework of proposed scheme.

load data contains daily consumption data for 365 days of each year∗. From this figure, we can obtain
three observations as follows. First, the daily gas load data is obvious higher in spring and winter
(called as heating season), while lower in summer and autumn (called as non-heating season). This
verifies the conclusion that the daily gas load data is greatly affected by the temperature. Second, with
the increase of the year, the daily gas load data at the peak of gas consumption also increase
significantly. This implies that the gas consumption shows a trend of increasing year by year.
Therefore, in order to accurately predict the gas load data, the forecasting model needs to be adjusted
in real time based on short-term prior data. Third, we can see that there are a lot of abnormal data
(marked by red boxes in Figure 1) in daily gas load data, especially in heating season. For most
forecasting models, since the prediction accurate mainly depends on prior data, we can implement
data cleaning before model training to further improve the prediction performance.

4. Proposed scheme

4.1. Framework of proposed scheme

In this section, we design an ensemble prediction method to improve the precision of short-term
gas load forecasting. The detailed framework of proposed scheme is shown in Figure 2. According to
this framework, proposed scheme is mainly comprised of two parts. In the former, multi-source data
is input as original data set, which is then segmented by a window model to detect the abnormal data.
Then, the abnormal values are removed and further interpolated by adjacent mean to form a complete
normalized data set. In the latter, an ensemble prediction model is constructed by integrating a series
of single MLP network. Each forecasting result from single MLP network is dynamically corrected by
an adaptive weight, which is calculated from the prior short-term data. Finally, the corrected data is
output as the final forecasting results.

4.2. Data processing based on window model

4.2.1. Data pre-processing

Since the daily gas load data generally changes with the temperature, the maximum temperature,
minimum temperature and average temperature are considered to be the top three factors affecting
the daily load data. In addition, different dates and weather conditions also cause fluctuations for the

∗In general, load data is sampled every half an hour and thus produce 48 values each day, which are aggregated as daily load.
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Table 1. Normalized values for seven weather conditions.

Weather type Normalized value
Sunny 0.40

Partly cloudy 0.50
Cloudy day 0.60
Light rain 0.70
Heavy rain 0.80
Light snow 0.90
Heavy snow 1.00

daily gas load data. Therefore, a complete daily gas load feature contains six attributes: maximum
temperature (◦C), minimum temperature (◦C), average temperature (◦C), date (M/D/Y), weather and
daily load data, where the weather is limited to seven types and is normalized to the range 0 to 1 to
give an ease evaluation†. The actual attribute values of weather are shown in Table 1.

Data pre-processing mainly contains the data integrity testing and the abnormal data cleaning, e.g.,
the data with its value less than 0. Assume that daily gas load data vector is represented as do = [d1,
d2, · · · , di, · · · , dk], where di is the i-th gas data, n is the total number of gas data. Data pre-processing
procedure can be implemented easily by deleting the data with a value less than 0 and marking them
as vacant data. Finally, the cleaned data will be further processed by the window model.

4.2.2. Window function construction

Daily load data always has a significant characteristic, that is, the overall fluctuation range is large,
while the adjacent fluctuation range is small. Thus, we consider to construct a window model over the
pre-processed data and employ this model to further normalize the original daily gas data.

Without loss of generality, assume that the pre-processed data vector is d = [d1, d2, · · · , dn], n ≤ k.
We construct window model wi = [di, di+1, · · · , di+m−1], where m is the width of window and 1 ≤ i ≤
n − m + 1. Furthermore, the load data vector d is traversed by moving the window wi. During the
moving procedure, load value di is sequentially decided and marked by the following equation.

bi =

{
0 , if |w̄−di |

w̄ > E
1 , if |w̄−di |

w̄ ≤ E
(4.1)

where E is the fluctuation deviation and w̄ is the average value of current window. bi is the state vector
of current window and bi = 1 represents that di is normal data and the abnormal data, otherwise.

w̄ =

i+m−1∑
x=i

dx

m
(4.2)

†We investigate the actual daily gas load data of a city of southern China from 2017 to 2019. When the weather conditions are set to
different parameters, they may give different prediction results. From a comprehensive comparison, when the parameters are set to the
values in Table 1, the prediction model can give a more accurate result. Therefore, we apply these parameters as empirical values to the
proposed model.
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Accordingly, we mark the di as NULL if bi = 0, and denote the data vector processed by window
model as d′ =

[
d
′

1, d
′

2, · · · , d
′

n

]
. Then, the adjacent mean interpolation method is used to complete d′.

d
′′

i =

 d
′

i−1+d
′

i+1
2 , ifd

′

i = NULL
d
′

i , Otherwise
(4.3)

Finally, the complete data vector after interpolation is denoted as d′′ =
[
d
′′

1 , d
′′

2 , · · · , d
′′

n

]
. Notably,

since d
′

i−1 and d
′

i+1 are the two adjacent data of d
′

i , respectively, they might be also NULL. If that, we
move d

′

i−1 to the left or d
′

i+1 to the right until they are not NULL. In addition, if the boundary data,
e.g., d

′

1 and d
′

n, is NULL, we consider to directly replace this data with the copy of its neighborhoods,
because these data in boundary is rare, the bias is slight.

4.3. Ensemble multilayer perceptron model

4.3.1. Multilayer perceptron

Multilayer perceptron (MLP) [22] is one of the most commonly used artificial neural network
algorithms. Single MLP employs bootstrap method to sample training data and then obtains multiple
data subsets, which are used to train multiple sub-neural networks. Assume that the number of
neurons in one sub-neural network is K, the activation function of the j-th neuron in the l-th layer can
be defined as

netl
j =

n∑
i=1

{
W l

jDi+b j

}
(4.4)

where Di is the input vector, W is the weight, b is the offset and n is the number of input vectors. In
addition, define λ as the scaling factor, the suitable transfer function, e.g., sigmoid function, can be
also chose to make the sub-neural network converge quickly.

yl
j =

1
1 + e−λ·net j

(4.5)

Finally, each multilayer perceptron network (MLPnet) can be trained according to the aim that the
mean square error (MS E) is minimized.

MLPnet = arg min
(
MS E(p)

)
(4.6)

where

MS E(p) =
1
K

K∑
j=1

1
n

n(l)∑
i=1

(el
j)

2

 (4.7)

4.3.2. Ensemble model training and correction

In this section, we integrate multiple individual multilayer perceptron networks to construct an
ensemble learning model, which can be optimized by adaptively correcting the weight of forecasting
result.
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Figure 3. Training and forecasting correction procedure for proposed ensemble model.

Given a series of samples, we firstly divide these sample evenly as two parts, including training set
D(C) = [d(C)

1 , d(C)
2 , · · · ,d(C)

n ]−1 and testing set D(S ) = [d(S )
1 , d(S )

2 , · · · ,d(S )
n ]−1, where n is the number of

sample in each set. d(C)
n and d(S )

n are the processed data vector (corresponding to d′′ in Section 4.2.2).
The training and correcting procedures, shown in Figure 3, are also described as follows.

Step 1 : According to Equations (4.6) and (4.7), the training set D(C) is introduced to train c MLPnet

sequentially.
Step 2 : Combining the trained c MLPnet, the testing set is input to generate the forecasting result

set G = [ g1, g2, · · · , gi, · · · , gn]−1, where gi = [g1
i , g

2
i , · · · , gc

i ].
Step 3 : Calculate the ensemble result Ḡ = [ḡ1, ḡ2, · · · , ḡi, · · · , ḡn] by averaging c forecasting values,

ḡi =
1
c

c∑
j=1

g j
i (4.8)

Step 4 : Sequentially correct the ensemble result Ḡ by an adaptive weight α, which is calculated
through the difference between the actual value and the predicted value of the previous data. Finally,
the ensemble forecasting results can be further corrected as Ḡ∗ = [ḡ∗1, ḡ∗2, · · · , ḡ∗i , · · · , ḡ∗n].

ḡ∗i =


∣∣∣ḡi−1 − d(S )

i−1

∣∣∣
d(S )

i−1

 · ḡi (4.9)

Remark 1: It should be noted that for proposed ensemble model, the number of layers of each
MLP network is slightly changed to generate much diversity, which is the key factor for ensemble
learning [13, 24, 30]. According to Eqs (4.6) and (4.7), the training set is used to train c single MLP
networks. Since single MLP network has the characteristic by itself, therefore, for the same testing
data, they may give prediction results with large differences. As such, proposed scheme calculates
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the ensemble results by averaging c prediction values, which can make the predicted value as close as
possible to the real result.

Remark 2: In the stage of adaptive correction, since the weight is calculated from the previous
testing data, the input order of the samples cannot be thus disrupted for the testing set. In other words,
only after d(S )

i is predicted, d(S )
i+1 can be further predicted.

5. Experimental results and discussion

In this section, a series of experiments are carried out to evaluate the effectiveness of proposed
scheme.

We implement these experiments over a large-scale natural data set, which is actually collected
from a city of southern China. This data set is sampled every half an hour from 2017 to 2019, so there
are 51, 560 data samples. In order to obtain the overall forecasting performance, we randomly select
the samples from this data set each experiment to show the universality of proposed scheme. All the
experiments are performed over a Windows 10 computer with an AMD(R) R7-3700x @4.2GHz, 16
GB RAM and the platform is Pycharm 2020.

Furthermore, in order to demonstrate the performance of different prediction methods, we define the
average prediction error rate (APEE) to measure the prediction capability. Denote the original data set
as x = {x1, x2, · · · , xn} and the predicted data set as x′ = {x′1, x′2, · · · , x′n}, the average prediction error
can be calculated as follows. In general, for each prediction method, the lower APEE value means a
higher prediction capability.

APEE =
1
n

n∑
i=1

‖x − x′‖2 × 100% (5.1)

In addition, we also other two evaluation metrics, Mean Absolute Error (MAE) and Root-Mean-Square
Error (RMSE), to give a sufficient comparison. MAE mainly represents the average value of the absolute
value of the error between the prediction value and the original value, while RMSE stands for the square
root of the ratio of the sum of squares of deviations between the prediction value and the original value
to the number of observations.

MAE =
1
n

n∑
i=1

‖x − x′‖ (5.2)

RMS E =

√√
1
n

n∑
i=1

(x − x′)2 (5.3)

5.1. Test for window model

In our scheme, the original data set are pre-processed with a window model. In order to show the
advantage of the window model, we firstly test the preprocessing capability by comparing proposed
scheme with two existing pre-processing models, K-means model [23] and Box model [29]. We
randomly construct three sample subsets, S 1, S 2, S 3, from the total sample set, which contain 38, 33
and 40 abnormal values, respectively.
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Table 2. The accuracy of detecting abnormal samples of three data preprocessing models,
Window model, K-means and Box model. Three testing results, total number of detecting
abnormal samples (Total), false positive number (FP) and false negative number (FN), are
shown in this experiment.

Model
Subset S 1 Subset S 2 Subset S 3

Total FP FN Total FP FN Total FP FN
Window model 41 5 2 35 3 1 44 5 1

K-means 66 35 7 64 40 9 73 42 9
Box model 22 0 16 15 0 18 25 0 15
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Figure 4. Average prediction error rate of different data preprocessing models in heating
season. In this experiment, four existing load data prediction schemes, RandomForest,
XGBoost, DNN and LSTM, are used to provide the experimental results.

A series of experiments are performed to test the accuracy that three preprocessing models detect
abnormal values over the same sample subset. Two different measure standards, false positive (FP)
and false negative (FN), are used to evaluate the performance of different preprocessing models, where
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Figure 5. Average prediction error rate of different data preprocessing models in
non-heating season. In this experiment, four existing load data prediction schemes,
RandomForest, XGBoost, DNN and LSTM, are used to provide the experimental results.

false positive indicates the number that the normal sample is detected as abnormal sample, while false
negative indicates the number that the abnormal sample is detected as normal sample.

The experimental results are shown in Table 2. It can be seen that the window model always
provides a lowest error number (sum of FP and FN) in three preprocessing models. This demonstrates
that proposed window model has a higher detection capability for abnormal samples. In contrast,
K-means model always detects the most abnormal samples, whatever sample subset is used, and it
also give a higher false positive number, which implies that K-means model may be more lenient
for abnormal data. This is mainly because K-means model always divides the normally increasing
data (including a lot of normal values) into two categories during the clustering process, resulting in
some normal data are consistently misjudged as abnormal values. In addition, the Box model is rather
conservative due to a zero false positive number, because the Box model detect the abnormal value by
the distance between the upper and lower limits of the given gas volume and the median. Therefore,
there is usually no misjudgment for the normal value.

In order to further show the advantages of proposed window model, we test the overall
performance of four data preprocessing models, window model, K-means model, Box model, and
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Unprocessed model over four load data prediction schemes, RandomForest [25], eXtreme Gradient
Boosting (XGBoost) [26], Deep Neural Network (DNN) [8], Long Short Term Memory (LSTM) [27],
where Unprocessed model means that original data will not be preprocessed. In the experiments, the
total load data set from 2017 to 2019 is used and the detected abnormal data is uniformly completed
by the adjacent mean interpolation method. The fluctuation deviation is fixed as E = 0.3‡ in proposed
window model.

Figures 4 and 5 show the average prediction error rate of different data pre-processing models in
heating season and non-heating season, respectively. In these figures, the horizontal axis represents
the months of heating season and non-heating season, and the vertical axis represents the average
prediction error rate. It is easy to observe that our proposed window model can obtain a lowest average
prediction error rate in heating season, whatever data prediction models are used. Specifically, the
average reduction of window model is more than 4–5% for K-means model, 1–2% for Box model,
and 3% for Unprocessed model. These results indicate that the proposed window model can maintain
a high detection capability. Furthermore, we can observe that the average prediction error rate of K-
means model is significantly higher than that of the Unprocessed model, e.g., approximately 1.5% for
RandomForest, 2.2% for XGBoost, 3.0% for DNN and 2.8% for LSTM. This implies that when the
original data is processed by K-means model, the average error rate increases instead. This interesting
phenomenon can be explained easily. Because K-means model decides too many normal values as
abnormal data, these misjudged data just seriously affect the training process of different prediction
algorithms, resulting in a large deviation between the predicted value and the original value.

In addition, we also see that the advantage of proposed model in non-heating season is not obvious.
This is because the load data in non-heating season has only a slight fluctuation, resulting in very few
abnormal data. Accordingly, the advantage of eliminating abnormal data for window model is difficult
to play.

5.2. Test for ensemble multilayer perceptron model

In order to show the advantages of our proposed ensemble MLP method, we firstly test the impact of
the number of multilayer perceptron in ensemble model. In this test, we use three data preprocessing
models, Window model, Box model, and Unprocessed model, to clean the original data, and then
implement the ensemble model with different number of single multilayer perceptron.

Figure 6 shows the average prediction error rate when the number of multilayer perceptron c is
set to 1, 2, 3, · · · , 12, respectively. As can be seen from the figure, the average prediction error rate
is tending towards stability with an increasing c, and does not change seriously when c > 10. In
general, the larger the number of multilayer perceptron, the lower the average prediction error rat,
whatever data preprocessing model is used. This means that the ensemble model will not always gain
benefits with the number of MLP increasing. In fact, we can explain this phenomenon that since single
MLP can obtain different prediction results from each other so that the ensemble effect is similar to
majority voting [24]. The prediction capability is significantly improved accordingly. Nevertheless,
with the number of MLP increasing, the diversity of single MLP will reduce and even disappear so that
ensemble model tends to generate the same results.

In addition, we also test the performance of adaptive weight correction. In order to give a more
insight, we compare the performance of ensemble model with and without adaptive weight correction.

‡This is an experience value for many natural gas enterprises.
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Figure 6. Average prediction error rate for different number c of multilayer perceptron in
proposed ensemble model. In this experiment, three data preprocessing model, Unprocessed
model, Box model and proposed Window model, are used to give the experimental results.

In the experiments, the total data set is used to test experimental results. All data are pre-processed
with three preprocessing models, Window model, Box model, and Unprocessed model. The ensemble
model is employed to give a fair comparison.

We test the average prediction error rate of ensemble MLP model with and without adaptive weight
correction. Table 3 and Table 4 give the experimental results in heating season and non-heating season,
respectively. In our experiments, the number of MLP is set to c = 1, 5, 10. It is easy to observe that
for the heating season, when adaptive weight correction is adopted in proposed ensemble MLP model,
the average prediction error rate are slightly lower than the case without adaptive weight correction.
The average reductions of PSNR are more than 2.1–6.0% for c = 1, 2.7–7.8% for c = 5, and 1.6–6.6%
for c = 10, respectively. That is mainly because proposed adaptive weight correction dynamically
modifies the weight ratio of the prediction results according to the changes in gas load data, resulting
in a higher prediction accuracy. Moreover, for non-heating season, the average reductions of PSNR is
not much, and most of them are maintained at 1–1.5%.

5.3. Performance comparison with state-of-the-arts

In this section, we compare the proposed scheme with existing four load data forecasting schemes,
RandomForest-based scheme [25], XGBoost-based scheme [26], DNN-based scheme [8],
LSTM-based scheme [27]. In this experiment, for LSTM, we set the number of hidden layer as 3 and
the nodes of each layer as 10, for Randomforest and XGBoost, the number of sub-model is fixed as
the range [50, 200], for DNN, the number of hidden layer is set to 20. For proposed scheme, the
window model is used and the ensemble number of MLP is c = 10. We perform crossing
segmentation validation over the total data set and divide it as two parts: one is used as training set
and another is testing set. All experiments are implemented ten times to give an average result.
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Table 3. APEE performance comparison of proposed ensemble MLP model with and
without adaptive weight correction over the total database. In this test, the experiment is
implemented over the data of heating season and the number of MLP are set to c = 1, c = 5
and c = 10, respectively.

Month
Ensemble without correction Ensemble with correction

c = 1 c = 5 c = 10 c = 1 c = 5 c = 10
11 21.5% 16.7% 14.5% 18.7% 13.3% 10.1%
12 23.5% 16.9% 13.6% 21.4% 14.1% 9.3%
1 29.3% 21.2% 19.1% 23.3% 16.5% 12.3%
2 31.2% 25.4% 19.8% 25.3% 17.6% 13.2%
3 20.6% 15.9% 13.2% 17.6% 11.1% 9.7%
4 19.5% 13.7% 11.4% 16.9% 11.0% 9.8%

Table 4. APEE performance comparison of proposed ensemble MLP model with and
without adaptive weight correction over the total database. In this test, the experiment is
implemented over the data of non-heating season and the number of MLP are set to c = 1,
c = 5 and c = 10, respectively.

Month
Ensemble without correction Ensemble with correction

c = 1 c = 5 c = 10 c = 1 c = 5 c = 10
5 20.5% 17.0% 13.8% 18.9% 16.5% 13.0%
6 19.5% 16.2% 14.2% 19.0% 15.6% 14.0%
7 19.5% 15.0% 13.5% 18.3% 14.5% 13.5%
8 19.0% 15.1% 13.6% 18.9% 15.1% 13.5%
9 20.1% 15.0% 13.5% 18.9% 14.9% 12.9%

10 19.6% 15.5% 13.0% 18.5% 14.8% 12.6%

Firstly, we test the MAE and RMS E values by comparing proposed scheme with existing four load
data forecasting schemes. The results are shown in Table 5. Actually, we can observe from
experimental results that, the prediction performance of proposed EMLP scheme has an obvious
improvement in heating season, whichever evaluation metric is used (Corresponds to smaller values
comparing with other four schemes in Table 5). This demonstrates that proposed scheme has a
superior performance comparing with other existing schemes. Moreover, we can see that for MAE
metric, the prediction performance of proposed EMLP scheme has relatively stable prediction results
in heating season, while for RMS E metric, the proposed EMLP scheme shows a slight prediction
fluctuation. This mainly because for RMS E metric, the error calculations are all squared values,
slight data fluctuations may lead to larger prediction errors. In addition, we can also observe that
proposed scheme always has stable higher prediction accuracy, no matter in heating season or
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non-heating season. This implies that proposed scheme has a stronger generalization performance.

Table 5. MAE and RMS E performance comparison for five forecasting schemes. The
experiment tests the heating season and non-heating season, respectively. In this test,
the experiment is implemented over the data of heating season and non-heating season,
respectively.

Metrics Existing schemes
Heating season Non-heating season

11 12 1 2 3 4 5 6 7 8 9 10
MAE EMLP 7.8 7.3 7.0 7.9 8.1 8.2 6.0 6.2 6.6 6.4 6.8 6.6

LSTM 8.4 8.2 7.1 8.5 9.4 10.2 6.8 6.6 6.9 6.6 6.1 6.9
DNN 8.9 8.3 7.9 8.4 9.9 10.6 6.2 6.1 6.3 6.1 6.3 6.1
RandomForest 7.7 8.1 7.1 8.4 9.1 8.6 6.2 6.6 6.4 6.5 6.0 6.9
XGBoost 7.3 8.0 7.2 8.1 8.8 8.7 6.0 7.0 6.5 6.6 6.4 6.8

RMSE EMLP 10.3 11.7 10.6 11.9 13.1 12.9 9.0 8.2 7.6 7.7 7.8 8.6
LSTM 11.4 13.2 12.1 13.8 17.1 16.2 8.8 7.6 7.4 8.1 7.9 9.0
DNN 12.9 13.3 11.9 14.0 17.5 16.9 8.4 7.1 7.2 7.8 8.3 8.8
RandomForest 11.0 12.0 11.2 12.6 14.2 14.2 9.2 9.6 8.1 8.9 8.3 8.9
XGBoost 10.7 12.1 11.2 12.1 14.1 14.7 9.2 9.3 8.5 8.5 8.4 8.5

In order to give more insight, Figure 7 shows the average prediction error rate for five different
prediction schemes in heating season and non-heating season, respectively. As can be seen from this
figure, the proposed scheme has an obvious advantage in heating season for gas daily load forecasting.
We can explain easily this phenomenon as follows. Proposed method firstly eliminates abnormal data
with large fluctuations through window model. Subsequently, ensemble model integrates multiple
MLP sub-neural networks to further suppresses the over-fitting phenomenon, and finally significantly
improves the accuracy of data prediction. Moreover, proposed adaptive weight correction method
dynamically adjusts the weight value of the subsequent data by calculating the deviation of the forward
data. This processing leads to a positive feedback so that the overall performance of proposed scheme
has an obvious improvement comparing with the other existing four schemes. In addition, we should
also note that the prediction performance of proposed scheme has only a slight advantage in non-
heating season. This is mainly because that the gas consumption is obviously lower in the non-heating
season so that the fluctuation of the daily load data is smaller, and thus the performance advantages
of proposed method cannot be fully reflected. On the other hand, the small fluctuation also makes the
training set and testing set are more similar, which lets these non-ensemble methods, e.g., DNN-based
scheme and LSTM-based scheme, are more prone to overfitting.

Furthermore, in order to give more insight, we employ genetic algorithm to implement the
hyperparameter optimization for each scheme and form the optimal prediction model. In order to
ensure a fair comparison, each experiment is repeated ten times to provide the average values. The
experimental results are shown in Figure 8. We can find that after hyperparameter optimization, the
prediction errors for proposed scheme, RandomForest-based scheme and XGBoost-based scheme
have a slight decreasing. This means that hyperparameter optimization cam bring some advantage for
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Figure 7. Average prediction error rate without hyperparameter optimization for five state-
of-the-art prediction schemes in (a) heating season and (b) non-heating season.
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Figure 8. Average prediction error rate with hyperparameter optimization for five state-of-
the-art prediction schemes in (a) heating season and (b) non-heating season.

these three schemes. Nevertheless, parameter optimization are not very obvious for DNN-based
scheme and LSTM-based scheme, even the error rate has increased. This is mainly because for
DNN-based scheme and LSTM-based scheme, hyperparameter optimization strengthens the learning
aiming at historical data rules, which can lead to greater deviations when some new data are
predicted. In contrast, RandomForest-based scheme and XGBoost-based scheme belong to ensemble
learning schemes. Compared with neural networks, ensemble learning schemes can alleviate the
problem of overfitting. For proposed scheme, on the basis of ensemble learning, we use dynamic
weight to further reduce the impact of overfitting and adapt to the changes in new data, resulting in an
overall performance improvement in prediction accuracy.

6. Conclusions and future works

Load forecasting for natural gas is a much needed feature in the presence of smart city
construction. This important requirement, however, is largely ignored in existing gas forecasting
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model, because they mostly replies on a combined forecasting model by simply integrating multiple
single-forecasting models, and may obtain accordingly an inferior prediction performance due to
redundant single-forecasting model. We filled the gap by designing a new gas load forecasting
scheme based on ensemble multilayer perceptron (EMLP) with adaptive weight correction. This new
scheme has a significant advantage that it can integrate multiple weak multilayer perceptron to give a
more accurate prediction result.

Our method firstly normalizes multi-source data as original data set, and then segment it by
designing a window model to extract the abnormal values, which are interpolated to form a complete
normalized data set. Subsequently, a series of multilayer perceptron (MLP) networks are integrated to
construct an ensemble forecasting model. A weight correction function is further introduced to
dynamically modify the weight of the prediction result. Extensive experiments demonstrate that
compared with existing short-term forecasting methods, our method can accurately forecast the daily
gas load and outperforms the state-of-the-art in terms of the prediction accuracy.

Finally, it is still an open research challenge to design gas load forecasting model. As a future work,
we will investigate forecasting model to further improve prediction accuracy while maintaining better
forecasting stability.
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