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Abstract: In this article, we have presented a mathematical model to study the dynamics of hepatitis
C virus (HCV) disease considering three populations namely the uninfected liver cells, infected liver
cells, and HCV with the aim to control the disease. The model possesses two equilibria namely the
disease-free steady state and the endemically infected state. There exists a threshold condition (basic
reproduction number) that determines the stability of the disease-free equilibrium and the number
of the endemic states. We have further introduced impulsive periodic therapy using DAA into the
system and studied the efficacy of the DAA therapy for hepatitis C infected patients in terms of a
threshold condition. Finally, impulse periodic dosing with varied rate and time interval is adopted for
cost effective disease control for finding the proper dose and dosing interval for the control of HCV
disease.
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1. Introduction

Hepatitis C is an infectious disease caused by the Hepatitis C virus. According to the World Health
Organisation (WHO), an estimated 71 million people globally has been suffering from chronic Hepati-
tis C syndromes, resulting in cirrhosis and liver cancer. The fatality rate is approximately 39, 900 every
year [1]. It is highly blood contagious and at very low risk of sexual and vertical transmission [2].
Unhygienic clinical conditions and improper sterilization are the main reasons behind the Hepatitis C
infection [3].

Hepatitis C syndromes are multiple and demographically manipulated. The virus generally spreads
and affects between 2 weeks to 6 months in the human body. Fever, fatigue, nausea, vomiting, ab-
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dominal pain, dark urine, grey face, joint pain, and jaundice are the symptoms of Hepatitis C affected
patient. But the worst part of the disease is that the virus sometime remains undiagnosed for a long
time and prolonged Hepatitis C infection leads to liver damage (fibrosis and cirrhosis) [4].

Chronic HCV infected patients have a risk of fibrosis, cirrhosis, and hepatocellular carcinoma. It is
observed that 20–30% of patients with chronic HCV infection will develop cirrhosis. The ultimate end
stage of HCV infection leads to Cirrhosis and Hepatocellular Carcinoma (HCC), which causes death or
the need for transplantation. Direct-acting antivirals (DAAs) therapy plays an important role to prevent
cirrhosis. The patients already have been existing cirrhosis in need of DAA therapy. DAAs were first
approved by the Food and Drug Administration (FDA) in 2011 [5].

DAAs act to target specific steps in the HCV viral life cycle. DAAs try to shorten the length of
therapy, minimize the side effects, target the virus and improve the virological responses rate. DAAs
target one or more of these proteins and enzymes. This results in the delay in viral life cycle as well
as it diminishes viral load. Many DAAs are taken in combination with one another or with other
medications to improve efficacy and SVR rates [6, 7].

In recent times mathematical models describing the pathogenic interaction between the human im-
mune system and different kinds of the virus have been of enormous international importance. Appro-
priate mathematical models can be helpful in answering biologically important questions concerned
with the dynamics of the immune response to persistence virus. The effectiveness of drug therapy has
been modeled by several authors. Various theoretical studies have been carried out on the mathematical
model of HCV transmission dynamics. Nowak and Banghum [8] used a mathematical model to explore
the effect of individual variation in immune responses on virus load and diversity. They found better
indications of CTL responses in the equilibrium virus load, rather than the abundance of virus-specific
CTLs. Bonhoeffer et al. [9] analysed the virus populations’ role of the immune system and resistance
of the drug therapy for the HIV or Hepatitis B virus. Neumann et al. [3] used a mathematical model
to analyse the efficacy of treatment with IFN-a therapy. Avendan et al. [10] formulated a mathematical
model to describe HCV considering four population susceptible or healthy liver cell, infected liver
cell, virus, and CTL responses whereas Zhao et al. [11] assumed the incidence rate of the virus model
according to Beddington-DeAngelis functional responses. Numerous mathematical models describing
the temporal dynamics of HCV have been proposed [9, 12–16]. In all these articles, mathematical
modeling plays a pivotal role in understanding and quantifying the biological mechanisms that govern
HCV dynamics with or without therapies [17, 18].

Various research groups have started or are on the way of starting research activities [11, 19] in the
allied fields considering theoretical control model of a different kind of infection in order to gain in-
sights about optimal treatment strategies [20]. Different ways of optimal control of treatment are being
explored currently by researchers [21–24]. Ahmed et al. [25] presented a fractional order generaliza-
tion of Perelson et al. basic hepatitis C virus (HCV) model including an immune response term.

Mathematical models using impulsive differential equations [26] have got a lot of attention in the
treatment policies of many diseases. For example, Lou et al. [27] have used impulsive differential
equations to develop a rigorous approach to analyze the threshold behaviours of nonlinear virus dy-
namics models with impulsive drug effects and to examine the feasibility of virus clearance. Lou and
Smith [28] have proposed a mathematical model to describe the interaction of HIV virus with CD4+T
cells in order to describe the fusion process. But in HCV treatment, in our knowledge, there is no such
mathematical model with impulsive control therapeutic approach.
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Mathematical models play a major role to provide biologically relevant explanations of HCV ki-
netics under therapy of DAAs. This treatment can reduce the drug resistance and toxicity, as well as
having a pharmacokinetic profile that would allow once a day dosing of an all oral combination [12].
Impulsive mathematical models may offer a convenient method for rationally designing DAAs therapy
based on the properties of single agents.

In this article, the objectives of the research work are, to develop a mathematical model associating
the infection by HCV virus and the related treatment technique that deals with impulsive theory, ana-
lytical and numerical studies of the fundamental mathematical model from the control viewpoint and
to develop the methods for determining pulse therapy based treatment on model predictive controls.

The article is organised as follows. In section 2, we have presented the mathematical model for HCV
dynamics. Then we have modified the model incorporating impulsive DAA therapy. Equilibria and
their stability of the system without DAA have been analysed in section 3. Dynamics of the impulsive
system is studied in section 4. Section 5 contains the numerical results of the main outcomes. In
section 6, a final discussion concludes the paper.

2. Mathematical model formulation

The long term dynamics of HCV infection during the antiviral therapy needs more specific models
which consist the complexity of HCV biology and its interplay with the host’s immune system. Here
we assume the following model which is extended the model as in [25]:

Hs represents the uninfected liver cells population, Hi represents the infected liver cells population,
and V is the HCV population. The sum of target and infected cells is assumed to remain roughly
constant and equal to the total hepatocyte number in normal liver is denoted as HT . Using saturated
infection rate with maximum transmission rate β, we have the following model:

dHs

dt
= Λ − µsHs −

βHsV
1 + kV

dHi

dt
=

βHsV
1 + kV

− µiHi

(
1 −

Hi

HT

)
dV
dt

= pHi − µvV (2.1)

Here, the term µiHi(1 − Hi
HT

) is considered as the immune response by considering high and low
tolerance of the immune system. If Hi → 0 or Hi → HT , then the term µiHi(1 − Hi

HT
) vanishes in both

cases which suggest that immune response is sufficient.
Λ represents the constant production of liver cells, µs is the natural death rate of healthy liver cells

and k represents the half saturation constant for the infection. The clearance rate of infected liver cells
is µi and HCV proliferates at a rate p, and µv is the clearance rate of virus.

We want to study the effect of DAA therapy through impulsive mode. Therefore, we modify the
model (2.1) and propose the following model using an impulsive differential equation as follows,

dHs

dt
= Λ − µsHs −

βHsV
1 + kV

, t , tk

dHi

dt
=

βHsV
1 + kV

− µiHi

(
1 −

Hi

HT

)
, t , tk
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dV
dt

= pHi − µvV − µdDV, t , tk

dD
dt

= −gD, t , tk

D(t+
k ) = ω + D(t−k ), t = tk. (2.2)

Here D(t) denotes the concentration profile of drug in the human body and g is the rate at which the
drug is cleared. We assume that D(t) follows the exponential decay curve [28]. µd is assumed as the
removal rate of virus by drug therapy.

D(t−k ) denotes the drug dose concentration immediately before the impulse, D(t+
k ) denotes the con-

centration after the impulse and ω is the dose that is taken at each impulse time tk, k ∈ N.

Table 1. Parameter values used in numerical simulations.

Parameter Description Parameter Values Reference
Λ Production rate of healthy liver cell 50 [29, 30]
β Disease transmission rate 0.003 [10, 29, 30]
p Production rate of Hepatitis C virion 5 [10, 29, 30]
µs Death rate of healthy liver cells 0.06 [10]
µi Death rate of infected liver cells 0.5 [10]
µv Removal rate of Hepatitis C virion 5 [10, 29, 30]
k Half saturation constant 0.1 Assumed

HT Total Hepatocyte number 500 [10]
g Clearance rate of drug 0.025 [28]
µd Removal rate of virus by drug therapy 0.5 Assumed

3. Dynamics of the system without therapy

In this case we study the system (2.1). There exist two equilibria, namely

(i) the disease-free equilibrium E(H s,Hi,V), where H s = Λ
µs
, Hi = 0, V = 0, and

(ii) the endemic equilibrium E∗(H∗s ,H
∗
i ,V

∗), where

H∗s =
Λ(1 + kV∗)

V∗(kµs + β) + µs
, H∗i =

µvV∗

p
,

and V∗ is the positive root of the quadratic equation,

ψ(V) = A1V2 + A2V + A3 = 0, (3.1)

where,

A1 = µiµ
2
v(kµs + β) > 0, A2 = µiµv[µvµs − pHT (kµs + β)], A3 = −pHT [µsµiµv − Λpβ].

By applying the Descartes rule of sign on (3.1), we can draw the following proposition.
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Proposition 1. (i) If A3 < 0, there exists unique endemic equilibrium E∗.
(ii) If A3 = 0, A2 < 0, there exists unique endemic equilibrium E∗ with V∗ = −A2

A1
.

(iii) If A3 > 0, A2 ≥ 0 then there exists no positive endemic equilibrium.
(iv) Suppose that A3 > 0, A2 < 0.

If D = A2
2 − 4A1A3 > 0, there exist two endemic equilibria E∗ with V∗ = −A2±

√
D

2A1
;

If D = 0, there exists unique endemic equilibrium E∗;
If D < 0, there exists no positive equilibrium E∗.

3.1. Stability analysis

For the stability analysis of the system (2.1), we need the Jacobian matrix at any equilibrium point
E(Hs,Hi,V),

J =


−(µs +

β

1+kV ) 0 −
βHs

(1+kV)2

βV
1+kV −µi(1 − 2Hi

HT
) βHs

(1+kV)2

0 p −µv


.

The characteristic equation at the disease-free steady state is

(ξ + µs + β)
[
ξ2 + (µi + µv)ξ + (µiµv −

Λpβ
µs

)
]

= 0. (3.2)

Thus using Routh-Hurwitz condition, the disease-free equilibrium E is stable if

Λpβ < µsµiµv. (3.3)

Now, we define the basic reproduction number R0 as (a short description on the derivation of R0 is
given in Appendix A),

R0 =
Λpβ
µsµiµv

. (3.4)

Remark 1. (a) From the condition (i) of Proposition 1, we can conclude that a sufficient condition for
the existence of a unique endemic point is A3 < 0, which implies R0 < 1, i.e., when the disease-free
equilibrium is stable. Numerically, we have checked that this endemic equilibrium is always unstable
(See Figure 1).
(b) Form condition (iv) of Proposition 1, two different endemic equilibrium points exist if A3 > 0, A2 <

0 and D = A2
2 − 4A1A3 > 0. Here, A3 > 0 implies R0 > 1. But one endemic equilibrium point (with

V∗ = −A2+
√

D
2A1

) is unstable and another one (with V∗ = −A2−
√

D
2A1

) is stable (See Figure 1).

Now, at the endemic equilibrium E∗, the characteristic equation is

ξ3 + B1ξ
2 + B2ξ + B3 = 0, (3.5)
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where,

B1 = a1 + a2 + µs + µv,

B2 = a2µv − pa3 + a1a2 + a2µs + a1µv + µsµv,

B3 = (a1 + µs)(a2µv − pa3) + pa1a3,

a1 =
βV∗

1 + kV∗
, a2 =

(
1 −

2H∗i
HT

)
µi, a3 =

βH∗s
(1 + kV∗)2 . (3.6)

According to Routh-Hurwitz criteria, the endemic steady state is stable if

B1 > 0, B3 > 0, B1B2 − B3 > 0. (3.7)

We have the following theorem.

Theorem 1. Disease-free equilibrium is stable if R0 < 1 and unstable otherwise. Forward transcritical
bifurcation occurs at R0 = 1. The endemic steady state E∗ is stable if the condition (3.7) holds.

Remark 2. In light of the fact that R0 is monotonically decreasing with increasing µv, this suggests
that eradication of disease, as represented by a stable disease-free steady state E0 is possible if R0 < 1.
The available means to achieve this is by increasing the clearance rate of virus, µv. This can be done
using DAA therapy [5].

4. Dynamics of the system with impulsive therapy

Now, we shall analyse the dynamics of the drug (or combined drug) and its effects on the system
population. The aim is to find a better treatment strategy which can suppress the viral load and also
inhibit viral entry into the host cell. To study the effect of therapy in regular intervals, we study the
system of impulsive differential equations given in (2.2).

Remark 3. In this article, our main aim is to justify the effect of antibody therapy in impulsive modes.
We have not carried out the stability analysis for the endemic state in presence of impulsive therapy.
Actually there will not exist any equilibria, rather equilibria like periodic orbits [28].

4.1. Dynamics of the drug

Dynamics of the drug is governed by the following impulsive differential equation,

dD
dt

= −gD, t , tk

D(t+
k ) = ω + D(t−k ), t = tk (4.1)

To study the dynamics of the perfect drug adherence, we assume the dosing interval is τ defined as

τ = tk+1 − tk. (4.2)

The solution of the impulsive differential equation (4.1) is

D(t) = D(t+
k )e

∫ t
tk

(−g)du
= D(t+

k )e−g(t−tk), tk ≤ t ≤ tk+1. (4.3)
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Calculating the least value of the concentration of D(t) for the perfect drug adherence with fixed interval
length τ > 0, we get

D(t) = D(t+
k )e−g(t−tk), (4.4)

which is the required concentration of dosage to control the virus. If D(0) = 0, D(t+
1 ) = ω, then

D(t−2 ) = ωe−gτ,

D(t+
2 ) = ω(1 + e−gτ),

D(t−3 ) = ω(1 + e−gτ)e−gτ,

D(t+
3 ) = ω(1 + e−gτ + e−2gτ),

.

.

.

D(t+
p ) = ω(1 + e−gτ + e−2gτ + ... + e−(p−1)gτ), p ∈ Z+

= ω
1 − e−pgτ

1 − e−gτ , p ∈ Z+ (4.5)

Hence,

lim
p→∞

D(t+
p ) =

ω

1 − e−gτ . (4.6)

Thus the start and end point of periodic trajectories are Du = ω
1−e−gτ and Dl = ωe−gτ

1−e−gτ .
For perfect therapy, the antibody response after the nth dosage is

D(t+
n ) =

ω

1 − e−gτ . (4.7)

To control the virus and avoid resistance, the minimum value D̄ of the periodic orbit must satisfy

D̄ <
ωe−gτ

1 − e−gτ ⇒ τ <
1
g

ln
(

D̄ + ω

D̄

)
= τmax. (4.8)

Remark 4. If we can restrict the dosing interval of τ satisfying the condition 0 ≤ τ ≤ τmax, then the
disease can be controlled. For τ > τmax, the disease progression continues.

The lower and upper limits for D(t) are Dl and Du. The critical dosage Dc must satisfy, Dl > Dc

which holds true iff τ < 1
g ln(ω+Dc

Dc
). Further Du < Dc implies that τ > 1

g ln( Dc
Dc−ω

). By helping this, we
can conclude the result by the following theorem.

Theorem 2. A treatment regimen (ω, τ) is successful if τ < τs = 1
g ln(ω+Dc

Dc
). A treatment is unsuccessful

if τ > τu = 1
g ln( Dc

Dc−ω
). For a fixed dose ω, τs is the longest dosing interval that guarantees a successful

treatment regimen.

Remark 5. For a fixed τ, we can find out the safe dose ωs and unsafe dose ωu. Solving ωe−gτ

1−e−gτ = Dc for
ω leads to

ωs = Dc(egτ − 1)
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and solving ω
1−e−gτ = Dc for ω leads to

ωu = Dc(1 − e−gτ).

If τs < τ < τu or ωu < ω < ωs, a decision/conclusion can not be reached because R0 will fluctuate
around 1.

4.2. Stability of disease-free periodic orbit

There does not exist particular equilibrium point of an impulsive system but equilibrium-like peri-
odic orbits can be evaluated. Using the following analysis, we can show that there are two periodic
orbits namely the disease-free periodic orbit and the endemic periodic orbit for the system (2.2) with
impulses. Using the results from [31–33], we have the following result.

Lemma 1. The system (4.1) has unique positive periodic globally asymptotically stable solution D1(t)
with period τ = tk+1 − tk

D1(t) =
ω exp(−g(t − tk))

1 − exp(−gτ)
, tk ≤ t ≤ tk+1, D1(0) =

ω

1 − exp(−gτ)
.

The general solution of the system (4.1), D(t) can be written as

D(t) = D1(t) + [D(0+) − D1(0+)] exp(−gt).

On the above basis, we study the stability of periodic orbits. We only focus on the disease-free
periodic orbit deriving the following theorem.

Theorem 3. The disease free periodic solution (H̃s, 0, 0, D̃) of the system (2.2) is locally asymptotically
stable if

R̃0 < 1 (4.9)

where,

R̃0 =
pβ
τµi

∫ τ

0

H̃s(t)
µv + µdD̃(t)

dt. (4.10)

Proof. Variational matrix at (H̃s, 0, 0, D̃) is given by,

Jv =



−µs 0 −βH̃s 0

0 −µi βH̃s 0

0 p −µv − µdD̃ 0

0 0 0 − g


The monodromy matrix D of the variational matrix Jv(t) is

D(τ) = I exp
(∫ τ

0
Jv(t)dt

)
,
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where I is the identity matrix. We thus have: D(τ) = diag(λ1, λ2, λ3, λ4). Here, λi, i = 1, 2, 3, 4, are the
Floquet multipliers given by

λ1 = exp
[
−µsτ

]
, λ2,3 = exp

(∫ τ

0

1
2

[
−A ±

√
A2 − 4B

]
dt

)
, λ4 = exp(−gτ).

Here A = µi + µs + µdD̃ and B = µi(µv + µdD̃) − pβH̃s. Clearly λ1 and λ4 < 1. It is easy to check that
A2 − 4B > 0. Further if B > 0, then λ2,3 < 1. Thus, according to Floquet theory, the periodic solution
(H̃s(t), 0, 0, D̃(t)) of the system (2.2) is locally asymptotically stable if the condition (4.9) holds. Note
that R̃0 < 1 if B > 0. �
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Figure 1. (a) Transcritical bifurcation: steady state value of infected hepatocyte Hi is plotted
versus basic reproduction number R0 using the set of parameters as given in Table 1 except
β ∈ (0.0.01). Two endemic steady states are feasible when R0 > 1; (b) Region of stability of
the equilibria of the system (2.1) is shown in β − Λ parameter plane.
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Figure 2. Numerical solution of system (2.1) for R0 > 1 using the set of parameters as given
in Table 1.

5. Numerical simulations

In this section, we observe the dynamical behaviours of system (2.1) and impulsive effect of the
therapy using the model (2.2) through numerical simulations taking the parameters from Table 1. We
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have assumed Hs(0) = 200 mm−3, Hi(0) = 20 mm−3, V(0) = 20 mm−3 as initial biological conditions
of the model populations.
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H
s
(t) H

i
(t)

V(t)

D(t)

Figure 3. Effect of DAA in impulsive mode using τ = 7 and ω = 5 (blue line), ω = 10 (red
line); numerical values of the parameters are given in Table 1.

In Figure 1, we have seen the transcritical bifurcation at R0 = 1. When R0 < 1, the disease-
free equilibrium E0 is stable and a unique endemic equilibrium E∗ with V∗ = −A2+

√
D

2A1
exists but it is

unstable (Figure 1a, red dotted line). There exists two endemic equilibria exist for R0 > 1. Hence
Proposition 1, condition (iv) is verified. Using the conditions in Theorem 1, we have seen that the
endemic equilibrium E∗ with V∗ = −A2+

√
D

2A1
is unstable but the endemic equilibrium E∗ with V∗ =

−A2−
√

D
2A1

is stable. From this figure, we have also observed the effect of the infection rate β. For lower
infection rate, R0 < 1, the disease-free state is stable (Figure 1a, green dotted line). In Figure 1b,
region of stability of the equilibria are presented in β − Λ parameter plane. It can be observed that
when the product of β and Λ crosses a threshold value (which corresponds to R0 > 1), the disease-
free equilibrium E0 becomes unstable and the endemic equilibrium E∗ (with V∗ = −A2−

√
D

2A1
) exists and

stable.
Numerical solution of system (2.1) without any control measures is plotted in Figure 2. In this case,

we have chosen the set of parameters so that R0 is greater than unity, i.e., the system is endemic. It can
be observed that the system trajectories converge to the endemic equilibrium E∗ with V∗ = −A2−

√
D

2A1
.

According to Theorem 1, this E∗ is stable. But there exists another endemic equilibrium E∗ (see
Figure 1) which is unstable.

In Figure 3, we have plotted the numerical solution of system (2.2) taking two different doses for
fixed dosing interval τ. The system becomes free of disease/infection as infected liver cell Hi and virus
population are not appearing for ω = 10 (see the red line). But for lower dosing rate (ω = 5), the
system is endemic in nature as both infected liver cell and virus are present in the system (indicated
by blue line). In Figure 4, we have plotted the numerical solution of system (2.1) taking two different
dosing interval τ for a fixed dosing rate ω. System becomes free of disease/infection as infected liver
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Figure 4. Effect of DAA in impulsive mode using ω = 5 and two different time intervals:
τ = 7 days (red line), τ = 12 days (blue line). Parameters are given in Table 1.
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Figure 5. Effect of DAA in impulsive mode using varying dose keeping time interval fixed
at τ = 7. Parameters values are given in Table 1.
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Figure 6. Effect of DAA in impulsive mode using varying time intervals, τ keeping dose at
a fixed rate ω = 10. Parameters values are given in Table 1.

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1450–1464.



1461

cell Hi dies out for τ = 7. But for wider dosing interval (τ = 12), the system is endemic in nature as
indicated by infected liver cell Hi.

In Figures 5 and 6, we plotted the numerical solution of system (2.2) for varying dose and dosing in-
terval respectively. Figure 5 is plotted by changing dose at fixed interval namely ω = 5, 6, 7, 8 µ mg/L
etc.; that means during successive dosing attempts, the dosing rate should be increased by 1 µ mg/L
from the previous dosing. Figure 6 is plotted by changing dosing interval (τ) at increasing order such
as 1, 3, 5, 7 days etc. which means in every time dosing interval time is increased by 2 days from the
previous dosing. In this way we can find the suitable dose and dosing intervals. This enables us to
reduce the disease with minimum side effects.

6. Discussion and conclusions

In this article, we have formulated a basic mathematical model to study the infection for HCV
on human population. In this model, we have considered uninfected liver cells, infected liver cells
and virus population. Then we formulate the impulsive differential equations as the therapy is given
periodically. By using the impulsive differential equation, we mainly worked on the suitable interval
of therapy period and size of the dosage so that disease can be controlled.

The model without impulse is an extension of the model in [10]. The authors of [10] have proposed
a model for HCV taking four populations. Here we also assume four populations and the model is more
novel as our model can describe more phenomenon of HCV dynamics. For example, we have assumed
the infection term as βHsV

1+kV in place of βHsV and also incorporated impulse control in the model. Our
model contains impulsive differential equations.

We have observed that the model system has two equilibria, one is disease free and another is
endemic equilibrium. The disease free equilibrium is asymptotically stable if the basic reproduction
number is below unity, but when the basic reproduction number is grater than unity, then the disease
free equilibrium becomes unstable.

From the above analysis it is clear that infection is minimum at considerably higher dose ω, as
well as lower dosing interval τ. But, since infection rate depends on densities of virus and infected
liver cells, the therapy with a constant dose and at constant time interval is not appropriate to maintain
disease-free situation for the whole duration. Variations in these two parameters should be studied for
maximum incidence to maximize eradication of the disease. During maximum infection, the dosing
rate should be higher and time interval should be lower but the interval time should be increased at
ascending order during disease eradication process. From this study it can be seen that at higher time
interval (τ = 7 days) and also at comparatively lower therapy rate (e.g., ω = 12 µ mg/L) the system
reaches a disease-free stable periodic state.

In this study, the analytical and numerical findings reveal the theoretical eradication of the disease.
However, in reality it is quite difficult to conclude the complete eradication of the disease. Because
HCV has other reservoirs like spleen, intestine, pancreas, heart, kidneys, brain, lymph nodes, dendritic
cells, B and T lymphocytes [34, 35], from which the virus can come back once again before it is
controlled below the level of detection. However, our model results in large-scale declines in viral load,
which can be practically estimated by using impulsive differential equations. From the mathematical
point of view “theoretical eradication” should be understood to mean a substantial drop of viral load
below its threshold value but not complete eradication [36].
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From this research, we can conclude that DAA therapy with regular adherence to HCV can be ef-
fective at controlling the virus. Also for a perfect adherence of drug dose interval and drug dosage,
cellular infection can be controlled and immune system performs accurately. However, as of adher-
ence delays, it results in extreme variations in the system. The critical therapy period suggests that
careful follow-up must be taken. Hence optimal level of therapy period as well as size of pulse therapy
affect the disease progression and disease replication. Hence, the patients should be advised on the
significance of adherence to this DAA therapy against HCV.
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Appendix A

We have followed the method used by Hefferman et al. [38] for the derivation of R0 of the system
(2.1). We consider the next generation matrix M which comprised of two parts namely F and V, where

F =

[
∂Fi(Ē)
∂x j

]
=

[
0 βΛ

µs

0 0

]

V =

[
∂Vi(Ē)
∂x j

]
=

[
µi 0
−p µv

]
.

Here, Fi are the new infections and Vi are for the transfer of infections from one compartment to
another, and Ē is the disease-free equilibrium. The basic reproduction number is the dominant
eigenvalue of the matrix M = FV−1 and is denoted as R0.
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