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Abstract: In this paper, to study the large-scale time control and limited-time control of mosquito
population in a field, a two-sex mosquito population model with stage structure and impulsive releases
of sterile males is proposed. For the large-scale time control, a wild mosquito-free periodic solution is
given and conditions under which it is globally stable are obtained by the use of the monotone system
theory. Besides, based on the stability analysis, threshold conditions under which the wild mosquito
population is eliminated or not are obtained. Then we study three different optimal release strategies
for the limited-time control, which takes into account both of the population control level of wild
mosquitoes and the economic input. To solve technical problems in optimal impulsive control, a time
rescaling technique is applied and the gradients of cost function with respect to all control parameters
are obtained. In addition, by the aid of numerical simulation, we get the optimal release amounts and
release timings for each release strategy. Our study indicates that the optimal release timing control
is superior to the optimal release amount control. However, simultaneous optimal selection of release
amount and release timing leads to the best control performance.

Keywords: large-scale time control; limited-time control; impulsive release; release timing; release
amount

1. Introduction

As an insect control method, the sterile insect technique (SIT) has made a big success in pest
management and disease vector control over the past few decades [1–5]. In most instances, sterile
males are released into an area to compete with wild males. If a female mates with a sterile one, it is
unable to produce offspring, then the insect population will be eventually controlled or even eliminated
by the reproductive mate attrition. SIT was verified to work against mosquitoes by field trials in the
1970s and 1980s [6], and then developed rapidly for emerging approaches from SIT and new rearing
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techniques [7–10]. In addition to the classic SIT, the biological control methods already used in the
laboratory or field also include the genetic approaches and the Wolbachia driven mosquito control
technique.

To investigate the impact and effectiveness of these biological control measures, various
mathematical models have been formulated and analyzed. K. R. Fister et al. [11] proposed an optimal
control framework to explore the effect of sterile mosquito releases on reducing the incidence of
mosquito-borne diseases. S. M. White et al. explored the mechanism how an insect fitness cost affects
different control policies by constructing a stage-structured mathematical model for the mosquito
Aedes aegypti in [12]. J. Li et al. [13–15] investigated multiple policies of sterile mosquito release by
formulating discrete and continuous dynamical systems for the interaction between two mosquito
populations. While L. Cai et al. [16] studied the impact of the SIT on disease transmission by
constructing dynamical systems incorporating constant, proportional and Holling-II type release rates.
Y. Dumont and J. M. Tchuenche proposed mathematical models of SIT to exploit the control of an
epidemic of Chikungunya in [17], and pulsed periodic releases was especially studied. While in [8],
M. Strugarek et al. investigated the application of SIT in reducing and eliminating wild mosquitoes by
a simplified population model for Aedes, and several release modes were considered and necessary
conditions to guarantee elimination in each case were obtained. There are also lots of works focusing
on the dynamical analysis of mosquito population models with different characteristics [18–20].

It was pointed out in [21] that the duration of the release process each time is relatively short and it
usually takes multiple releases to make the mosquito population under control. Therefore, multiple
pulsed releases may be a realistic assumption. The impulsive release has been studied in several
cases [8, 17, 21–27]. The authors in [17] explained the pulsed release of sterile males by a
mosquito-human epidemiological model for Chikungunya, and investigated the impact of periodic
pulsed releases on the disease transmission. In [21], different two-dimensional models with periodic
impulsive releases and state feedback impulsive releases are constructed, and the authors exploited the
influence of different release strategies on the population development of wild mosquitoes. And P. A.
Bliman et al. [22] also investigated impulsive release of sterile male mosquitoes, and they studied the
periodic impulsive releases under open-loop control, state feedback impulsive releases under
closed-loop control and a mixed release strategy that combines open-loop and closed-loop controls.
While research in [8] established necessary conditions which can guarantee the eventual extinction of
the wild mosquito population.

For the Wolbachia driven mosquito control technique, J. Yu [23] introduced a model of differential
equations with a time delay to study the suppression dynamics of wild mosquitoes intervened by the
releasing of Wolbachia-infected males. Unlike many studies, the population suppression in this work
tried to avoid releasing infected females, just released living infected males, and aimed for
eliminating the whole population of mosquitoes. Then J. Yu et al. introduced the sexual lifespan of
sterile mosquitoes and assumed that the interaction happens only when the sterile mosquitoes are still
sexually active [24–27]. They investigated the impact of the sexual lifespan of sterile mosquitoes on
mosquito population suppression based on delay differential equations and gave a lot of important
results. J. Yu and B. Zheng [28] specially studied Wolbachia persistence by extra releases of
Wolbachia-infected mosquitoes based on difference equations, and obtained a maximal maternal
leakage rate threshold such that infected mosquitoes can persist. While M. Huang et al. [29]
introduced a system of delay differential equations, including both the adult and larval stages of wild
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mosquitoes, interfered by Wolbachia infected males. They explored its global dynamics and
determined a threshold level of infected male releasing which can ensure that the wild population is
suppressed completely.

Although rearing techniques are steadily updated, mosquito mass rearing is still one of the major
obstacles preventing the application of the SIT against mosquitoes in large scale. Artificial rearing of
sterile mosquitoes comes at an economic cost which cannot be neglected. Optimal control method can
be used to balance the conflict between the control level of the wild mosquitoes and the economic cost.

Optimal control problem for impulsive dynamical systems has its special peculiarities, and there is
a technical difficulty compared to continuous dynamical systems due to the dependence of the state of
variables on uncertain pulse effects. Many researchers have been making contributions to overcome the
difficulty and providing available control methodologies. These methodologies have been used in the
optimal impulsive management of population [11,13,30–34]. For example, in [33] the authors provided
multiple kinds of optimal policies for an eco-epidemiological model with impulsive interferences. An
pest management system incorporating impulsive release natural enemies is studied in [34], and three
optimal release strategies are given.

In this study, we did not consider the effect of the sexual lifespan and propose a two-sex mosquito
population model with stage structure and impulsive releases of sterile males, and an Allee effect is
also incorporated to describe the scarcity of the available mating area in the field. We firstly study
the large-scale time control based on aims of the extinction of wild mosquitoes, and then investigate
limited-time optimal control of wild mosquitoes to gain a suitable control strategy by selecting optimal
release parameters.

The structure of paper is as follows: In Section 2, we establish a hybrid dynamical system for the
large-scale time control of wild mosquitoes with impulsive releases of sterile males, and then study
its dynamical properties and exploit threshold conditions whether or not the wild mosquito population
is eliminated. In Section 3, we take into account the control effect of mosquito population level and
the economic input, and raise three limited-time optimal control problems for the impulsive release
strategies. By using a time rescaling technique, the gradients of cost function with respect to all control
parameters are obtained. Then numerical simulations are performed in Section 4 to determine the
optimal values of the release timing and release amount. Finally, a brief conclusion is presented in
Section 5.

2. Release strategies to eliminate wild mosquitos for large-scale time control

2.1. Model formulation

The model proposed in this section aims to investigate release tactics of sterilizing males which can
effectively reduce and eventually eliminate wild mosquitoes in a field.

According to the life habits of many species of mosquitoes (for example, Aedes genus), eggs
produced by fertile females may keep unhatched for a long time to wait for rainy seasons when the
natural breeding sites are available. So there may be large egg stocks in a given field which has to be
taken into account when built our mathematic model. Besides, in many cases the available mating
area in the field is relatively scarce and fertile females need overcome difficulties to get successful
fertilization. Therefore, we add an Allee effect in the wild female population as some researchers have
done. Based on the model assumption in [8], we propose the following population development
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model for wild mosquitoes with impulsive releases of sterile males



dWE(t)
dt

= βWF(1 −
WE

K
) − (ρ + µ1)WE,

dWM(t)
dt

= θρWE − µ2WM,

dWF(t)
dt

= (1 − θ)ρWE
bWM

γ + WM + αGM
− µ3WF ,

dGM(t)
dt

= −µ4GM(t),


t , kω, k = 1, 2, · · · ,

WE(t+) = WE(t),WM(t+) = WM(t),
WF(t+) = WF(t),GM(t+) = GM(t) + δ,

}
t = kω,

(2.1)

with K > WE(0) > 0,WM(0) > 0,WF(0) > 0 and GM(0) > 0. WE(t),WM(t) and WF(t) represent the
densities of eggs, fertile males and fertile females of wild mosquitoes at time t, while GM(t) is the
density of sterilizing males released in the field. The logistic term βWF(1 − WE

K ) describes the ”skip
oviposition” behavior of fertile females for they are capable to avoid depositing eggs in an area which
has supported too many larvae. β measures the effective fecundity and K is the environmental carrying
capacity. µi(i = 1, 2, 3, 4) denote the death rates, ρ is the hatching rate and θ represents the sex ratio
of wild mosquitoes. b stands for the insemination rate of emerging females, while parameters γ and
α measure the strength of Allee effect which involves a female’s mating likelihood and the mating
competitiveness of sterile males, respectively. Besides, ω is the release period and δ is the amount
released each time.

In [8], the Allee effect caused by mating limitation is modeled by a negative exponential function
1 − exp(−kWM), while in this work a rectangular hyperbola function bWM

γ+WM+αGM
is used. This form

of Allee effect is also widely used to describe mating limitation in sexually reproducing organisms
[14–16, 35, 36]. We hope to explore this kind of Allee effect in this work and to see if it will cause any
changes.

In the next subsection, we will investigate dynamical behaviors of system (2.1), and exploit the
release tactics for the large-scale time control of wild mosquitoes aiming to wipe out wild mosquitoes
from the field eventually.

2.2. Existence and stability of wild mosquito-free periodic solution

We firstly discuss the existence of the wild mosquito-free periodic solution of system (2.1), then
determine conditions of its global stability. We will provide theoretical analysis and practical method
for the selection of the release amount δ and the release period ω so that the wild mosquitoes can be
wiped out from the field.

Let X(t) = (WE(t),WM(t),WF(t),GM(t))T be any solution of system (2.1). Obviously, X(t) is
piecewise continuous and X(kω+) = lim

ε→0+
X(kω + ε) exists. Since the right hand side of system (2.1) is

locally lipschitz continuous on R4
+, system (2.1) has a unique solution [37, 38].

The positivity and boundedness of the solution of system (2.1) are firstly investigated.

Proposition 1. Solutions of system (2.1) are always non-negative if the initial values are non-
negative.
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Proof. Let (WE(t),WM(t),WF(t),GM(t)) be a solution of system (2.1) with non-negative initial
conditions. From the forth equation of system (2.1), we can get dGM(t)/dt = 0 if GM(t) = 0, so we
have GM(t) > 0, t ≥ 0 for GM(0) > 0.

Assume that there exists t > 0 satisfying WE(t) < 0. Denote τ1 = inf{t : WE(t) < 0}. From this,
we have WE(τ1) = 0 and W ′

E(τ1) ≤ 0. Substitute them into the first equation of system (2.1), then we
obtain W ′

E(τ1) = βWF(τ1) ≤ 0.
If WF(t) is non-negative for all t > 0, then WF(τ1) ≥ 0 and we get W ′

E(τ1) ≥ 0. It follows from
W ′

E(τ1) ≤ 0 that W ′
E(τ1) = 0, then we have W ′

E(τ1) = WE(τ1) = WF(τ1) = W ′
F(τ1) = 0. According

to the definition of τ1, there must be a sufficiently small constant ε1 > 0 such that WE(τ1 + ε1) < 0
and W ′

E(τ1 + ε1) < 0. Since WF(τ1 + ε1) ≥ 0, we have W ′
E(τ1 + ε1) = βWF(τ1 + ε1)(1 − WE(τ1+ε1)

K ) −
(ρ + µ1)WE(τ1 + ε1) > 0, which leads to a contradiction. Therefore, there must exist t > 0 such that
WF(t) < 0. Denote τ2 = inf{t : WF(t) < 0}, then WF(τ2) = 0 and W ′

F(τ2) ≤ 0. We can easily obtain
τ2 < τ1 and WE(τ2) > 0.

In fact, if τ1 = τ2, there is W ′
E(τ1) = βWF(τ1) = βWF(τ2) = 0, and as discussed above we can get

a contradiction. If τ1 < τ2, there is WF(τ1) > 0, and then we have W ′
E(τ1) = βWF(τ1) > 0, which also

leads to a contradiction.
Further more, if WM(t) is non-negative for all t > 0, then we obtain WM(τ2) ≥ 0. By the third

equation of system (2.1), we have

W ′
F(τ2) = (1 − θ)ρWE(τ2)

bWM(τ2)
γ + WM(τ2) + αGM(τ2)

− µ3WF(τ2) ≥ 0.

It follows from W ′
F(τ2) ≤ 0 that W ′

F(τ2) = 0, then we have W ′
F(τ2) = WF(τ2) = WM(τ2) = 0,W ′

M(τ2) =

θρWE(τ2) > 0. According to the definition of τ2, there must be a sufficiently small constant ε2 > 0 such
that WF(τ2 + ε2) < 0, W ′

F(τ2 + ε2) < 0 and WM(τ2 + ε2) > 0. Since

W ′
F(τ2 + ε2) =

(1 − θ)ρWE(τ2 + ε2) × bWM(τ2 + ε2)
γ + WM(τ2 + ε2) + αGM(τ2 + ε2)

− µ3WF(τ2 + ε2) > 0,

which leads to a contradiction. Thus there must exist some t > 0 such that WM(t) < 0. Denote τ3 =

inf{t : WM(t) < 0}, then we have WM(τ3) = 0 and W ′
M(τ3) ≤ 0. According to the second equation of

(2.1) yields W ′
M(τ3) = θρWE(τ3) ≤ 0. If τ1 > τ3, then there is WE(τ3) > 0 and W ′

M(τ3) = θρWE(τ3) > 0,
which also leads to a contradiction. Thus we have τ1 ≤ τ3.

By the above discussion, we have τ2 < τ1 ≤ τ3 and WE(τ2) > 0,WM(τ2) > 0,WF(τ2) = 0. However,

W ′
F(τ2) = (1 − θ)ρWE(τ2)

bWM(τ2)
γ + WM(τ2) + αGM(τ2)

> 0,

which also contradicts the definition of τ2.
To sum up, we have WE(t) is non-negative for all t > 0. Then there are dWM(t)/dt = 0 if WM(t) = 0

and dWF(t)/dt ≥ 0 if WF(t) = 0, and all solutions of system (2.1) with non-negative initial conditions
are always non-negative. The proof is completed.

Denote

Ω =
{
(WE,WM,WF ,GM) ∈ R4

+ : 0 ≤ WE ≤ K, 0 ≤ WM ≤
θρK
µ2
, L1,

0 ≤ WF ≤
(1 − θ)ρKb

µ3
, L2 and 0 ≤ GM ≤

δ

1 − exp(−µ4ω)
, L3

}
.

(2.2)
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Proposition 2. Ω is a forward invariant and globally attracting set of system (2.1) in R4
+.

Proof. Suppose X(t) = (WE(t),WM(t),WF(t),GM(t))T is a solution of system (2.1) with
X(0) = (WE(0),WM(0),WF(0),GM(0))T ∈ R4

+. Firstly, we prove that Ω is a forward invariant set. By
the forth equation and the impulsive conditions of system (2.1), we get

dGM(t)
dt

= −µ4GM(t), t , kω, k = 1, 2, · · · ,

GM(t+) = GM(t) + δ, t = kω.
(2.3)

It is obvious that the dynamics of sterilizing males is completely unaffected by that of the wild
mosquitoes. System (2.3) admits a unique positive periodic solution G̃M(t) =

δ exp(−µ4(t − kω))
1 − exp(−µ4ω)

, t ∈ (kω, (k + 1)ω], k = 0, 1, · · · ,

G̃M(0+) = δ/(1 − exp(−µ4ω)),
(2.4)

which is globally asymptotically stable. Besides, we can easily get

GM(t) = (GM(0) − G̃M(0)) exp(−µ4t) + G̃M(t)

and
lim

t→+∞
GM(t) = G̃M(t). (2.5)

If X(0) ∈ Ω, then we have GM(0) ≤ L3 = G̃M(0) and GM(t) ≤ G̃M(t) ≤ G̃M(0) = L3, t ≥ 0.
Besides, from the first equation of system (2.1), we get dWE

dt |X(t)∈Ω ≤ βL2(1− WE
K ), thus we can easily

obtain that 0 ≤ WE(t) ≤ K, t ≥ 0 for any X(0) ∈ Ω. According to the second equation of system
(2.1), we have dWM

dt |X(t)∈Ω ≤ θρK − µ2WM = θρK(1 − WM
L2

), thus there is 0 ≤ WM(t) ≤ L2, t ≥ 0 for any
X(0) ∈ Ω. Similarly, by the third equation of system (2.1), we have dWF

dt |X(t)∈Ω ≤ (1 − θ)ρKb − µ3WF =

(1 − θ)ρKb(1 − WM
L3

), and then there is 0 ≤ WF(t) ≤ L3, t ≥ 0 for any X(0) ∈ Ω. Therefore, for any
X(0) = (WE(0),WM(0),WF(0),GM(0))T ∈ Ω, there is

X(t, 0, X(0)) = (WE(t),WM(t),WF(t),GM(t))T ∈ Ω, t ≥ 0.

That is to say, Ω is a forward invariant set of system (2.1) in R4
+.

In the following, we prove that Ω is globally attractive. For any initial point
X(0) = (WE(0),WM(0),WF(0),GM(0))T < Ω, we study the trajectory trend of X(t, 0, X(0)) with the
increase of time t. If WE(0) ≤ K, similar to the above discussion above the invariant set, we can get
0 ≤ WE(t) ≤ K, t ≥ 0. If WE(0) > K, from the first equation of system (2.1), we get
dWE

dt |WE≥K < −(ρ + µ1)K < 0, and there must exist a time t1 > 0 such that 0 ≤ WE(t) ≤ K, t ≥ t1. When
t ≥ t1, by the second equation of system (2.1) and WE(t) ≤ K, we have dWM

dt ≤ θρK − µ2WM. If
WM(t1) ≤ L1, similar to the above discussion above the invariant set, we can get
0 ≤ WM(t) ≤ L1, t ≥ t1. If WM(t1) > L1, we have dWM

dt |t≥t1 ≤ θρK − µ2WM, then there must exist a time
t2 > t1 such that 0 ≤ WM(t) ≤ L1, t ≥ t2. When t ≥ t2, by the third equation of system (2.1) and
WE(t) ≤ K, we have dWF

dt ≤ (1 − θ)ρKb − µ3WF . If WF(t2) ≤ L2, similar to the above discussion above
the invariant set, we can get 0 ≤ WF(t) ≤ L2, t ≥ t2. If WF(t2) > L2, we have
dWF

dt |t≥t2 ≤ (1 − θ)ρKb − µ3WF , then there must exist a time t3 > t2 such that 0 ≤ WF(t) ≤ L2, t ≥ t3.
Further more, since lim

t→+∞
GM(t) = G̃M(t) and 0 ≤ G̃M(t) ≤ L3, t ≥ 0, we deduce that Ω is a globally

attracting set of system (2.1) in R4
+. This completes the proof.
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Theorem 1. System (2.1) has a wild mosquito-free periodic solution (0, 0, 0, G̃M(t)), where

G̃M(t) =
δ exp(−µ4(t − kω))

1 − exp(−µ4ω)
, t ∈ (kω, (k + 1)ω], k = 0, 1, · · ·

and
G̃M(0+) = δ/(1 − exp(−µ4ω)).

Proof. According to the positive periodic solution of model (2.3) obtained in Proposition 2, we can
easily get (0, 0, 0, G̃M(t)) is a periodic solution of system (2.1) which implies the eradication of wild
mosquitoes. The proof is completed.

We first prove the local stability of the ω−period solution (0, 0, 0, G̃M(t)).

Theorem 2. The wild mosquito-free periodic solution (0, 0, 0, G̃M(t)) of system (2.1) is locally
asymptotically stable.

Proof. In order to study the local stability of the wild mosquito-free periodic solution (0, 0, 0, G̃M(t)),
we consider the following subsystem

dWE(t)
dt

= βWF(1 −
WE

K
) − (ρ + µ1)WE,

dWM(t)
dt

= θρWE − µ2WM,

dWF(t)
dt

= (1 − θ)ρWE
bWM

γ + WM + αG̃M
− µ3WF .

(2.6)

Obviously, system (2.6) has a trivial equilibrium (0, 0, 0). Computing the Jacobian matrix of
system(2.6) at (0, 0, 0), we get

JO =


−(ρ + µ1) 0 β

θρ −µ2 0
0 0 −µ3


and it has three real and negative eigenvalues λi, i = 1, 2, 3. Then the Floquet multipliers of the
corresponding monodromy matrix eJOω are eλiω < 1, i = 1, 2, 3. It follows from the Floquet theorem
that the trivial equilibrium (0, 0, 0) of system (2.6) is always locally stable, which also implies that the
wild mosquito-free periodic solution (0, 0, 0, G̃M(t)) of system (2.1) is locally asymptotically stable.
The proof is completed.

In the following, we determine conditions under which the wild mosquito-free periodic solution
(0, 0, 0, G̃M(t)) is also globally attractive.

Theorem 3. The wild mosquito-free periodic solution (0, 0, 0, G̃M(t)) of system (2.1) is a global
attractor provided one of the following conditions holds

(i) (ρ+µ1)µ3
β(1−θ)ρ ≥ b;

(ii) (ρ+µ1)µ3
β(1−θ)ρ < b and 1

α

( (b− (ρ+µ1)µ3
β(1−θ)ρ )2

4b µ2
θρK

(ρ+µ1)µ3
β(1−θ)ρ

− γ
)
< δ exp(−µ4ω)

(1−exp(−µ4ω)) .
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Proof. Since lim
t→+∞

GM(t) = G̃M(t), to discuss the global attractivity of (0, 0, 0, G̃M(t)), we only need to
find conditions that can guarantee the global stability of (0, 0, 0) for system (2.6).

According to Theorem 2, the trivial equilibrium (0, 0, 0) of system (2.6) is locally stable. We now
exploit conditions under which it is globally attractive.

By letting the sterilizing males G̃M(t) be a constant, that is, G̃M(t) , Gcst
M ≥ 0, we construct a

comparison system as follows

dWE(t)
dt

= βWF(1 −
WE

K
) − (ρ + µ1)WE,

dWM(t)
dt

= θρWE − µ2WM,

dWF(t)
dt

= (1 − θ)ρWE
bWM

γ + WM + αGcst
M
− µ3WF .

(2.7)

We calculate the Jacobian matrix of system (2.7) as follows

JE =


−(βWF

K + ρ + µ1) 0 β(1 − WE
K )

θρ −µ2 0
(1 − θ)ρ WM

γ+WM+αGcst
M

(1 − θ)ρWE
b(γ+αGcst

M )
(γ+WM+αGcst

M )2 −µ3

 .
Obviously, all the off-diagonal elements are non-negative on the set Ω1 =

{
(WE,WM,WF) ∈ R3

+ : WE ≤

K
}
, which implies that system (2.7) is monotone on Ω1 in the sense of the monotone systems theory

[39]. Besides, it has a trivial equilibrium O(0, 0, 0) which is locally stable. To verify the existence of
positive steady state, we need to solve the following algebraic equations

WE =
βWF(1 − WE

K )
(ρ + µ1)

, WE =
µ2WM

θρ
, WF =

(1 − θ)ρ
µ3

WE
bWM

γ + WM + αGcst
M
.

By direct calculation, we get

W∗
E =

µ2

θρ
W∗

M,

W∗
F =

(ρ + µ1)K µ2
θρK W∗

M

β(1 − µ2
θρK W∗

M)
,

µ2b
θρK

(W∗
M)2 +

( (ρ + µ1)µ3

β(1 − θ)ρ
− b

)
W∗

M +
(ρ + µ1)µ3

β(1 − θ)ρ
(γ + αGcst

M ) = 0.

(2.8)

For simplicity, denote

B1 =
µ2

θρK
, B2 =

(ρ + µ1)µ3

β(1 − θ)ρ
,

then the number of positive steady states of system (2.7) equals the number of positive roots of the
following equations with respect to x:{

bB1x2 + (B2 − b)x + B2(γ + αGcst
M ) = 0,

B1x < 1.
(2.9)

For the quadratic equation in system (2.9), it is straightforward to show that it has no positive root
if (i)B2 ≥ b or (ii)B2 < b and 1

α

( (b−B2)2

4bB1B2
− γ

)
< Gcst

M holds.
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If B2 < b and 1
α

( (b−B2)2

4bB1B2
− γ

)
> Gcst

M , then the quadratic equation in system (2.9) has positive roots

x±∗ =
b − B2 −

√
(b − B2)2 − 4bB1B2(γ + αGcst

M )
2bB1

,

which must satisfy the second inequality in system (2.9). That is to say, system (2.7) must have two
positive equilibria, one of which is locally stable.

Due to the monotonicity of the system, the trivial equilibrium O(0, 0, 0) of system (2.7) is globally
asymptotically stable if it is the unique steady state. According to the above analysis, when B2 < b,
there is a critical value Gcrit

M = 1
α

( (b−B2)2

4bB1B2
− γ

)
for Gcst

M and Gcst
M > Gcrit

M can ensure that O(0, 0, 0) is a
global attractor.

Based on the analytical expression of G̃M in system (2.4), we can easily get its upper and lower
bounds

G̃L
M =

δ exp(−µ4ω)
1 − exp(−µ4ω)

≤ G̃M(t) ≤
δ

1 − exp(−µ4ω)
= G̃U

M.

If G̃L
M =

δ exp(−µ4ω)
1−exp(−µ4ω) > Gcrit

M , then we have G̃M(t) > Gcrit
M , t ≥ 0. By the monotonicity and the

relation between systems (2.6) and (2.7), we know that the trivial equilibrium O(0, 0, 0) is globally
asymptotically stable for system (2.6) if it is globally asymptotically stable for system (2.7).

Thus, the trivial equilibrium O(0, 0, 0) is globally asymptotically stable for system (2.6) if (i)B2 ≥ b
or (ii)B2 < b and G̃L

M > Gcrit
M holds, then wild mosquito-free periodic solution (0, 0, 0, G̃M(t)) of system

(2.1) is globally asymptotically stable under the same conditions. The proof is completed.

Remark 1. In Theorem 3, 1
B2

=
β(1−θ)ρ
(ρ+µ1)µ3

involves with the fecundity of the wild mosquitoes in the
field. According to the results in Theorem 3, if the fertility is weak enough, that is, b 1

B2
≤ 1, then the

wild mosquitoes will eventually go extinct even without human intervention. If the fertility is relatively
strong, for example, b 1

B2
> 1, we can also eliminate the wild mosquitoes in the long run by adjusting

the intensity of releases of sterile males.

2.3. Large-scale time control for wild mosquitoes

In the following, we study the large-scale time control strategies for wild mosquitoes by theoretical
analysis and give practical methods for selecting the release amount δ and release period ω so that the
wild mosquitoes can be wiped out from the field.

Based on the first kind of condition listed in Theorem 3, if the fertility in a given field is weak
( β(1−θ)ρ

(ρ+µ1)µ3
≤ 1

b ), wild mosquitoes will always go extinct without any human interventions. So we mainly
consider a more common case when wild mosquitoes has a relatively strong fertility and we need
release sterilizing males reasonably into the field to wipe out the wild ones.

According to the second kind of conditions listed in Theorem 3, we discuss the control strategies if
(ρ+µ1)µ3
β(1−θ)ρ < b holds.

Obviously, if
(b− (ρ+µ1)µ3

β(1−θ)ρ )2

4b µ2
θρK

(ρ+µ1)µ3
β(1−θ)ρ

≤ γ, then the conditions listed in (ii) of Theorem 3 are valid and the

wild mosquitoes will eventually go extinct without human intervention. If
(b− (ρ+µ1)µ3

β(1−θ)ρ )2

4b µ2
θρK

(ρ+µ1)µ3
β(1−θ)ρ

> γ, we denote
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N(δ, ω) := δ exp(−µ4ω)
(1−exp(−µ4ω)) and consider the equation

N(δ, ω) =
δ exp(−µ4ω)

(1 − exp(−µ4ω))
=

1
α

( (b − (ρ+µ1)µ3
β(1−θ)ρ )2

4b µ2
θρK

(ρ+µ1)µ3
β(1−θ)ρ

− γ
)
. (2.10)

For any given release period ω∗, N(δ, ω∗) is monotonically increasing with respect to δ. Besides, by
simple calculation, we can get N(0, ω∗) = 0 and N(+∞, ω∗) = +∞. Then there is a unique δ̃ ≥ 0

satisfyingN(δ, ω∗) = 1
α

( (b− (ρ+µ1)µ3
β(1−θ)ρ )2

4b µ2
θρK

(ρ+µ1)µ3
β(1−θ)ρ

− γ
)
. Hence it follows from Theorem 3 that the wild mosquito-free

periodic solution (0, 0, 0, G̃M(t)) of (2.1) is globally stable provided δ > δ̃ holds.
Similarly, for a given release amount δ∗, N(δ∗, ω) is monotonically decreasing with respect to ω.

Since it is obvious to have N(δ∗, 0) = +∞ and N(δ∗,+∞) = 0, there exists a unique ω̃ ≥ 0 such that

N(δ∗, ω) = 1
α

( (b− (ρ+µ1)µ3
β(1−θ)ρ )2

4b µ2
θρK

(ρ+µ1)µ3
β(1−θ)ρ

− γ
)
. Thus the wild mosquito-free periodic solution (0, 0, 0, G̃M(t)) of system

(2.1) is globally stable provided ω < ω̃ according to Theorem 3.
In the following, we will investigate the release tactics for large-scale time control of wild

mosquitoes by numerical simulations. Most model parameters are chosen from [8] and [17] (refer to
Table 1). While the environmental carrying capacity K and the strength of Allee effect γ remain
pending for their values often change with environments.

Table 1. Model parameter values from [8] and [17].

Parameters Value interval Unit Parameters Value interval Unit
β 7.46 - 14.85 day−1 ρ 0.001 - 0.25 -
µ1 0.023 - 0.046 day−1 θ 0.51 -
µ2 0.077 − 0.139 day−1 b 0 - 1 -
α 0 − 1 - µ3 0.033 - 0.046 day−1

µ4 0.25 day−1

In this paper, we consider parameters as follows

β = 10, ρ = 0.01, θ = 0.51, µ1 = 0.03, µ2 = 0.1, µ3 = 0.04,
µ3 = 0.04, µ4 = 0.25, α = 1, b = 0.7, K = 5000.

(2.11)

For the wild mosquito extinction induced by a strong Allee effect, we select γ = 1500 and there is
(b− (ρ+µ1)µ3

β(1−θ)ρ )2

4b µ2
θρK

(ρ+µ1)µ3
β(1−θ)ρ

= 1240.1868 < γ = 1500. Then the wild mosquitoes eventually go extinct without sterile

males deliveries (see Figure 1).
Keep other parameters the same as in Eq (2.11) but change γ = 1500 to γ = 200, then we have

(b− (ρ+µ1)µ3
β(1−θ)ρ )2

4b µ2
θρK

(ρ+µ1)µ3
β(1−θ)ρ

> γ. By direct calculation, we get

1
α

( (b − (ρ+µ1)µ3
β(1−θ)ρ )2

4b µ2
θρK

(ρ+µ1)µ3
β(1−θ)ρ

− γ
)

= 1040.1868.

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1314–1339.



1324

0 100 200 300 400 500 600 700 800 900

Time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

E
g

g
 S

to
ck

Figure 1. The global stability of the wild mosquito-free equilibrium of system (2.1) when
the Allee effect is strong. Here, two different sets of initial values are selected.

We first fix the release period ω∗ = 3 and through simple calculation we obtain that the unique
positive root of N(δ, ω∗) = 1040.1868 is δ̃ = 1161.8887. To verify our theoretical results, we compare
two release amounts δ = 1200 and δ = 800 in Figures 2 and 3, respectively. We can see that if the
release amount δ = 1200 > δ̃, then the wild mosquito-free periodic solution of system (2.1) is globally
stable (see Figure2), while if the release amount δ = 800 < δ̃, then there exists a locally stable positive
coexistence period solution in addition to the wild mosquito-free periodic solution (see Figure 3).
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Figure 2. The global stability of the wild mosquito-free periodic solution of system (2.1)
with δ = 1200 > δ̃. Here, three different sets of initial values are selected.

We then fix the release amount δ∗ = 1000 and get that the unique positive root of N(δ∗, ω) =

1040.1868 is ω̃ = 2.6946. Similarly, we compare two release periods ω = 2.5 and ω = 4 in Figures 4
and 5, respectively. We see that if the release period ω = 2.5 < ω̃, then the wild mosquito-free periodic
solution of system (2.1) is globally stable (see Figure 4), while if the release period ω = 4 > ω̃,
then a locally stable positive coexistence period solution coexists with the wild mosquito-free periodic
solution (see Figure 5).

In this section, we focus on the asymptotic behaviors of system (2.1), and verify the theoretical
results by numerical simulations. From Figures 1–5, we can see that although the sequential impulsive
releases of sterile mosquitoes can make the wild mosquitoes go extinct, there are disadvantages in terms
of cost control. After the wild population entered the basin of attraction of the extinction solution, the
extinction of wild mosquitoes is a foregone conclusion, and the releases of sterile mosquitoes only
speed up the process. This is unreasonable from the perspective of cost control. Because the cost
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Figure 3. System (2.1) has two locally stable periodic solutions with δ = 800 < δ̃: a positive
coexistence one and a wild mosquito-free one. The initial values are the same as those in
Figure2.
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Figure 4. The global stability of the wild mosquito-free periodic solution of system (2.1)
with ω = 2.5 < ω̃. The initial values are the same as those in Figure 2.
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Figure 5. System (2.1) has two locally stable periodic solutions with ω = 4 > ω̃: a positive
coexistence one and a wild mosquito-free one. The initial values are the same as those in
Figure 2.
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control is not involved in this part of the study, the conclusion of this part is more limited to the
theoretical discussion, and ignores the rationality of practical application.

3. Optimal release strategies to control wild mosquitos in a limited time

As pointed out in Section 2, regardless of the state of wild mosquito population in the
environment, blind sequential releasing sterile mosquitoes in large-scale time can ensure the
extinction of wild mosquitoes, but it will cause unnecessary cost waste in practice, which is not
desirable. Furthermore, the prevalence of mosquito borne diseases describes obviously seasonal and
regional characteristics. To this end, in this section we investigate limited-time optimal control of wild
mosquitoes incorporating both of the population control level of wild mosquitoes and the economic
input, and study three different release strategies: optimal release amount for periodic releases,
optimal release timing for a fixed release amount and mixed control with optimal release timing and
amount each time.

3.1. Optimization by mixed control

Firstly, we consider a relatively complicated scenario when both release timings and release
amounts are chosen as control parameters. Assume that we need to make mosquito population under
control in a predefined finite interval [0,T ] and N − 1 releases of sterilizing males are planed.
Suppose the release amount and release timing of the ith release are δi and ti ∈ [0,T ], respectively,
with i = 1, 2, · · · ,N − 1. Then a limited-time control system is proposed in the following

dWE(t)
dt

= βWF(1 −
WE

K
) − (ρ + µ1)WE,

dWM(t)
dt

= θρWE − µ2WM,

dWF(t)
dt

= (1 − θ)ρWE
bWM

γ + WM + αGM
− µ3WF ,

dGM(t)
dt

= −µ4GM(t),


t , ti, t ∈ [0,T ],

WE(t+) = WE(t),WM(t+) = WM(t),
WF(t+) = WF(t),GM(t+) = GM(t) + δi,

}
t = ti, i = 1, 2, · · · ,N − 1

(3.1)

with initial conditions

WE(0) = W0
E,WM(0) = W0

M,WF(0) = W0
F ,GM(0) = G0

M. (3.2)

T , the length of control time, can be converted to be dependent on the transmission of mosquito borne
infectious diseases in this situation. ti, i = 1, 2, · · · ,N − 1, the release timings, are assumed to satisfy
0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tN−1 ≤ tN = T . Denote Ti = ti − ti−1 which represents the time interval between
the (i − 1)th and ith release. According to practical meaning, this time interval cannot be too long or
too short. Thus we give constraints

0 ≤ τ1
i ≤ Ti ≤ τ

2
i , i = 1, 2, · · · ,N, (3.3)

where τ1
i and τ2

i are given constants. Similarly, we also give constraint for the release amount δi

0 ≤ δ1
i ≤ δi ≤ δ

2
i , i = 1, 2, · · · ,N − 1, (3.4)
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where δ1
i and δ2

i are given constants which represent the minimum and maximum amount allowed in
the ith release.

Denote Γ = (T1,T2, · · · ,TN)T and δ = (δ1, δ2, · · · , δN−1)T , where Ti and δi meet the stated constraints
Eqs (3.3) and (3.4), respectively. Let Ψ1 and Ψ2 be sets of all Γ ∈ RN , δ ∈ RN−1 satisfying Eqs (3.3) and
(3.4), respectively.

Since the right hand side of system (3.1) are differentiable, system (3.1) with initial condition Eq
(3.2) has a unique solution (WE(t),WM(t),WF(t),GM(t))T corresponding to each pair (Γ, δ) ∈ (Ψ1,Ψ2)
[37, 38].

Based on our key considerations of the mosquito population control, we define a cost function as
follows

J(Γ, δ) = WM(T ) + WF(T ) + r0

N−1∑
i=1

δi. (3.5)

Here, r0 stands for the per unit cost of rearing sterilizing mosquitoes.
For the optimal control problem in this scenario, we can state it formally as follows.
(P1) Subject to the dynamical system (3.1) with initial condition Eq (3.2), find a feasible parameter

vector pair (Γ, δ) such that the cost function J(π, δ) is minimized over (Ψ1,Ψ2).
Since the state of variables WE(t),WM(t),WF(t) and GM(t) , functions of t,Γ and δ, depends on

uncertain release timings and uncertain release amounts, the optimal control problem (P1) cannot be
solved directly by general optimization techniques. In this paper, we apply a time rescaling method
which has been used in several studies [33,34,40,41] to transform these uncertain pulse time points into
fixed ones. By this method, the optimal problem (P1) is turned into an equivalent optimal parameter
selection problem which is described as a series of ordinary differential equations with periodic initial
conditions. And the new equivalent problem can be solved by utilizing a gradient-based optimization
technique.

To this end, let t =
∑i−1

j=1 T j + Tis, t ∈ (
∑i−1

j=1 T j,
∑i

j=1 T j], and denote{
W i

E(s) = WE(
∑i−1

j=1 T j + Tis), W i
M(s) = WM(

∑i−1
j=1 T j + Tis),

W i
F(s) = WF(

∑i−1
j=1 T j + Tis), Gi

M(s) = GM(
∑i−1

j=1 T j + Tis).
(3.6)

Then system (3.1) with initial condition Eq (3.2) is converted into N subsystems

dW i
E(s)

ds
= F i

1(s) = Ti[βW i
F(1 −

W i
E

K
) − (ρ + µ1)W i

E],
dW i

M(s)
ds

= F i
2(s) = Ti[θρW i

E − µ2W i
M],

dW i
F(s)

ds
= F i

3(s) = Ti[(1 − θ)ρW i
E

bW i
M

γ + W i
M + αGi

M

− µ3W i
F],

dGi
M(s)

ds
= F i

4(s) = Ti[−µ4Gi
M(t)],


s ∈ (0, 1], i = 1, · · · ,N,

W i
E(0) = W i−1

E (1),W i
M(0) = W i−1

M (1),
W i

F(0) = W i−1
F (1),Gi

M(0) = Gi−1
M (1) + δi,

}
i = 2, 3, · · · ,N

(3.7)

with {
W1

E(0) = WE(0) = W0
E,W

1
M(0) = WM(0) = W0

M,

W1
F(0) = WF(0) = W0

F ,G
1
M(0) = GM(0) = G0

M.
(3.8)
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The cost function Eq (3.5) can also be redefined as follows

J1(Γ, δ) = WN
M(1) + WN

F (1) + r0

N−1∑
i=1

δi. (3.9)

Based on the above transformations, we can restate the problem (P1) as follows
(P2) Subject to the dynamical system (3.7) with initial condition Eq (3.8), find a feasible parameter

vector pair (Γ, δ) such that the cost function defined in Eq (3.9) is minimized over (Ψ1,Ψ2).
Using Theorem 6.1 in [42], we define Hamiltonian functions Hi, i = 1, 2, · · · ,N in the following

Hi(s,W i
E(s),W i

M(s),W i
F(s),Gi

M(s),Γ, δ)
= (λi

1(s), λi
2(s), λi

3(s), λi
4(s))(F i

1(s), F i
2(s), F i

3(s), F i
4(s))T .

(3.10)

Here λi(s) = (λi
1(s), λi

2(s), λi
3(s), λi

4(s)) are costate variables which are governed by the following
costate equations

λ̇i
1(s) = −

∂Hi

∂W i
E

= Ti[λi
1(
βW i

F

K
+ ρ + µ1) − θρλi

2 − λ
i
3

(1 − θ)ρbW i
M

γ + W i
M + αGi

M

],

λ̇i
2(s) = −

∂Hi

∂W i
M

= Ti[µ2λ
i
2 − λ

i
3

(1 − θ)ρbW i
E(γ + αGi

M)
(γ + W i

M + αGi
M)2

],

λ̇i
3(s) = −

∂Hi

∂W i
F

= Ti[−λi
1β(1 −

W i
E

K
) + µ3λ

i
3],

λ̇i
4(s) = −

∂Hi

∂Gi
M

= Ti[λi
3

(1 − θ)ρbαW i
EW i

M

(γ + W i
M + αGi

M)2
+ µ4λ

i
4]

(3.11)

with 
λN

1 (1) = 0, λN
2 (1) = 1, λN

3 (1) = 1, λN
4 (1) = 0,

λi
1(1) = λi+1

1 (0), λi
2(1) = λi+1

2 (0), λi
3(1) = λi+1

3 (0), λi
4(1) = λi+1

4 (0),
i = 1, 2, · · · ,N − 1.

(3.12)

Define
xi(s) = (W i

E(s),W i
M(s),W i

F(s),Gi
M(s))T ,

and from system (3.7) there is

xi(0) = xi−1(1) + (0, 0, 0, δi−1)T , i = 2, · · · ,N.

From Theorems 4.1 and 4.2 in [41], we have

Proposition 3. The gradients of the cost functional J1 with respect to δ and Γ are given by

∂J1

∂δ
=
∂(r0

∑N−1
i=1 δi)
∂δ

+

N∑
i=1

(λi(0))T (
∂xi(0)
∂δ

) +

∫ 1

0

N∑
i=1

∂Hi(xi(s), δ,Γ, λi(s))
∂δ

and
∂J1

∂Γ
=
∂(r0

∑N−1
i=1 δi)
∂Γ

+

N∑
i=1

(λi(0))T (
∂xi(0)
∂Γ

) +

∫ 1

0

N∑
i=1

∂Hi(xi(s), δ,Γ, λi(s))
∂Γ

,

respectively.
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By straightforward calculation, we get

Theorem 4. The gradients of the cost function J1(Γ, δ) with respect to the release timing Ti and
release amount δl are given by

∇TiJ1(Γ, δ) =

∫ 1

0

N∑
j

∂H j(s,W i
E(s),W i

M(s),W i
F(s),Gi

M(s),Γ, δ)
∂Ti

ds

=

∫ 1

0

{
λi

1(s)[βW i
F(1 −

W i
E

K
) − (ρ + µ1)W i

E] + λi
2(s)[θρW i

E − µ2W i
M]

+ λi
3(s)[(1 − θ)ρW i

E

bW i
M

γ + W i
M + αGi

M

− µ3W i
F] − λi

4(s)µ4Gi
M(t)

}
ds

(3.13)

for i = 1, 2, · · · ,N, and

∇δlJ1(Γ, δ) = r0 +

N−1∑
i

(λi+1(0)T )
∂φi(xi(1), δi)

∂δl
ds

= r0 + (λl+1
1 (0), λl+1

2 (0), λl+1
3 (0), λl+1

4 (0))(0, 0, 0, 1)T

= r0 + λl+1
4 (0)

(3.14)

for l = 1, 2, · · · ,N − 1, respectively.

3.2. Optimization by release amount

In this subsection, we study a relatively simple but common scenario when sterile male mosquitoes
are released into the field periodically with a fixed release amount. To determine an optimal release
amount for this mode, we suppose that sterile mosquitoes are periodically released with a constant
release amount δd in the limited time [0,T ] and N −1 times of releases are totally planed, that is to say,
the release period is ω = T

N . Then the limited-time control system is proposed as follows

dWE(t)
dt

= βWF(1 −
WE

K
) − (ρ + µ1)WE,

dWM(t)
dt

= θρWE − µ2WM,

dWF(t)
dt

= (1 − θ)ρWE
bWM

γ + WM + αGM
− µ3WF ,

dGM(t)
dt

= −µ4GM(t),


t , iω, t ∈ [0,T ],

WE(t+) = WE(t),WM(t+) = WM(t),
WF(t+) = WF(t),GM(t+) = GM(t) + δd,

}
t = iω, i = 1, 2, · · · ,N − 1

(3.15)

with initial conditions Eq (3.2).
Just like we did in section 3.1, we also give a constraint for the release amount δd

0 ≤ δlow ≤ δd ≤ δup, (3.16)

where δlow and δup are given constants which represent the minimum and maximum amount that are
allowed in each release.
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In this scenario, we can define the cost function for the control problem (P1) as follows

J̄(δd) = WM(T ) + WF(T ) + r0(N − 1)δd. (3.17)

Here, δd is the only control parameter. That is, we need to determine a release amount δd such that
J̄(δd) is minimized over [δlow, δup].

Apply the time rescaling technique again and let t = (i − 1)ω + sω for i = 1, 2, · · · ,N, then the
system (3.15) with initial condition Eq (3.2) is converted into the following N subsystems

dW i
E(s)

ds
= F i

1(s) = ω[βW i
F(1 −

W i
E

K
) − (ρ + µ1)W i

E],
dW i

M(s)
ds

= F i
2(s) = ω[θρW i

E − µ2W i
M],

dW i
F(s)

ds
= F i

3(s) = ω[(1 − θ)ρW i
E

bW i
M

γ + W i
M + αGi

M

− µ3W i
F],

dGi
M(s)

ds
= F i

4(s) = ω[−µ4Gi
M(t)],


s ∈ (0, 1], i = 1, 2, · · · ,N,

W i
E(0) = W i−1

E (1),W i
M(0) = W i−1

M (1),
W i

F(0) = W i−1
F (1),Gi

M(0) = Gi−1
M (1) + δd,

}
i = 2, 3, · · · ,N

(3.18)

with the same initial conditions Eq (3.8).
Then the cost function Eq (3.17) can be redefined as

J̄1(δd) = WN
M(1) + WN

F (1) + r0(N − 1)δd (3.19)

while the optimal control problem can be restated as: determine a δd such that J̄1(δd) is minimized
over [δlow, δup].

Then by similar discussion, we get the following result.

Theorem 5. The gradient of J̄1(δd) with respect to the release amount δd is

∇J̄1(δd) = r0(N − 1) +

N−1∑
i=1

λi+1
4 (0). (3.20)

3.3. Optimization by release timing and uniform release amount

In this subsection, the release timings are added as new control parameters on the basis of the
preceding scenario. That is, sterile mosquitoes are released at irregular moments 0 ≤ t1 ≤ t2 ≤ · · · ≤

tN−1 ≤ T with a same release amount δd. To find a set of optimal release timings and an optimal release
amount for this case, the following limited-time control system is proposed

dWE(t)
dt

= βWF(1 −
WE

K
) − (ρ + µ1)WE,

dWM(t)
dt

= θρWE − µ2WM,

dWF(t)
dt

= (1 − θ)ρWE
bWM

γ + WM + αGM
− µ3WF ,

dGM(t)
dt

= −µ4GM(t),


t , ti, t ∈ [0,T ],

WE(t+) = WE(t),WM(t+) = WM(t),
WF(t+) = WF(t),GM(t+) = GM(t) + δd,

}
i = 1, 2, · · · ,N − 1

(3.21)
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with the same initial conditions listed in Eq (3.2). Besides, release timings ti, i = 1, 2, · · · ,N − 1 and
release amount δd meet the stated constraints Eqs (3.3) and (3.16), respectively.

We define the cost function of control problem (P1) as follows

Ĵ(Γ, δd) = WM(T ) + WF(T ) + r0(N − 1)δd (3.22)

with Γ = (T1,T2, · · · · · · ,TN)T ,Ti = ti − ti−1.
Use the time rescaling technique and let t =

∑i−1
j=1 T j + Tis for i = 1, 2, · · · ,N, then the system (3.21)

is turned into

dW i
E(s)

ds
= F i

1(s) = Ti[βW i
F(1 −

W i
E

K
) − (ρ + µ1)W i

E],
dW i

M(s)
ds

= F i
2(s) = Ti[θρW i

E − µ2W i
M],

dW i
F(s)

ds
= F i

3(s) = Ti[(1 − θ)ρW i
E

bW i
M

γ + W i
M + αGi

M

− µ3W i
F],

dGi
M(s)

ds
= F i

4(s) = Ti[−µ4Gi
M(t)],


s ∈ (0, 1],

W i
E(0) = W i−1

E (1),W i
M(0) = W i−1

M (1),
W i

F(0) = W i−1
F (1),Gi

M(0) = Gi−1
M (1) + δd,

}
i = 2, 3, · · · ,N

(3.23)

with the same initial conditions listed in Eq (3.8).
Accordingly, the cost function Eq (3.22) is transformed into an equivalent form

Ĵ1(Γ, δd) = WN
M(1) + WN

F (1) + r0(N − 1)δd. (3.24)

Then we obtain the following result.

Theorem 6. The gradients of Ĵ1(Γ, δd) with respect to the release timing Tk and release amount δd

are given by
∇TkĴ1(Γ, δd) = ∇TkJ1(Γ, δ), k = 1, 2, · · · ,N (3.25)

and

∇δd Ĵ1(Γ, δd) = r0(N − 1) +

N−1∑
i=1

λi+1
4 (0), (3.26)

respectively. Here ∇TkJ1(Γ, δ) is the same as Eq (3.13).

4. Numerical simulations for the optimal control

To determine the optimal values of the release timings and release amounts for the three limited-
time optimal control problems in the preceding section, a series of numerical simulations are performed
in this section. These three optimal release strategies will also be compared in different ways.

Before proceeding further, we need to introduce the calculation method of the cost function and its
gradients with respect to the control parameters in detail. This method has been used in [34] and [41],
and we will explain it in the following by the case presented in Section 3.1.

(i) We firstly solve straightforward the differential equations (3.7) with initial conditions Eq (3.8) to
obtain W i

E(s),W i
M(s),W i

F(s),Gi
M(s), s ∈ [0, 1] for i = 1, 2, · · · ,N.
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(ii) Using W i
E(s),W i

M(s),W i
F(s),Gi

M(s) obtained in last step, we first solve backwards the costate
equations (3.11) with boundary conditions Eq (3.12) and obtain the costate variables
λi

1(s), λi
2(s), λi

3(s) and λi
4(s) for i = N. Then we obtain the costate variables for i = N − 1 in the

same way, and continue until we obtain the costate variables for i = 1.
(iii) Based on the expression in Eq (3.9), we compute the cost function J1(Γ, δ) by using WN

M(s) and
WN

F (s) and release amounts δi.
(iv) Applying W i

E(s),W i
M(s),W i

F(s),Gi
M(s), λi

1(s), λi
2(s), λi

3(s) and λi
4(s) obtained in step (i) and (ii),

we calculate ∇TiJ1(Γ, δ) for i = 1, 2, · · · ,N and ∇δlJ1(Γ, δ) for l = 1, 2, · · · ,N − 1.

Keep the parameter values in Eq (2.11) and consider the Allee effect in a relatively high level with
γ = 200. Besides, suppose that the average cost of rearing per unit of sterilizing mosquitoes r0 = 0.01.
When doing numerical simulation, we measure the time in days and take 20 days as the total control
time, that is to say, T = 20, and 4 releases of sterilizing males are planed, then these 20 days should be
divided into N = 5 parts according to different rules.

In the following, we will study three different optimal strategies in impulsive control by numerical
simulations. Surely there is no guarantee that the optimal solution we find numerically is unique, so we
just present some optimal ones with special initial release periods and amounts. Specifically, with the
help of nonlinear optimization-Matlab function library, we will find the optimal parameters by Matlab
according to the objective function and the correlation gradient calculated in the above steps.

Example 1. Optimal release amount for periodic releases

It is obvious that the release period is ω = T
N = 4. Starting with a initial release amount δd = 600,

if no optimal control is taken and only simple impulsive releases are employed, we can obtain that
after five periods the cost value is J0 = 371.9008 and the total fertile wild mosquito population is
WM(T ) + WF(T ) = 347.9008 at T = 20.
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Figure 6. (a) Comparisons of total fertile wild mosquitoes population under three cases;
(b) Influence of the release amount on the objective function value and the total fertile wild
mosquito population at time T.

Under the constraint 0 ≤ δd ≤ 1000, we solve the corresponding optimal problem numerically by
using the algorithm listed above in Matlab. We get an optimal release amount δ∗d = 559.54 and the
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corresponding cost value J∗ = 371.8468, while the total fertile wild mosquito population is W∗
M(T ) +

W∗
F(T ) = 349.4652 at time T = 20. We plot the time series diagrams of fertile wild mosquitoes for

this kind of optimal control, non-control and simple impulsive control in Figure 6(a). By these three
curves, we find that although the simple impulsive control has an obvious superiority in reducing fertile
mosquito population ( in most time of the control process, the total fertile wild mosquito population
of the optimal one is a little higher than that of the simple impulsive control one), it cost more sterile
mosquitoes to achieve such an effect (see Table 2).

Table 2. Comparison of the optimal amount control and the simple impulsive control.

WM(T ) WF(T ) Total release Cost value
Optimal control 213.3239 136.1413 2238.16 371.8468

Impulsive control 213.2209 134.6799 2400 371.9008

In addition, we investigate the influence of release amount on the cost function and the number of
the fertile wild mosquito population at time T ( see Figure 6(b)), and find that when the release amount
varies in the interval 0 ≤ δd ≤ 1000, the cost function J(δd) admits a minimum point, which also
verifies the optimum result we obtained above. Furthermore, we notice that the increase of the release
amount leads to the population reduction of fertile wild mosquitoes at the terminal time T . However,
the wild mosquito cannot be eliminated regardless of the releasing amount of sterile mosquitoes each
time.

Example 2. Optimal release timing for a fixed release amount

To be consistent with Example 1, we choose the same initial release amount δd = 600 and select
T1 = 2.5,T2 = T3 = T4 = 4,T5 = 5.5 as the initial release intervals. In order to determine optimal
time intervals Ti and optimal releasing amount δd which can minimize the cost function J, we consider
constraint conditions

0 ≤ Ti ≤ 10, i = 1, 2, · · · , 5,
5∑
1

Ti = 20 (4.1)

and 0 ≤ δd ≤ 1000 .
Then by using the Matlab program, we solve this optimal problem numerically and obtain the

following optimal release intervals

T ∗1 = 2.4793,T ∗2 = 3.9990,T ∗3 = 4.0044,T ∗4 = 4.0057,T ∗5 = 5.5117 (4.2)

and an optimal release amount
δ∗d = 574.16. (4.3)

In addition, we get the minimum cost value J∗ = 371.0832 and the total fertile wild mosquito
population WM(T ) + WF(T ) = 348.1168 at T = 20.

We plot the time series diagrams of fertile wild mosquitoes for the optimal release timing control,
optimal release amount control and non-control in Figure 7(a). From these curves, we find that the
optimal release timing control has a better control effect with a relatively low cost function value.
Besides, for every δd ∈ [0, 1000], we solve the corresponding optimal time intervals under the
restriction Eq (4.1) and then calculate the value of cost function and the amount of total fertile wild
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Figure 7. (a) Comparisons of total fertile wild mosquitoes population under different
biological controls; (b) Influence of the release amount on the objective function value and
the total fertile wild mosquito population at time T.

mosquitoes at T = 20. We find that, see Figure 7(b), when the release amount varies in the interval
0 ≤ δd ≤ 1000, the cost function J(Γ, δd) also admits a minimum point, which agrees with the optimal
values we have obtained. Similarly, the increase of the release amount reduces the fertile wild
mosquito population, but the wild mosquitoes cannot be eliminated even if the release amount reaches
the upper constrained bound and the cost value is very high.

Example 3. Optimal release timing and release amounts

Keep the initial release intervals T1 = 2.5,T2 = T3 = T4 = 4,T5 = 5.5 and choose the initial
release amounts δ1 = δ2 = δ3 = δ4 = 600, we deal with the optimal problem with constraints Eq (4.1)
and 0 ≤ δi ≤ 1000, i = 1, 2, 3, 4. Solving this optimal problem numerically in Matlab, we obtain the
optimal release amounts

δ∗1 = 584.84, δ∗2 = 584.84, δ∗3 = 584.84, δ∗4 = 584.82 (4.4)

and the optimal release intervals

T ∗1 = 2.4517,T ∗2 = 3.9976,T ∗3 = 4.0102,T ∗4 = 4.0133,T ∗5 = 5.5272. (4.5)

This release strategy is showed in Figure 8(b). Besides, we obtain the minimum cost value J∗ =

371.0803 and the total fertile wild mosquito population WM(T ) + WF(T ) = 347.6869 at T = 20. The
time series diagrams of the number of total fertile wild mosquitoes under four types of control modes
are plotted in Figure 8(a) from which we can see that mixed optimal control produces the best control
effect.

Finally, we compare these three optimal release strategies (refer to Table 3 and Figure 9). We find
that the optimal release timing control is superior to the optimal release amount control, while the
mixed control produces the best integrated control effect since the lowest fertile wild mosquito level
is reached at the minimal cost function value. From Figure 9(b), we also see that the mixed optimal
control releases the most sterile mosquitoes in the whole control process, but its cost function value is
not large because the least wild mosquitoes stayed in the field at the terminal time. Although it can be
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Figure 8. (a) Comparisons of total fertile wild mosquitoes population under different
biological controls; (b) Release strategy of the mixed optimal control.

Table 3. Comparison of different release strategies.

Optimal control parameters J∗ W∗
M(T ) + W∗

M(T )
Amount control δ∗d = 559.54 371.8468 349.4652

T ∗1 = 2.4793, T ∗2 = 3.9990,
Timing control T ∗3 = 4.0044, T ∗4 = 4.0057, 371.0832 348.1168

T ∗5 = 5.5117, δ∗d = 574.16
T ∗1 = 2.4517, T ∗2 = 3.9976,
T ∗3 = 4.0102, T ∗4 = 4.0133,

Mixed control T ∗5 = 5.5272, δ∗1 = 584.84 371.0803 347.6869
δ∗2 = 584.84, δ∗3 = 584.84
δ∗4 = 584.82
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Figure 9. (a) Comparisons of three release strategies: the red, blue and green segments are
for amount control, timing control and mixed control, respectively; (b) Comparisons of total
release amounts of sterile mosquitoes for three optimal control methods.
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seen from Figure 9(b) that the largest accumulated amount of sterile mosquitoes are released during
the whole control process in the mixed optimal control, its cost function value is the smallest due to
the smallest final population size of wild mosquitoes in the field.

5. Conclusions

The SIT has been a hot topic in the research field of mosquito-borne infectious disease control
in recent years, and lots of field trails have been conducted all over the world and large numbers of
researchers have been devoting themselves in this area and have already achieved many progresses.
Mathematical model, as an important tool, plays a significant role in the research process. However,
most of these models in previous studies are constructed by continuous or discrete dynamical systems,
which cannot describe the release process accurately. Most works focused on the asymptotic behavior
of the system in infinite time. However, the control of mosquitoes in most cases should be a shorter-
term action.

Release of sterile mosquitoes has been used to reduce or eliminate the wild mosquito population
in order to control vector-borne infectious diseases. In this paper, we proposed and studied a stage-
structured two-sex mosquito population model with an Allee effect and impulsive releases of sterile
males. By adjusting different types of control parameters, both large-scale time control and limited-
time optimal control of wild mosquitoes were investigated.

We firstly studied the large-scale time control aiming to wipe out wild mosquitoes. By using the
monotone system theory and the comparison theorem, we showed the existence, uniqueness and
globally stability of the wild mosquito-free periodic solution. For fixed release period ω∗ (or release
amount δ∗), we established threshold value for release amount δ̃ (or release period ω̃) which
determines the extinction or persistence of the wild mosquito population.

Then for the limited-time optimal control of wild mosquitoes, we took into account both of the
population control level of wild mosquitoes and the economic cost, and investigated three different
release tactics: optimal release amount for periodic releases, optimal release timing for a fixed release
amount and a combination of optimal release timing and release amounts. A time rescaling technique
was applied to overcome the technical difficulty that the state of variables depends on uncertain pulse
effects. We obtained the optimal release amounts and release timings numerically for each release
strategy. Numerical simulations indicate that the optimal release timing control is a more effective
strategy than the optimal release amount control. However, simultaneous optimal selection of release
amount and release timing leads to the best control performance.

In the limited-time control, we construct cost functions by referring to the pest control in agriculture
and only focus on terminal control but ignore process control. And in our future work, we will consider
both terminal control and process control in the limited time control, so as to ensure that the number
of wild mosquitoes cannot be too large during the control process.
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