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Abstract: Ipomoea cairica (L.) sweets are an invasive weed which has caused serious harm to the 
biodiversity and stability of the ecosystem. It is very important to accurately and rapidly identifying 
and monitoring Ipomoea cairica (L.) sweets in the wild for managements taking the necessary 
strategies to control the Ipomoea cairica (L.) sweets to rapidly grow in the wild. However, current 
approaches mainly depend on manual identification, which result in high cost and low efficiency. 
Satellite and manned aircraft are feasible assisting approaches, but the quality of the images collected 
by them is not well since the ground sampling resolution is low and cloud exists. In this study, we 
present a novel identifying and monitoring framework and method for Ipomoea cairica (L.) sweets 
based on unmanned aerial vehicle (UAV) and artificial intelligence (AI). In the proposed framework, 
we low-costly collected the images with 8256 × 5504 pixels of the monitoring area by the UAV and 
the collected images are split into more small sub-images with 224 × 224 pixels for identifying 
model. For identifying Ipomoea cairica (L.) sweets, we also proposed a novel deep convolutional 
neural network which includes 12 layers. Finally, the Ipomoea cairica (L.) sweets can be efficiently 
monitored by painting the area containing Ipomoea cairica (L.) sweets. In our experiments, we 
collected 100 raw images and generated 288000 samples, and made comparison with LeNet, 
AlexNet, GoogleNet, VGG and ResNet for validating our framework and model. The experimental 
results show the proposed method is excellent, the accuracy is 93.00% and the time cost is 7.439 s. 
The proposed method can achieve to an efficient balance between high accuracy and low complexity. 
Our method is more suitable for the identification of Ipomoea cairica (L.) sweets in the wild than 
other methods. 
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1. Introduction  

As a perennial vine, Ipomoea cairica (L.) sweets are viewed as the noxious invasive weeds in 
China and are called as plant killer because of heavily covering other plants in wild lands [1]. 
Ipomoea cairica (L.) sweets like climbing, can rapiddly grow, propagate, and cover in its area. 
Consequently, Ipomoea cairica (L.) sweets can result in the serious harm to the biodiversity and 
stability of the ecosystem [2]. How to identify and monitor the Ipomoea cairica (L.) sweets in the 
wild is becoming very important since it can help the governments to take the necessary strategies 
and methods in the identified area to prevent and control the growth of the Ipomoea cairica (L.) 
sweets for biodiversity and stability of the ecosystem. 

Currently, identifying and monitoring Ipomoea cairica (L.) sweets mainly depends on manual 
approaches of low efficiency and high cost [3]. With the quick development of image processing and 
artificial intelligence (AI), it is possible to help managements to make the precise efficient faster 
measures by efficiently identifying and monitoring Ipomoea cairica (L.) sweets [4]. Hyperspectral 
images have been used to identify the invasive species for monitoring and control their rapidly 
growth. Liu, et al. used the high-resolution imagery from Google Earth to monitor the Spartina 
alterniflora and showed that this approach can help governments to control Spartina alterniflora 
invasion [5], West et al. tested five models to identify Tamarik in satellite remote sensing data [6]. 
Bustamante et al. used hyperspectral sensors to detect Spartina densiflora Brongn [7]. Jomar et al. 
used imaging spectroscopy to detect Psidium cattleianum in Hawaiian Forests [8]. Khare et al. assess 
invasive plant species diversity in Pléiades 1A, RapidEye and Landsat-8 data [9]. However, it is 
difficult for these methods to detect the Ipomoea cairica (L.) sweets since the high-resolution 
hyperspectral images collected by aircraft and satellite are very high cost. For free low-resolution 
spectral data, some key information in these images is lost. As a result, the hyperspectral images are 
not suitable to monitor Ipomoea cairica (L.) sweets in the early stages. 

The number of study has proved that the high-resolution digital images can be used to plants 
identification in various environments and shows their excellent results [10], especially the high-
resolution images collected by low-altitude UAV because of retained good characteristics. Ge et al. 
used the aerial photographs to determine the Tamarix parviflora [11]. Jones et al. used the image 
analysis-based approach to detect Japanese Knotweed s.l. taxa in high-resolution, infra-red aerial 
images [12]. Dorigo et al. proposed an identifying method based on remote sensing to find F. 
japonica from low-cost images [13]. Sandino et al. used unmanned aerial vehicles (UAVs) and 
machine learning to detect the buffel grass and spinifex [14]. Hung et al. used feature learning to 
classify the invasive weed species based on the images from UAVs [15]. However, the detecting 
accuracy need be further improved, the efficient method with high accuracy need be developed for 
identifying invasive weed in the wild. 

Now deep learning shows the excellent ability in image recognition fields and is widely applied 
to the object detection in agricultural. Pound et al. demonstrated deep approaches can offer excellent 
ability to identify root and shoot feature [16]. Alvaro et al. presented deep learning method to 
identify the tomato diseases [17]. Amanda et al. presented the transfer learning and deep CNN for 
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pest damage and diseases detection, their results showed that their method can offer a fast, affordable 
method for digital disease detection [18]. Lu et al. used the deep CNN to identify the counts of maize 
tassels [19]. Though deep learning has widely applied to the agriculture fields, it still is difficult for 
identifying Ipomoea cairica (L.) sweets since it is very similar between Ipomoea cairica (L.) sweets 
and phorophyte.  

To better address aforementioned challenges, we present a novel identifying and monitoring 
framework and method for Ipomoea cairica (L.) sweets based on unmanned aerial vehicle (UAV) 
and artificial intelligence (AI). In the proposed framework, we can low-costly collected the images 
with 8256 × 5504 pixels of the monitoring area by the UAV, and the collected images are split into 
more small sub-images with 224 × 224 pixels for identifying model. For identifying Ipomoea cairica 
(L.) sweets, we propose a novel deep CNN (ICSNet) which consists of 12 layers. Finally, the 
Ipomoea cairica (L.) sweets can be monitored by painting the area containing Ipomoea cairica (L.) 
sweets. Our experiment results show our method can automatically monitoring and eradicating 
Ipomoea cairica (L.) sweets in wilds.  

In summary, the main contributions of this work are as follows: 
1) A novel identifying and monitoring framework and method based on unmanned aerial 

vehicle (UAV) and artificial intelligence (AI) are proposed for Ipomoea cairica (L.) sweets 
2) A deep CNN (ICSNet) is proposed to identifying Ipomoea cairica (L.) sweets, which can 

achieve the tradeoff between accuracy and time. 
3) The framework and method are validated in our experiments and the experimental results 

show our method has the excellent performance. 
The remainder is as follows. Section II presents our methods. Section III describes the 

experimental results and discussions. The conclusions are in Section IV. 

2. Method 

2.1. Proposed detecting framework for Ipomoea cairica (L.) sweets 

For monitoring the Ipomoea cairica (L.) sweets, we propose a novel detecting framework for 
Ipomoea cairica (L.) sweets, which is shown in Figure 1. In our framework, monitoring the Ipomoea 
cairica (L.) sweets includes the following steps: 

First step: The UAV is used to collect the images with 8256 × 5504 pixels of monitoring area, 
the whole images of monitoring area consists of sub-images with 8256 × 5504 pixels. The image 
sample is shown in Figure 1(b). 

Second step: The collected images with 8256 × 5504 pixels are split into many more small 
images with 224 × 224 pixels. The samples are shown in Figure 1(c). 

Third step: For each image with 224 × 224 pixels, we use the proposed deep CNN model to 
identify if the Ipomoea cairica (L.) sweets are contained in the images. This is corresponding to 
Figure 1(d). 

Four step: Based on above identified results, we paint the images containing Ipomoea cairica (L.) 
sweets in red color. This is corresponding to Figure 1(e). 

Five step: The painted images with 224 × 224 pixels is reassembled, as a result, the areas 
containing Ipomoea cairica (L.) sweets are covered by red color in the images with 8256 × 5504 pixels. 
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This is corresponding to Figure 1(f). Finally, all the Ipomoea cairica (L.) sweets are identified in 
monitoring area. 

For our framework and algorithm, in fact we can review it as a special case of object detection 
algorithm. For R-CNN and Fast R-CNN, they usually include three main steps: determining candidate 
region, feature extraction and classification. But slowly detecting speed is the lack of these algorithms. 
For our algorithm, we improve detection speed by in advance splitting the image into the little sub-
image with fixed same size. Consequently, we can achieve the required monitoring accuracy by 
adjusting the size of sub-image, and detection time also can meet the actual requirements. Although, 
the object detection algorithms such as Yolo and SSD, which achieves the classification and 
positioning in one step, can improve the detection speed, their detection accuracy is lower than R-CNN 
and Fast R-CNN. 

 

Figure 1. Proposed detecting framework for Ipomoea cairica (L.) sweets. 

2.2. Proposed deep CNN model for Ipomoea cairica (L.) sweets 

The multilayer neural network only consists of input, output and hidden layers. The actual 
needs decide the number of the hidden layers. Based on the original multilayer neural network, a 
more effective feature learning part is added in network. The part is the convolution layer and 
pooling layer which is set in front of fully connected layer. This is convolution neural network 
(CNN) which is shown in Figure 2. CNN deepen the number of layers in neural network and deep 
learning can be realized. 

Input layer                        Convolution layer 1                 Pooling layer 1          Convolution layer 2         Pooling layer 2   Full connection layer  Output layer  

Figure 2. Convolution neural network. 
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Figure 3. The architecture of ICSNet. 

Here, we build a 12-layer deep CNN network model for identifying Ipomoea cairica (L.) sweets, 
which mainly consists of convolutional layer, pool layer, inception module, dropout layer, full 
connected layer. The input is the RGB image with the size of 224 × 224 × 3. The output consists of two 
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neurons. The proposed network model is named ICSNet for short. The architecture of ICSNet is 
illustrated in Figure 3. 

First layer: It is a convolution layer, which is with 64 3 × 3 filters and the stride is 2. The ReLU 
(rectified linear units) are used as the activation function for improving the convergence speed and 
simple gradient calculation. The ReLU can nonlinearly map output results of convolution layer. The 
output results of second layer is the data with the size of 112 × 112 × 64.  

The pooling operator is connected after this layer for extracting the main features of a certain area, 
reducing the number of parameters, and preventing the model from over fitting. The maximum pooling 
with a 2 × 2 window and 2 strides is used in this layer. The pooling result is the data with the size of 56 
× 56 × 64.  

After pooling, the LRN (Local Response Normalization) is used to normalize the local response. 
The LRN enhances the larger response value and reduce the smaller response value. Thus, the LRN 
also can improve the generalization of the model. The output result of the LRN is the data with the size 
of 56 × 56 × 64. 

Second layer: It is a convolution layer, which is with 128 3 × 3 filters and the stride is 1. The 
ReLU is selected as the activation function. The LRN is connected after this layer, the output results is 
the data with the size of 56×56×128. Then above data is processed by pooling operator with a 3 × 3 
window and 2 strides. The output result of this layer is the data with the size of 28 × 28 × 128. 

Third to eighth layer: These layers consist of three inception modules which consist of seven 
convolution modules and a pooling module. They are divided into the following four branches.  

The first branch try convolution with 1 × 1 window on the output result of previous layer. The 
1 × 1 convolution can efficiently enhance the expression ability, and at the same time, it can 
increase and reduce the dimension of the output channel. All four branches of the inception module 
use 1 × 1 convolution to perform low-cost (much less computation than 3 × 3 cross-channel feature 
transformation). Then 3 × 3 convolution is connected.  

In the second branch, 1 × 1 convolution is used first, then 5 × 5 convolution is connected. The 
third branch is to use 3 × 3 maximum pooling with 2 strides and then connect 3 × 3 convolution. The 
fourth branch uses 1 × 1 convolution. Finally, the four branches are merged through an aggregation 
operation at the end, and the output is the data with the size of 28 × 28 × 128.  

After first inception modules, second and third inception modules are set in turn. The output is the 
data with the size of 28 × 28 × 480. Then, the pooling and LRN are performed, the data with the size of 
14 × 14 × 480 is output. 

Ninth layer: It is a convolution layer with 480 3 × 3 filters and their stride is 1. The ReLU is 
selected as the activation function. The result of this layer is the data with the size of 14 × 14 × 480. 
After convolution, the data is performed by LRN. Then, the maximum pooling with a 3 × 3 window 
and 2 strides is used. The output result is the data with the size of 6 × 6 × 480. 

Tenth layer: This layer is dropout layer which is used to improve the generalization capability. 
The size of output result is 17,280. 

Eleventh layer: This layer is the full connected layer with 100 neurons. 
Twelfth layer: This layer is the Softmax activation function layer with 2 neurons. 
In our ICSNet, we adopt the inception module from GoogLeNet, but only three inception 

modules are built in ICSNet. And we also add more convolution layers than AlextNet, but the 
number of convolution layers is less than VGGNet and ResNet. Consequently, the tradeoff between 
accuracy and time consuming can be achieved by our ICSNet. This is basic idea of our work. 
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3. Experiments 

3.1. Data description 

We use the DJI Phantom 4 Advanced UAV to collect the color images with 8256 × 5504 pixels of 
Ipomoea cairica (L.) sweets in the monitoring area. The flight altitude is approximately 15 m above the 
ground. In our experiments, we set the distance according to the following three rules: 1) the clear 
images can be acquired; 2) the identifying accuracy can meet the actual requirements; 3) the UAV can 
be easily controlled. So we set the value of distance 15m above the ground according to our experience. 
The camera angle is adjusted in horizontal 45° for good front view since Ipomoea cairica (L.) sweets 
are a climbing weed. Finally, 100 raw images with 8256 × 5504 pixels are acquired. Figure 4 shows 
four samples of the scaled-down raw images. 

 
(a) (b) 

 
(c) (d) 

Figure 4. Four samples of the scaled-down raw images. 

We produce the dataset according to the following steps: 
(1) The raw images are automatically divided into small images with 224 × 224 pixels by 

computer program. Figure 5 shows the samples of the images. Finally, 32000 samples with 224 × 224 
pixels are selected, in which 24,000 samples contain Ipomoea cairica (L.) sweets and 8000 samples do 
not contain Ipomoea cairica (L.) sweets. 

(2) The new samples are generated by horizontally and vertically rotating sample. Accordingly, 
32000 samples are expanded to 96,000 samples. 

(3) The new samples are generated by subtracting the mean of R, G and B from R, G, B value of 
sample, and Gray conversion. Finally, 288,000 samples are obtained to form the dataset in our 
experiments in which 216,000 samples contain Ipomoea cairica (L.) sweets and 72,000 samples do 
not contain Ipomoea cairica (L.) sweets. 
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(a) (b) (c) (d) (e) (f) 

   
(g) (h) (i) (j) (k) (l) 

Figure 5. The sample of the images with 224 × 224 pixels. (a–g) contain Ipomoea 
cairica (L.) sweets; (h–l) do not contain Ipomoea cairica (L.) sweets. 

3.2. Evaluation Measure 

In our experiments, the Accuracy, Precision, Recall, F1, AUC, min-batch size, computing cost 
and the number of layers are used to validate the performance of methods.  

For test samples, TP denotes the number of correctly identified samples including Ipomoea 
cairica (L.) sweets, TN denotes the number of correctly identified samples without Ipomoea cairica 
(L.) sweets, FP denotes the number of incorrectly identified samples including Ipomoea cairica (L.) 
sweets, FN denotes the number of incorrectly identified samples without Ipomoea cairica (L.) sweets. 
The Accuracy, Precision, Recall, F1 are respectively written as follows: 

 Accuracy 100%
TP TN

TP TN FP FN


 

    (1) 

 
Precision 100%

TP

TP TN
 

  (2) 

 
Recall 100%

TP TN

TP FN


 

  (3) 

 
1

2 Precision Recall
F 100%

Precision Recall

 
 

  (4) 

AUC is Area under the Curve of ROC (Receiver Operating Characteristics). The min-batch size 
is the number of samples in one batch. The time is the identifying time of samples. The number of 
layers is the number of convolutional and full connected layers, which can denote the complexity of the 
model. For obtaining valid results, the k-fold cross-validation (CV) is used to evaluate the algorithms 
and k is 10 in our experiments. 
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3.3. Comparative algorithms 

To efficiently validate the proposed method, we make comparisons with LeNet, AlexNet, 
GoogLeNet, VGG-19 and ResNet, all of which are deep CNNs [20]. 

(1) LeNet is firstly proposed by LeCun et al. in the 1990s, which includes three convolution layers, 
two sampling layers, two fully connected layers. At that time, it is difficult to run LeNet due to the 
limit of computation and memory capacity [21]. 

(2) AlexNet is proposed by Alex et al. and won the ILSVRC 2012 [22]. AlexNet achieves higher 
identifying accuracy than all the traditional machine learning algorithms. It is significant breakthrough 
for machine learning for classification. 

(3) GoogLeNet is proposed by Christian of Google and is the winner of ILSVRC 2014 [23], in 
which inception layers, including different receptive areas with different kernel sizes capturing sparse 
correlation patterns, are integrated into CNN. 

(4) VGG is proposed by Simonyan et al. in 2014, in which the convolution filter is a 3 × 3 filter 
and the stride is 2. VGG-11, VGG-16 and VGG-19 respectively include 11, 16 and 19 layers. The 
Softmax layer is the final layer for classification [24]. 

(5) ResNet is proposed by Kaiming et al. in 2015 to address to the vanishing gradient problem and 
shows the excellent ability of classification [25]. The popular ResNet consists of 49 convolution layers. 

All the algorithms in our experiments are coded in Matlab R2019a. The values of initial 
parameters are randomly generated for networks. The parameters are set as follows: the number of 
epochs, learning rate drop factor, learning rate drop period, batch size are 200, 0.0004, 0.6, 30 and 128, 
respectively. The operating system of PC is Window 7 and the GPU is a NVIDIA with 8 GB memory. 

3.4. Results and discussions 

The results of six algorithms are listed in Table 1 and Figure 6. Compared with ICSNet, ICSNet_n 
do not include inception modules. As we can see, the accuracy of ICSNet is 93.00%, the highest among 
six algorithms. The identifying time of ICSNet is 7.439 s, ranking the third shortest among six 
algorithms. The number of layers of ICSNet is 12, ranking the third lest among six algorithms. The 
accuracy of ResNet is equal to our algorithm, but their identifying time is more than that of our 
algorithm. The time of LeNet and AlexNet is less than that of our algorithm, but their accuracy is 
obviously lower than our algorithm. The Precision of our algorithm is 93.20%, only is lower than that 
of ResNet. The Recall of our algorithm is 93.30%, equal to that of ResNet ranking the first highest 
among six algorithms. The F1 of our algorithm is 93.00%, equal to that of ResNet, ranking the highest 
among six algorithms. The AUC of our algorithm is 94%, the second highest among six algorithms. 
Consequently, there is the best tradeoff between accuracy and time. Compared with LeNet, AlexNet, 
the number of layers of ICSNet is more, accordingly, the accuracy of ICSNet becomes higher but the 
time cost is only increased a little. The reason is that the size of filters is 5 × 5 in LeNet, the size of 
filters is 5 × 5 or 11 × 11 in AlexNet, the size of filters is 3 × 3 or 1 × 1 in ICSNet. For our algorithm, 
the size of filters is smaller than LeNet and AlexNet. 

We also see that, the more the number of the layers of networks, the larger the min-batch size is. 
But the VGG-19 is just the opposite due to its too much layers. The inception module induces the 
number of parameters and computing cost of the GoogLeNet and ICSNet, and remains more high 
identifying ability. 
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Table 1. The results of six algorithms. 

Algorithms 
Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

AUC 
Min-batch 
size 

Time(s) 
The number of 
Layers 

ICSNet 93.00 93.20 93.30 93.00 94.00 128 7.439 12 

ICSNet_n 80.50 81.60 80.50 80.50 81.44 128 6.451 7 

LeNet 80.50 81.42 80.64 80.50 81.00 128 6.511 7 

AlexNet 85.00 84.35 84.41 84.38 85.00 128 6.953 8 

VGG-19 91.00 92.30 92.00 92.15 91.50 28 16.342 19 

GoogLeNet 92.50 92.64 92.50 93.00 93.00 80 13.192 22 

ResNet-18 91.10 92.42 92.15 92.24 92.00 20 13.012 18 

ResNet-50 92.15 92.50 92.15 92.50 92.50 20 20.160 50 

ResNet152 93.00 93.45 93.30 93.00 94.20 20 31.879 152 

 

Figure 6. The results of algorithms. 

(a) (b) 

Figure 7 The relation between Min-batch size and Accuracy, Epoches. 
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Table 2. The results of our algorithms. 

Fold Class Number A B Accuracy (%) 

1 
A 21600 20079 1521 

93.00 
B 7200 495 6705 

2 
A 21600 20036 1564 

93.00 
B 7200 452 6748 

3 
A 21600 20415 1185 

94.48 
B 7200 405 6885 

4 
A 21600 20440 1160 

94.41 
B 7200 539 6661 

5 
A 21600 19814 1786 

90.12 
B 7200 748 6452 

6 
A 21600 20596 1004 

95.42 
B 7200 315 6885 

7 
A 21600 19491 2109 

89.60 
B 7200 886 6314 

8 
A 21600 19795 1805 

91.22 
B 7200 729 6471 

9 
A 21600 21122 478 

97.57 
B 7200 221 6979 

10 
A 21600 19966 1634 

91.18 
B 7200 906 6294 

Average     93.00 

Figure 7 shows the relation between Min-batch size and Accuracy, Epoches. As we see in Figure 
7(a), when the Min-batch size is 128, the accuracy is the highest. This indicates the Min-batch size is 
relation to the accuracy of algorithm. In Figure 7(b), the larger is the Min-batch size, the larger is the 
number of epochs. When the Min-batch size is more than 256, the number of epochs is sharp large. The 
larger is the number of the epochs, the more is the consumed time when the algorithm converges. We 
also can see, when the Min-batch size is 128, the accuracy of algorithm is high, and the number of 
epochs is relatedly small. 

The Table 2 lists the accuracy of each fold in test sets in the 10-folds CV and the confusion matrix 
of each fold. In Table 2, “A” denotes the image containing Ipomoea cairica (L.) sweets, “B” denotes 
the image without Ipomoea cairica (L.) sweets. 

   
(a) (b) (c) (d) (e) (f) 

   
(g) (h) (i) (g) (k) (l) 

Figure 8. The incorrectly identified samples of Ipomoea cairica (L.) sweets. 
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Figure 9. The raw images and images in which the area of Ipomoea cairica (L.) sweets is 
painted red. 

Compared with LeNet, AlexNet, the number of layers of ICSNet is more, accordingly, the 
accuracy of ICSNet becomes higher but the time cost is only increased a little. Compared with 
GoogLeNet and ResNet, the time cost is obviously reduced. Since the layers of network is closely 
related to the time cost, our algorithm is designed considering their tradeoff. 

The ICSNet aims to accurately identify Ipomoea cairica (L.) sweets and non-Ipomoea cairica (L.) 
sweets in the wild. Some incorrectly identified samples are shown in Figure 8. We can see that, in 
Figure 8 (b–e), (g), (k) and (l), the parts of Ipomoea cairica (L.) sweets are clear, but their proportions 
are very small. It is reason that they are incorrectly identified by our algorithms. For Figure 8 (f), (d) 
and (i), the bad quality of images affects the performance of our algorithm. The samples in Figure 8 (a) 
is too dark, so the misidentification is excusable. To solve the problem, in future work, we need 
consider two aspects: (1) Set the parameters of camera of UAV for good quality of acquired images. (2) 
Determine the right distance between UAV and Ipomoea cairica (L.) sweets for good quality of 
acquired images. 

Based on the results of our algorithm, we can draw the area of Ipomoea cairica (L.) sweets in the 
raw images or map to help management to efficiently monitor the Ipomoea cairica (L.) sweets and take 
measures to protect the environment. The raw images are shown in Figure 9 (a) and (c), and the 
corresponding images, in which the area of Ipomoea cairica (L.) sweets is painted red, are shown in 
Figure 9 (b) and (d). In Figure 9 (a) and (c), the images in big yellow box are zoomed, which are 
corresponding the images in small yellow box. As we can see in Figure 9, the area of Ipomoea cairica 
(L.) sweets can be intuitively found. 
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4. Conclusions 

Ipomoea cairica (L.) sweets is an invasive weed which has caused serious harm to the biodiversity 
and stability of the ecosystem. It is very important to accurately and rapidly identifying Ipomoea 
cairica (L.) sweets in the wild for management taking the necessary strategies to control the Ipomoea 
cairica (L.) sweets to rapidly grow in the wild. In this study, we propose an identification framework 
and method for Ipomoea cairica (L.) sweets based on UAV and AI.  

The UAV can help us to low-costly acquire lots of high quality of images of monitoring areas. 
The deep CNN is designed to efficiently identify Ipomoea cairica (L.) sweets in the acquired images. 
To validate the efficiency of proposed method, we generated 288000 samples in our experiments, and 
made comparison with LeNet, AlexNet, GoogleNet, VGG and ResNet. The experimental results 
showed that our method was excellent, the identifying accuracy is 93.00% and the identifying time is 
7.439 s. Our work can help to promote the performance of online monitoring systems for Ipomoea 
cairica (L.) sweets. 

In our experiments, we set the distance according to the following three rules: 1) the clear images 
can be acquired; 2) the identifying accuracy can meet the actual requirements; 3) the UAV can be 
easily controlled. In addition, we also consider the sensor resolution. So we set the value of distance 
15m above the ground according to our experience. When the value of distance is higher than 15 m, the 
collected images became more and more vague. This will affect the accuracy of model. When the value 
of distance is lower than 15 m, although we can collect clear images, this will consume the more time 
to collect the data and process data. 

For our detection frame and model, the size of images can be set as the possible predefined size. 
The size of image affects not only the accuracy of model but also the monitoring accuracy. It is 
important to design an excellent model and algorithm in the special application. So, in future, we will 
further study the question. 

Our model also can be regarded as the special GoogLeNet. The reason simplifying GoogLeNet is 
to achieve a tradeoff between accuracy and time. In addition, we also adopt the idea of VGGNet, that is 
3 × 3 filters is used in our model to further reduce the time complexity. For our algorithm, the idea of 
ResNet is not adopted. The reason is that we find the performance cannot meet our requirements. 

In the future, we will acquire more Ipomoea cairica (L.) sweets images to train ICSNet model for 
further improving the identifying accuracy of model. In addition, we also will build the dynamic 
monitoring system of Ipomoea cairica (L.) sweets. 
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