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1. Introduction

Creating mathematical model is an essential step for the simulation, analysis, control and design of
modern systems. In the last decades, it has become ubiquitous to build model from collected input-
output data by adopting data driven modeling approaches. Loewner Matrix Method (LMM) is a widely
applicable data-driven modeling approach which is introduced and developed in [1–4]. LMM provides
a systematic framework for constructing models from given noise-free measurements in the frequency
or time domain [5]. In fact, recent investigation shows that LMM is also able to approximate the
original system even for high levels of noise [6, 7]. To make the LMM more compatible for dealing
with dynamical systems with intrinsic structural properties like delay or second-order, Schulze et al.
recently generalized the LMM to generate structure-preserving model [8].

As a natural extension of the integer-order systems, fractional-order systems received a fast increas-
ing attention in the last years. It is revealed that fractional-order model is able to more accurately
capture the basic dynamics of many real-life systems arising in electrical, electronic, mechanical, bio-
logical (e.g., cardiac tissue electrode interface). Especially in recent years, the fractional-order models
were applied to the fields of chemical and bio-sciences engineering in more and more literature. Dulf et
al. proposed the use of fractional-order model to represent the complex mechanisms of the biochemical
processes without losing the physical meaning of gain and time constants in [9] and it worked better
than integer-order. Toledo-Hernandez et al. extended fractional calculus to the biological reactive sys-
tems in [10, 11], they shown that the dynamics of some reactive systems displaying atypical behavior
can be represented by fractional-order differential equations. Khan proposed a fractional-order bio-
chemical reaction model and shown that the fractional modeling has more advantage than classical
integer model [12].

Modeling of fractional-order systems via data-driven methods has received a lot of interests. Some
researchers focused on the modeling of fractional-order system (FoS) and proposed different meth-
ods to identify the parameters and order of FoS in time domain or frequency domain.The differential
evolution (DE) algorithm was applied to search the optimal fractional commensurate differential order
in [13]. Gao proposed a stable model order reduction method for fractional-order systems and achieved
a great fitting effect with the original system in [14]. The FoS was identified by applying least squares
method in [15]. In the paper [16], a subspace identification algorithm in the time-domain was proposed
to identify the coefficient matrices and the order-α of multi-variable FoS. An algebraic approach was
proposed to identify linear systems with fractional derivatives in [17].

In the present work, we apply and extend the LMM to construct fractional-order state space model
with low computational cost from the interpolation data. It is shown that the generalized LMM is
powerful to generate the desired fractional-order model with minimal realization. In particular, the un-
known fractional-order α can be identified accurately thanks to its rank revealing property. Casagrande
et al. proposed using integer-order model to approximate the FoS in the Loewner framework [18]. The
drawback of the method is that the approximate system works badly at the high frequencies sometimes.
Moreover, the order will increases as the amount of interpolation data increases. Our method can solve
both of the problems effectively.

The remainder of this paper is organized as follows. Section 2 not only introduces a brief mathe-
matical background of commensurate FoS and fractional-order time delay systems (FoTDS), but also
recalls the generalized Loewner realization method. The associate data-driven realization problems
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about the fractional-order are introduced. Section 3 present a generalization to the commensurate FoS
based on extensions of the LMM (Divided into two cases of order α known and unknown). An approx-
imation method to FoDTS based on the LMM is illustrated in Section 4. To study the applicability of
the proposed method, some examples are outlined in Section 5. Section 6 gives a concluding remark
and discusses the future works.

2. Preliminaries and problem statement

2.1. Commensurate fractional-order systems

Detailed introduction to fractional-order systems is given in [19–21]. In this work, we only consider
the commensurate fractional-order linear time invariant (FoLTI) continuous systems. Generally, the
state space model of a FoLTI system is described by

Dαx(t) = Ax(t) + Bu(t), y(t) = Cx(t) (2.1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t)∈Rp are the system states, input and output vectors, respectively. Dα

is the fractional differential operator, A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are the system matrices. The
state space model described by the Eq (2.1) can be transformed into the following fractional transfer
function form.

G(s) = C(sαI − A)−1B. (2.2)

Problem 1. For the system described by the Eq (2.1), given a set of input-output frequency responses
of the transfer function. we have
the right interpolation data:

{(λi, ri,wi)|λi ∈ C, ri ∈ C
m×1,wi ∈ C

p×1, i = 1, 2, · · · , k}, (2.3)

and the left interpolation data:

{(µ j, ` j, v j)|µ j ∈ C, ` j ∈ C
1×p, v j ∈ C

1×m, j = 1, 2, · · · , k}. (2.4)

where G(λi)ri = wi and ` jG(µ j) = v j. Our purpose is to realize a minimal state space model [22]
[E, A, B,C] of FoS. It is divided into two parts.

a) In case that the value of α is pre-known, the system matrices [E, A, B,C] are constructed
according to the interpolation data, such that the commensurate fractional-order transfer function
H(s) = C(sαE − A)−1B satisfies the interpolation data. i.e., H(λi)ri = wi and ` jH(µ j) = v j.

b) In case that the value of α is unknown, to find the optimal α̂ and construct the corresponding
matrices [E, A, B,C] according to the interpolation data, such that the transfer function H(s) = C(sα̂E−
A)−1B satisfies the right and left interpolation conditions.

2.2. Fractional-order time delay systems

The transfer function of a SISO FoTDS is given as the following expression:

G(s) =
N(s)
D(s)

=

∑m
i=0 bisβi∑n
i=0 aisαi

e−τs (2.5)
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where τ is the time delay.
Problem 2. For a FoTDS, given a set of frequency response input-output pairs (si, S i), i = 1, . . .N,

where S i is obtained by sampling the transfer function Eq (2.5), i.e., S i = G(si). Our purpose is to find
a linear integer-order model with r-order in the descriptor form:

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) (2.6)

where x(t) ∈ Rr, u(t) ∈ R, y(t) ∈ R, and the associated transfer function H(s) satisfies the interpolation
data, i.e..

H (si) = C (siE − A)−1 B = S i (2.7)

2.3. Loewner framework realization

In order to solve the above both of problems. We resort the Loewner framework which has been
widely applied to the generalized realization problem by Antoulas and his co-workers [1, 3, 23]. The
Loewner framework are extended to the dynamic time delay systems in [24].

We briefly recall the Loewner realization in [1]. The Loewner matrix L and shifted Loewner matrix
Lσ are defined as follows

L =


v1r1−`1w1
µ1−λ1

. . . v1rk−`1wk
µ1−λk

...
. . .

...
vkr1−`kw1
µk−λ1

· · ·
vkrk−`kwk
µk−λk

 , Lσ =


µ1v1r1−λ1`1w1

µ1−λ1
. . . µ1v1rk−λk`1wk

µ1−λk
...

. . .
...

µkvkr1−λ1`kw1
µk−λ1

· · ·
µkvkrk−λk`kwk

µk−λk

 (2.8)

The interpolation data is

Λ = diag [λ1, · · · , λk] ∈ Ck×k, R = [r1, · · · , rk] ∈ Cm×k, W = [w1, · · · ,wk] ∈ Cp×k (2.9)

M = diag
[
µ1, · · · , µk

]
∈ Ck×k, L =


`1
...

`k

 ∈ Ck×p, V =


v1
...

vk

 ∈ Ck×m (2.10)

These matrices satisfy the following Sylvester equations

LΛ − ML = LW − VR (2.11)
LσΛ − MLσ = LWΛ − MVR (2.12)

Theorem 2.1. For all x ∈ {λi} ∪ {µ j}, let det(xL − Lσ) , 0. Then E = −L, A = −Lσ, B = V, C = W
is a minimal realization. The transfer function is

Hr(s) = W(Lσ − sL)−1V (2.13)

Theorem 2.2. Suppose that:

rank(xL − Lσ) = rank[L Lσ] = rank
[
L

Lσ

]
= r, x ∈ {λi} ∪ {µ j}. (2.14)

For some x, the short singular value decomposition (SVD) is computed as follow:

xL − σL = Y∗ΣX∗ (2.15)

where Σ ∈ Cr×r is positive definite and diagonal, Y ∈ Cr×k and X ∈ Ck×r are the orthogonal factors of
the short SVD. Then a minimal realization is given as follows:

E = −YLX, A = −YLσX, B = YV, C = WX. (2.16)
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3. Loewner framework for commensurate FoS

We extend the Loewner framework to the commensurate FoS. The fractional-order Loewner matrix
L f and shifted Loewner matrix σL f associated with the commensurate FoS are defined as following in
terms of the data Eqs (2.3) and (2.4) :

L f =


v1r1−`1w1
µα1−λ

α
1

. . . v1rk−`1wk
µα1−λ

α
k

...
. . .

...
vkr1−`kw1
µαk−λ

α
1
· · ·

vkrk−`kwk
µαk−λ

α
k

 , σL f =


µα1 v1r1−λ

α
1 `1w1

µα1−λ
α
1

. . .
µα1 v1rk−λ

α
k `1wk

µα1−λ
α
k

...
. . .

...
µαk vkr1−λ

α
1 `kw1

µαk−λ
α
1

· · ·
µαk vkrk−λ

α
k `kwk

µαk−λ
α
k

 (3.1)

where µαi − λ
α
j , 0, for all i, j = 1, · · · , k, α is the commensurate order.

These matrices satisfy the following Sylvester equations

L fΛ
α
− MαL f = LW − VR (3.2)

σL fΛ
α
− MασL f = LWΛα − MαVR (3.3)

3.1. Realization of FoS with pre-known α

When we already know the commensurate order-α, for the solution of the first part of Problem 1,
There are two cases: the right amount of data and the more realistic redundant amount of data. The
following theorem gives the solution for the first case.

Theorem 3.1. If det(xαL f − σL f ) , 0, for all x ∈ {λi} ∪ {µ j}, i, j = 1, · · · , k. Then E = −L f , A =

−σL f , B = V and C = W is a minimal realization. The corresponding transfer function is: H(s) =

W(σL f − sαL f )−1V.

The following proof shows that the realization satisfies the interpolation data. i.e.. H(λi)ri = wi and
` jH(µ j) = v j.

Proof. Multiplying the Eq (3.2) by sα and subtracting it from the Eq (3.2) obtain:

(σL f − sαL f )Λα − Mα(σL f − sαL f ) = LW(Λα − sαI) − (Mα − sαI)VR (3.4)

Multiplying Eq (3.4) by ei on the right and setting s = λi to imply(
λαi I − Mα) (σL f − λ

α
i L f

)
ei =

(
λαi I − Mα) Vri

⇒
(
σL f − λ

α
i L f

)
ei = Vri ⇒ ei =

(
σL f − λ

α
i L f

)−1
Vri

⇒ Wei = W
(
σL f − λ

α
i L f

)−1
Vri ⇒ wi = H(λi)ri

This proves that the Theorem 3.1 is satisfied with the right interpolation data. We can also prove that
it is satisfied with the left interpolation data analogously by multiplying the Eq (3.4) with e∗j on the left
and setting s = µ j. �

When the Loewner pencil is regular, the minimal realization can be constructed according to the
Theorem 3.1. However, the Loewner pencil is singular due to the redundant data. In case of SISO
systems, the matrices L and RT are unit vectors. The following assumption is given:

rank(xαL f − σL f ) = rank[L f σL f ] = rank
[
L f

σL f

]
= r, x ∈ {λi} ∪ {µ j} (3.5)
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If the assumption the Eq (3.5) is satisfied, for some x, a short SVD is computed as following:

xαL f − σL f = YΣX (3.6)

Where Y ∈ Ck×r and X ∈ Cr×k, rank(xαL f − σL f ) = rank(Σ) = size(Σ) = r.

Theorem 3.2. If the Eq (3.5) is satisfied, and the short SVD exists, a minimal realization [E, A, B,C]
is given as follows:

E = −Y∗L f X∗, A = −Y∗σL f X∗, B = Y∗V, C = WX∗ (3.7)

The following proof proposes that above theory satisfies the interpolation data.

Proof. For the system [E, A, B,C], Y and X are the generalized controllability and observability matri-
ces respectively. Detailed introduction and proof are given in [1] and [25]. That is to say:

Y =


`1C

(
µα1 E − A

)−1

...

`kC
(
µαk E − A

)−1

 , X =
[(
λα1 E − A

)−1 B r1 · · · (λαk E − A)−1B rk

]

To prove the realization satisfies H(λi)ri = wi, ` jH(µ j) = v j (i = 1, · · · , k), the following calculations
are carried out:

C
(
λαi E − A

)−1 Bri = CXei

= WX∗Xei

= wi

` jC
(
µαj E − A

)−1
B = e∗jYB

= e∗jY
∗YV

= v j

Therefore we demonstrate that the realization holds for the left and right interpolation conditions. �

Remark 3.1. In case of MIMO systems, the assumption described by the Eq (3.5) may not be satisfied.
In order to get a minimal realization, the matrix D ∈ Cp×m term is considered. Then the shift Loewner
matrix becomes σL f − LDR, and V, W are replaced by V − LD, W − DR. In this way, a suitable D
can be found so that the assumption is satisfied. According to the Theorem 3.1 we can construct as
follows:

E = −Y∗L f X∗, A = −Y∗σ(L f − LDR)X∗, B = Y∗(V − LD), C = (W − DR)X∗

The system [E, A, B,C,D] is a realization.

Remark 3.2. The complex conjugate terms will appear in the calculation results of the above algo-
rithm. In order to obtain the real matrix entries, a change needs to be performed by using the matrix
∆. Then,

Λr = ∆∗Λ∆ Mr = ∆∗M∆

Vr = ∆∗V Wr = W∆

Lr = ∆∗V Rr = W∆

Lr = ∆∗Lαf ∆ σLr = ∆∗σL f ∆

(3.8)

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1063–1076.



1069

Where

∆ = blkdiag [Π, · · · ,Π] ∈ Ck×k, Π =
1
√

2

[
1 − j
1 j

]
The complex conjugate matrix can be changed to a real matrix by the calculation of the Eq (3.8). And
the Loewner matrix Lr and the shifted Loewner matrix σLr with real entries are also satisfied with the
Sylvester Eqs (3.2) and (3.3). A detailed certification process is given in Appendix B of [26].

3.2. Realization of FoS with unknown α

In practical applications, the fractional-order α may not be accessible beforehand, only a range for
the order α is known. Fortunately, α can only be a parameter satisfying 0 < α < 1 according to the
underlying characterization of FoS. By sampling with allowable precision, one can find the optimal α
from the sampled values [α1, ....αL]. Hereby we propose two criteria to choose the most appropriate
αl.

Optimal α selection criterion 1 Minimal Order
As pointed out in [1, 25], one of the main advantages of the Loewner framework is that the minimal

order of the interpolating model can be obtained by evaluating the rank of the Loewner Matrix Pencil.
It shows that r ( i.e., rank(xL − σL)) is the order of constructed system in [7].

For fractional-order system, given αl from [α1, ....αL], the minimal order n(αl) is obtained by the
Equation (3.5).

n(αl) = rank[L f−αl , σL f−αl] (l = 1, · · · , L) (3.9)

The commensurate order α that minimizes the system highest order n is optimal.

Optimal α selection criterion 2 Minimal Interpolation Error
In order to research the optimal commensurate order-α, the interpolation data is used to research

the optimal order in a least-squares method.We turn this problem into an optimization problem. Sup-
pose that we have constructed a system state space model [El, Al, Bl,Cl] with order-αl in terms of the
interpolation data Eqs (2.3) and (2.4), the transfer function is:

H(s, αl) = Cl (sαl El − Al)−1 Bl (l = 1, · · · , L)

Here a new set of interpolation data like the Eqs (2.3) and (2.4) is obtained by sampling the transfer
function Eq (2.2). The right and left interpolation data:

{(λi, ri,wi)|λi ∈ C, ri ∈ C
m×1,wi ∈ C

p×1, i = 1, 2, · · · , t},
{(µ j, ` j, v j)|µ j ∈ C, ` j ∈ C

1×p, v j ∈ C
1×m, j = 1, 2, · · · , t}

(3.10)

The data described the Eq (3.10) is used to fit the transfer function in least-squares method. The
following minimization problem can be solved. The error can be derived in least squares,

J(αl) =
1
2

t∑
i=1

(
‖H (λi, αl) ri − wi‖

2 + ‖`iH (µi, αl) − vi‖
2
)

(3.11)

For each given commensurate differential order αl ∈ (0, 1), the coefficient matrix of the fractional-
order system is identified by the method proposed in the Section 3.1. And the function value of J(αl)
can be calculated when taking different values of αl separately according to the Eq (3.11). Then we
can look for the αl that minimizes the J(αl) as an estimate of the fractional differential order.

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1063–1076.



1070

4. Rational approximation of FoTD systems

In this section, the solution of the problem 2 is proposed. Likewise, we apply the Loewner frame-
work to find a linear integer-order model to approximate FoTD systems. The frequency response pairs
S i = G(si) are divided into the right and left interpolation data. To simplify the exposition, let the
number of input-output pairs be even. i.e., N = 2k. Thus the interpolation data is given as follows
according to the Eqs (2.9) and (2.10) with ri = ` j = 1, (i, j = 1, · · · , k).
the right interpolation data

Λ = diag [λ1, · · · , λk] ∈ Ck×k, W = [w1, · · · ,wk] ∈ C1×k

the left interpolation data

M = diag
[
µ1, · · · , µk

]
∈ Ck×k, V =


v1
...

vk

 ∈ Ck

where L and RT are unit vectors, G(λi) = wi and G(µ j) = v j. Therefore the Loewner matrix L and
shifted Loewner matrix Lσ are computed according to the Eq (2.8).

[L]i, j =

[
vi − w j

µi − λ j

]
∈ Ck×k [Lσ]i, j =

[
µivi − λ jw j

µi − λ j

]
∈ Ck×k

Then a linear integer-order model with r-order can be constructed in terms of Theorem 2.1 or Theo-
rem 2.2. The detailed proof is given in [1].

5. Examples

5.1. Example 1

Consider a simple fractional system is described by the following fractional differential equations.

Σ :


D0.5x1(t) = x2(t)
D0.5x2(t) = −2x1(t) − x2(t) + u(t)
y(t) = x1(t)

(5.1)

where the commensurate order α = 0.5, thus the associated transfer function is

G(s) = C(sαE − A)−1B =
1

s + s1/2 + 2

We chose the right input frequencies Λ = diag(2 j,−2 j, 4 j,−4 j), and the left input frequencies M =

diag( j,− j, 3 j,−3 j).
Since the system Σ is a single-input single-output system, we set the the right and left input di-

rections as R = LT = [1 1 1 1], then the right and left responses V and W can be computed by
sampling G(s) at the right and left frequencies.

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1063–1076.



1071

To generate state-space realization with real entries, all the above complex matrices are transformed
into real matrices according to the Eq (3.8). The real matrices are computed as follows with ∆̂ =

1
√

2
blkdiag

([
1 − j
1 j

]
,

[
1 − j
1 j

] )
.

Wr =

[
1121
4756

−
1121
4756

1121
9512

−
419

2242

]
, Vr =

[
419

1121
1121
4756

232
1437

−
158
747

]T

with Rr = LT
r = (1393/985 0 1393/985 0) and the Loewner pencil (Lr, σLr) as:

Lr =



− 386
1055

419
2209 − 659

2575
419

2242

− 283
1970

136
4179 −1121

9512
68

1393

−124
559

473
3246 − 339

2380
435

3313

−134
817

198
3079 − 337

2733
195

2722


, σLr =



− 185
6862 − 419

2378 − 136
1393 − 136

1393

283
1801 −1

9
136

1393 − 136
1393

− 93
668 − 165

2168 − 451
2840 − 171

10858

97
1370 − 239

2397
265

11311 − 251
3435


We compute the rank of Loewner matrix and shifted Loewner matrix is equal to 2, so the Loewner
pencil (Lr, σLr) is not regular.

While D = 0, according to Theorem 3.2 , we check the assumption Eq (3.5) with x ∈ {2,−2, 4,−4}∪
{1,−1, 3,−3}.

rank(20.5Lr − σLr) = 2, rank((−2)0.5Lr − σLr) = 2,
rank(40.5Lr − σLr) = 2, rank((−4)0.5Lr − σLr) = 2,
rank(10.5Lr − σLr) = 2, rank((−1)0.5Lr − σLr) = 2,
rank(30.5Lr − σLr) = 2, rank((−3)0.5Lr − σLr) = 2,

rank(Lr σLr) = 2, rank
[
Lr

σLr

]
= 2.

we compute the short S VD of (Lr − σLr) Then,

Y =


− 789

1106 − 955
1974 −266

939 − 896
2131

635
2287 −593

963
107
153 −1049

4488

 , X =


685

1117
427

1039 − 673
2118

407
684

− 763
1371

659
1089

626
1481

1242
3257


T

Thus, we can construct the minimal realization of the fractional-order system.

E = −Y∗LrX∗ A = −Y∗σLrX∗ B = Y∗Vr C = WrX∗

and the transfer function is :

H(s) = C(sαE − A)−1B =
2.23 × 1047 − 8.64 × 1031s1/2

2.23 × 1047s + 2.23 × 1047s1/2 + 4.46 × 1047 =
1

s + s1/2 + 2
= G(s)
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5.2. Example 2

In this example, the optimal commensurate order-α will be identified by the least squares method.
The system and the interpolation data is the same as that in the Example 1. We take αl =

[0.1, 0.2, · · · , 0.9]. For each given the order αl, the system matrices can be constructed. Another
right and left input frequencies Λ = (6 j,−6 j, 8 j,−8 j), and M = (5 j,−5 j, 7 j,−7 j) are chosen. Then the
function value of the Eq (3.11) can be calculated and shown as the Table 1. It shows that the J(αl) is
minimum while αl = 0.5. That is to say the commensurate order of interpolation model is the same as
that of the original system Σ.

On the other hand, the highest order of the system model constructed can be observe as the Table 1.
We can find the order is minimum only while αl = 0.5 via comparing the highest orders under different
commensurate order αl.

Table 1. Criteria under different αl (k = q = 4).

αl N(αl) J(αl)
0.1 4 4.48 ×10−11

0.2 4 3.65 ×10−12

0.3 4 5.56 ×10−13

0.4 4 7.39 ×10−11

0.5 2 2.98 ×10−32

0.6 4 2.18 ×10−9

0.7 4 3.22 ×10−9

0.8 4 8.68 ×10−10

0.9 4 6.80 ×10−9

Table 2. Criteria under different αl (k = q = 50).

αl N(αl) J(αl)
0.1 8 5.32×10−9

0.2 8 3.11×10−9

0.3 9 4.35×10−10

0.4 10 6.15×10−11

0.5 2 3.67×10−32

0.6 12 6.36×10−10

0.7 13 2.16×10−9

0.8 14 7.95×10−10

0.9 14 7.53×10−8

Then we increased the data with k = q = 50, the error function J(αl) and highest order of the system
model under αl = 0.1, 0.2, · · · , 1 are shown as Table 2. It indicates that the highest order increases
with the increase in the amount of data if the commensurate order α is not equal to 0.5, a optimal
commensurate order that minimizes the highest order and the error function J(αl).
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5.3. Example 3

Consider a linear fractional-order time delay system whose transfer function is given as

G(s) =
s1.56 + 3

s3.46 + 5s2.73 + 10s1.56 + 5
e−0.5s (5.2)

and consider the following two disjoint sets of input frequencies Λ = diag(0.2, 0.4, 0.6, 0.8), and M =

diag(0.1, 0.3, 0.5, 0.7). And the corresponding frequency responses of the transfer function are:

W = [0.5449 0.4302 0.2816 0.1950] , V = [0.4743 0.3380 0.2341 0.1630]T

Then the Loewner matrix and shifted Loewner matrix can be calculated as:

L =


−0.7057 −0.7117 −0.6426 −0.5586
−0.6896 −0.6514 −0.5646 −0.4767
−0.6215 −0.5634 −0.4742 −0.3913
−0.5456 −0.4803 −0.3952 −0.3202

 , σL =


0.4038 0.2608 0.1531 0.0833
0.2691 0.1426 0.0557 0.0043
0.1720 0.0651 −0.0029 −0.0398
0.1084 0.0189 −0.0346 −0.0612


Loewner Matrix Pencil is full rank, a integer order model with 4-th order can be constructed according
to the Theorem 2.1. The transfer function of approximation model is

H(s) =
−s3 − 1.3459s2 + 43.5283s + 8.1443

64.9456s4 + 164.41595s3 + 102.402s2 + 81.6469s + 13.5481
.

The step responses of the original system and approximate system are shown in Figure 1, the red solid
line represents original system. It shows that this approximate model works well for step responses.
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Figure 1. Step responses of the original system and approximate system.

Figure 2 is the bode diagram of the approximate system and the original system. It shows that the
approximate model is slightly better at low frequencies and worse at high frequencies. Moreover the
phase advances the original system 2π. We can solve this problem by performing phase correction on
the approximate system.
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Figure 2. Frequency responses of the original system and approximate system.

6. Conclusions and future work

We present a generalization of the LMM for realization of commensurate fractional-order model.
The concept and definition of the generalized fractional-order Loewner Matrix are proposed, which
enriches the Loewner framework. More importantly, generalized Loewner framework derives the most
simplest model (in the sense of McMillan order) while the commensurate fractional power α coincides
the true value, which provides an insightful interpretation on the minimal realization both in fractional-
order setting and in integer-order setting. An illustrative example is included for demonstration. For
fractional-order time delay systems, time and frequency responses of the approximate model based on
the Loewner framework can match the original system.

In this paper, commensurate fractional-order model is considered, i.e., the fractional powers in the
model are integer multiples of a single real number α. Further adopting LMM for building non-
commensurate models and fractional time delay models would be worth exploring in the future. It
should be pointed out that extending the Loewner framework to non-commensurate models is not
straight forward as the formulation of Loewner Matrix becomes more complicated.
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