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Abstract: With the wide application of unmanned ground vehicles (UGV) in a complex environment, 

the research on the obstacle avoidance system has gradually become an important research part in the 

field of the UGV system. Aiming at the complex working environment, a sensor detection system 

mounted on UGV is designed and the kinematic estimation model of UGV is studied. In order to meet 

the obstacle avoidance requirements of UGVs in a complex environment, a fuzzy neural network 

obstacle avoidance algorithm based on multi-sensor information fusion is designed in this paper. 

MATLAB is used to simulate the obstacle avoidance algorithm. By comparing and analyzing the 

simulation path of UGV's obstacle avoidance motion under the navigation control of fuzzy controller 

and fuzzy neural network algorithm, the superiority of the proposed fuzzy neural network algorithm 

was verified. Finally, the superiority and reliability of the obstacle avoidance algorithm are verified 

through the obstacle avoidance experiment on the UGV experimental platform. 

Keywords: multi-sensor information fusion; unmanned ground vehicle; robotics control; obstacle 

avoidance; fuzzy neural network 

 

1. Introduction 

Unmanned ground vehicles (UGVs) have the characteristics of high movement stability and 



1023 

Mathematical Biosciences and Engineering  Volume 18, Issue 2, 1022–1039. 

carrying capacity, simple mechanical structure, fast movement speed, high movement flexibility and 

high work efficiency [1]. UGVs can perform tasks that difficult to be completed by human beings in a 

complex and harsh environment, which has attracted attention in more and more fields [2,3]. In the 

military field, UGVs can replace humans in high-temperature, high-radiation, or other high-risk 

environments to perform tasks such as reconnaissance, search and rescue, and explosion 

elimination [4]. In the civilian field, UGVs can replace security personnel to complete frequently 

repeated patrol tasks [5]; cleaning robots can enter the small gaps in the home environment to 

complete cleaning tasks [6]. 

The obstacle avoidance function is one of the important criteria for measuring the intelligence of 

UGVs [7], and it is also a research hot spot in the field of UGVs [8,9]. During the past few years, the 

studied of obstacle avoidance algorithm has produced outstanding results. For example, Jesus Savage 

et al. [10] combined genetic algorithm with periodic neural network to overcome the local minimum 

problem in the process of robot avoidance. Anish Pandey et al. [11] combined fuzzy reasoning, neural 

network algorithm and adaptive algorithm to independently design a reasoning system used in a static 

environment. The input of the reasoning system is the distance detected by the sensor system, and the 

output is the steering angle of the next movement of the robot, thus realizing the obstacle avoidance 

function during the autonomous movement of the robot. Kim and Chwa [12] proposed a fuzzy neural 

network(FNN) control algorithm using interval two fuzzy membership function, which increased the 

degree of freedom for uncertainty, and proved that the algorithm has a smaller linear velocity and 

angular velocity, making the obstacle avoidance path smoother. Shidrokh Goudarzi et al. [13] planned 

the shortest path based on the travel sales problem, aiming at the problem that UAV need smooth path. 

Bessel curve is used to transform the flyable path to realize the path smoothing. This method can 

efficiently and effectively collect data with high packet transmission rate and low energy consumption. 

The working environment of UGVs is changeable and uncontrollable [14], which makes 

robots have stricter requirements on the accuracy of obtaining information from the surrounding 

environment [15]. The multi-sensor detection system contains a variety of different sensors, which 

can use a variety of different methods to detect the environment from multiple angles [16,17]. In recent 

years, multi-sensor information fusion technology has been widely studied and applied. For example, 

Sang Won Yoon et al. [18] used Kalman filter to fuse the information of speed sensor and positioning 

sensor in order to realize the coordinate calibration of UGV in the case of sliding. Risang Gatot 

Yudanto et al. [19] designed an extended Kalman filter information fusion algorithm based on 

velocity sensor and angle sensor, and realized the position tracking of robot with high dynamic 

motion. Alastise et al. [20] made use of extended Kalman filter to integrate the information of inertial 

measurement unit and visual sensor, to achieve accurate positioning of UGVs. Baofeng Ji et al. [21] 

proposed a two-hop cognitive network with the transmitter as a special radio frequency source to 

collect radio frequency energy from secondary user source nodes and secondary user relay nodes. Tao 

Tang et al. [22] discussed the important role of UAV in the future 5G Internet of Things, and proposed 

a UAV-PHD filter. They used KNN and K-means algorithms to improve GM-PHD algorithm, and 

applied it to target detection and tracking of UAV, and realized the trajectory tracking of multiple 

UAV targets. 

The existing information fusion technology has poor processing capability for the information 

obtained by the sensor and long calculation time, which cannot meet the accuracy and real-time 

requirements of the UGV's obstacle avoidance function [23,24]. Therefore, the study of multi-sensor 

information fusion algorithms with high information fusion accuracy and strong real-time performance 
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is one of the important components to improve the obstacle avoidance level of UGVs, and has very 

important research value [25,26]. 

This paper analyzes and designs a FNN algorithm to avoid obstacles for the UGV. We designed 

the adaptive weighted fusion algorithm to process the information obtained by the sensors, and the 

result of the multi-sensor information fusion algorithm is the input of the FNN. The rest of the paper 

is organized as follows: Section 2 introduces the UGV and establishes the kinematics model. Section 

3 analysis the multi-sensor information fusion algorithm and the FNN algorithm. Section 4 shows the 

simulation experiment and discusses the result. Section 5 shows the real experiment and discusses the 

result. Section 6 concludes the paper. 

2. Unmanned ground vehicle experiment platform 

The kinematics model of UGV is shown in Figure 1 [27], in the coordinate system (x0y), let (x0, 

y0) represent the center of mass of the UGV, let θe represent azimuth angle of UGV, which is the angle 

between the forward direction of the robot and the x-axis, θe∈[-π，π)；ωe and ve respectively represent 

the angular velocity and linear velocity of the UGV. 

 

Figure 1. Kinematics model of UGV. 

The matrix representation of the kinematics model of UGV is presented in Equation (1) [28]. 

[

xe(k+1)

y
e
(k+1)

θe(k+1)

] = [

xe(k)

y
e
(k)

θe(k)

] + [
cosθe 0

sinθe 0

0 1

] [
ve

ωe
]∆t, (1) 

where Δt represents the sampling time during the movement. 

We can get that when the rotation speed of the left wheel of the UGV is equal to the rotation speed 

of the right wheel, and the direction is opposite, the turning radius of the UGV is 0, and the UGV rotates 

in situ around its particle. The kinematics model of the UGV is the basis of the robot motion control 

strategy. It provides the theoretical basis of kinematics for the MATLAB simulation of the subsequent 

obstacle avoidance control algorithm, and provides theoretical support for the motion simulation of 

the robot. 

3. Proposed methodology 

3.1. The adaptive weighted multi-sensor information fusion algorithm 
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According to the basic principles of the adaptive weighting algorithm and the characteristics 

of each sensor, distinguish the degree of influence of the data obtained by each sensor on the fusion 

result [29]. Then assign a certain weight to the output data of each sensor in the sensing detection 

system. The total variance of the weighted fusion result of all data output by the system at one 

time is used to evaluate the reliability of the algorithm  [30]. The model structure of the algorithm 

is shown in Figure 2. 

 

Figure 2. The model structure of the adaptive weighted multi-sensor information fusion 

algorithm. 

As shown in Figure 2, the actual value of the target feature quantity of the sensor detection system 

is X. In actual measurement work, the output values of each sensor are X1, X2, … Xn, the measurement 

variances of each sensor are σ1, σ2, … σn, the weights assigned to each sensor are φ1, φ2, … φn. 

According to the model of information fusion algorithm, we can get 

{

X̅=∑ φ
i
Xi

n

i=1

∑ φ
i

n

i=1

=1

 (2) 

The total variance is 

σ2=E [∑ φ
i
2(X-Xi)

2
n

i=1

] =∑ φ
i
2σi

2
n

i=1

 (3) 

According to Equation (3), the fusion variance σ2 obtained by the system once detected is a 

quadratic function relationship with the weight φi. Therefore, when the fusion variance is the smallest, 

the accuracy of the fusion result is the highest, and the sensor has been given the most appropriate 

weight φ [31]. Using Lagrange product method to solve the conditional extreme value problem to 

obtain the weight when the total variance is minimum as 

φ
i
=

1

σi
2∑

1

σi
2

n
i=1

 
(4) 

The φ
i
 obtained by Equation (4) is the most suitable weight that minimizes the data fusion error 

under the condition that the sum of all the values is 1. Substituting Equation (4) into Equation (3) can 

get the data distribution after fusion as 

σ2=
1

∑
1

σi
2

n
i=1

 
(5) 
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After obtaining the fusion weight of the sensors in the system from Equation (4), substituting into 

Equation (2) to obtain the data fusion result after one measurement. However, from Equation (4), it 

can be known that if the value of each sensor is required for each detection, the variance of each sensor 

needs to be known [32]. 

If Xi(r) represents the output result of the ith sensor when the sensing detection system works for 

the kth time, the average value of the kth output of all n sensors in the system is calculated as 

X̅(k)=
1

n
∑ Xi(k)

n

i=1

 (6) 

The average value of the variance of each output result of the corresponding sensor included in 

the information fusion range is obtained, and then used as the final variance value of the ith sensor at 

the kth measurement sampling. 

σi
2(k)=

1

k
∑ E[(Xi(s)-X̅(s))

2
]

k

s=1

 (7) 

Substitute σi
2(r) obtained in Equation (7) into Equation (4) to obtain the weight φi(r) of the ith 

sensor at the rth measurement sampling. Substitute the weight φi(r) into Equation (2) to obtain the data 

fusion result X̅ of the ith sensor at the rth measurement sampling. 

The multi-sensor information fusion algorithm can process the environmental information 

obtained by the sensors installed on the UGV, reduce the impact of environmental noise and sensor 

measurement errors on the data, and input it into the trained FNN. During the obstacle avoidance 

movement of the unmanned vehicle, the distance information transmitted to the fuzzy neural network 

is the information after multiple sampling and fusion. Therefore, this algorithm is suitable for the 

fusion processing of the data collected by the sensor several times in a certain time. 

3.2. Design of fuzzy logic controller 

Because there are many uncertain factors in the complex working environment of UGVs, it is 

impossible to establish accurate mathematical models, resulting in many commonly used obstacle 

avoidance algorithms that are not suitable for UGVs [33]. The fuzzy control algorithm can use the 

form of fuzzification to transform the information that cannot be accurately described in the 

environment into the expression form acceptable to human beings, and use professional experience in 

related fields to reason, and obtain control instructions that meet the system requirements [34]. 

3.2.1. Determine input and output variables and fuzzification 

The distance between the UGV and the obstacle and the azimuth angle of the target point relative 

to the robot are used as input parameters. The distance d between the UGV and the obstacle is divided 

into near and far, denoted by N and F respectively, which is {near，far} = {N，F}. The domain is 

[0,100 mm]. The UGV has five sets of sensors for distance measurement, so d includes {d1, d2, d3, 

d4, d5}. When the measuring distance is greater than 100mm, it will be treated as 100mm. The 

membership function with fuzzy parameter N is defined as Equation (8), and the membership function 

with fuzzy parameter F is defined as Equation (9). 
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uij=

{
 

 
1,             x<cij

1-
|x-cij|

σij
,cij<x<cij+σij

0,       x>cij+σij

, (8) 

uij=

{
 

 
1,                   x>cij
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|x-cij|

σij
,      cij-𝜎𝑖𝑗<x<cij
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, (9) 

uij= {
1-

|x-cij|

σij
,    cij-

σij

2
<x<cij+

σij

2

0,                     the others

, (10) 

Where cij is the central value and σij is the width value. 

Set the azimuth angle θ of the target point relative to the UGV as the left side, left front side, front 

right side, right front side and right side, denoted by L, LF, FR, LR, and R respectively, which is {left 

side, left front side, front right side, right front side, right side} = {L, LF, FR, RF, R}. The domain is 

[-80°, 80°]. When the angle is negative, the target point is on the left side of the UGV; when the angle 

is zero, the target point is in front of the UGV; when the angle is positive, the target point is on the 

right side of the UGV. The membership function is defined as Equation (10). The membership function 

graph of the input quantity is shown in the Figure 3. 

 

 
(a) 

 

(b) 

Figure 3. The membership function graph of the input quantity. 
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The output parameter inferred by the fuzzy logic controller is set as the deflection angle of the 

robot, denoted by TG. The fuzzy logic controller designed in this paper divides the output deflection 

angle TG into five parts: left side, left front side, front right side, right front side and right side, denoted 

by TL, TLF, ST, TRF and TR respectively, which is { left side, left front side, front right side, right 

front side, right side}={TL, TLF, ST, TRF, TR}. The membership function is defined as Equation 

(10). The membership function graph of the input quantity is shown in the Figure 4. When the angle 

is less than 0, the robot is controlled to turn left; when the angle is equal to 0, the robot travels in a 

straight line; when the angle is greater than 0, the robot turns to the right. 

 

Figure 4. The membership function graph of the output quantity. 

3.2.2. Designing Fuzzy Rules 

Based on the membership functions of the fuzzy set and inputs and outputs, rules are defined. 

There are 160 rules for obstacle avoidance of the UGV. We can use the form of ‘IF…THEN’ to express 

the rules. For example, the number 6 rule is ‘IF (d1 = F, d2 = N, d3 = F, d4 = F, d5 = F, θ = L), THEN (TG 

= TL)’, which means that there is an obstacle in the front left of the UGV and it is closed to the UGV, 

the target point is on the left side of the forward direction, so the UGV needs to turn left. In addition, 

Table 1 lists some fuzzy rules. 

3.2.3. Defuzzification 

The last step of designing the fuzzy logic fusion system is the defuzzification process where 

outputs are generated based on fuzzy rules, membership values, and a set of inputs. The method used 

for defuzzification is the Centroid method. 

3.3. Design of fuzzy neural network 

However, the fuzzy control algorithm has the shortcomings of lack of independent learning ability, 

complex knowledge base construction, and the control rules can’t be adjusted effectively according to 

the changes of the environment, and it cannot fully meet the needs of UGVs to avoid obstacles [35,36]. 

The neural network algorithm can optimize the parameters in time according to the actual input data 

through the learning mechanism, and has a strong ability to adapt to the environment [37]. But the 

neural network also has the problem of high computational complexity when the input data is non-

linear [38,39]. We combined the fuzzy control algorithm with the neural network algorithm, and 

designed the FNN algorithm to realize the obstacle avoidance function of the UGV. 
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Table 1. Fuzzy logic rules. 

No. d1 d2 d3 d4 d5 θ TG 

1 F N F F F L TL 

2 F N F F F LF TL 

3 F F N F F FR TRF 

4 F F N F F LR TRF 

5 F N N F F LR TRF 

6 F N N N F LF TL 

7 F N N N F FR TR 

8 F F N N N L TL 

9 F F N N N LF TLF 

10 F N N N N FR TL 

11 F N N N N LR TL 

12 N F F N N L TLF 

13 N F F N N LF TLF 

14 N N N N N L TL 

15 N N N N N LF TL 

3.3.1. Structure of fuzzy neural network 

The structure of FNN is shown as Figure 5. The first layer is the input layer, whose function is to 

directly transmit the input data to the next layer. The number of neurons in this layer is N1 = 6, that is, 

there are six input variables. d1, d2, d3, d4, and d5 represent the distance vectors detected by the 

sensors in the five directions, and θ is the azimuth angle of the target relative to the robot. 

 

Figure 5. Fuzzy neural network structure diagram. 
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The second layer is the fuzzification layer, the parameters of each node are fuzzy variables and 

the corresponding membership results. According to the previous design, one input parameter of 

distance corresponds to two fuzzy language variables, and one input parameter of angle corresponds 

to five fuzzy language variables. Therefore, the first five neurons in the first layer correspond to 2 

neurons in the second layer, which is m1 = m2 = m3 = m4 = m5 = 2. The sixth neuron in the first layer 

corresponds to the 5 second-layer neurons. The total number of neurons in this layer is N2 = 15. 

The third layer is the reasoning layer, which corresponds to the fuzzy reasoning process, and each 

fuzzy rule corresponds to a node. N3=∏ mi=160n
i=1 . The function of the third layer is to obtain the 

matching degree of the corresponding fuzzy rules by using the membership degree of each fuzzy 

variable in this cycle, which is 

αj=μ
1

i1μ
2

i2μ
3

i3μ
4

i4μ
5

i5μ
6

i6, (11) 

where are i1∈{1,2}, i2∈{1,2}, i3∈{1,2}, i4∈{1,2}, i5∈{1,2}, i6∈{1,2,3,4,5}, j=1, 2, ⋯, N3. 

The fourth layer is the normalization layer to prepare for the clarity of the fuzzy results, which is 

α̅j=αj ∕ ∑ αi
N3

i , (12) 

where are j = 1, 2, ⋯, N3. Number of neurons in this layer is N4 = N3 = 160。 

The fifth layer is the defuzzification layer, which realizes the defuzzification calculation, which is 

y
i
 = ∑ α̅j

N4

j=1 ωj, (13) 

The output is the steering angle, and the weight ωj is the central value in the membership function 

of the linguistic variable corresponding to the inference result of the fuzzy rule. 

The complexity of neural network can be divided into space complexity and time complexity. The 

number of layers and the number of parameters that need to be optimized are used to represent the 

space complexity. Time complexity is usually represented by multiplication and addition operations 

in neural networks. According to the structure of fuzzy neural network, we can get that the number of 

layers with computing power is 5, the number of parameters that need to be optimized is 26. 

The time complexity of fuzzy neural network can be calculated layer by layer. If we only have 

one training sample, the time complexity is 15 + 160 + 160 + 160 + 1 = 496. Assuming that the actual 

number of training samples is m, the time complexity of the whole algorithm is O(496m) = O(m). 

3.3.2. Parameters Optimization Process 

Using neural network training to optimize the central value cij and width value σij of the 

membership function in the second layer of the neural network, as well as the weight wj between each 

node. There are 15 central values cij, which correspond to the neurons of the second layer one-to-one; 

a total of 6 width values σij, which are the same as the number of input parameters; and a total of 5 

weights wj, which correspond to the number of elements in the fuzzy language set of the output 

parameters. The training of the neural network adopts the feedforward adjustment method and the 

gradient descent method of error back propagation. The weight adjustment formula is 

cij(t+1)=cij(t)-η
∂E

∂cij
, (14) 

σij(t+1)=σij(t)-η
∂E

∂σij
, (15) 

ωij(t+1)=ωij(t)-η
∂E

∂ωij
, (16) 

where η is the learning rate. The flow of FNN algorithm is shown in Figure 6. 
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Figure 6. The flow of FNN algorithm. 

4. Simulation of fuzzy neural network algorithm and discussion 

Formulating fuzzy inference rules based on the input parameters, output parameters and their 

corresponding fuzzy language variables as mentioned above. Selecting the initial value of the weight 

parameter and establish a fuzzy controller. The initial value of the weight parameter is shown in 

Table 2. 

Using MATLAB software to establish a static multi-obstacle simulation environment. Before the 

neural network is used to optimize the weight parameters, a fuzzy controller is used to conduct the 

simulation experiment of obstacle avoidance motion of the UGV. When the rotation speed of the left 

wheel of the UGV is equal to the rotation speed of the right wheel, and the direction is opposite, the 

turning radius of the UGV is 0. Therefore, the position of the robot does not change when turning. We 

have established a robot sports field in MATLAB. There are nine obstacles of different shapes 

randomly distributed in the field. The robot needs to move from the lower left corner to the upper right 

corner of the field. Since the UGV designed in this article can turn in a fixe place, the influence of the 

rectangular structure on the obstacle avoidance function can be ignored in the simulation experiment, 

and the UGV was assumed to be a circle. In the simulation process, the robot’s working sequence is 

to first measure the distance between the robot and the obstacle, the fuzzy controller calculates the 

steering angle, and the robot advances one step according to the steering angle. According to the actual 

distribution of sensors, the distance in five directions needs to be calculated for each advance. 
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The obstacle avoidance motion path of the UGV and the angle at which the UGV turns each time 

is shown in Figure 7. The blue circle in the lower left corner of the figure represents the starting position 

of the UGV, and the red cross in the upper right corner represents the target position of the UGV. 

Table 2. The initial value of the weight parameter. 

weight value weight value weight value weight value weight value 

c11 10 c12 90 c21 10 c22 90 c31 10 

c32 90 c41 10 c42 90 c51 10 c52 90 

c61 -80 c62 -40 c 63 0 c64 40 c65 80 

σ1 80 σ2 80 σ3 80 σ4 80 σ5 80 

σ6 40 w1 -80 w2 -40 w3 0 w4 40 

w5 80         

The simulation result of the fuzzy control algorithm navigating the obstacle avoidance movement 

of the UGV is shown in Figure 7. The simulation results show that there is an intersection point 

between the robot's motion path and the obstacle. Although there is a certain distance between the 

particle representing the robot and the obstacle, there is an intersection point between the figure 

representing the contour of the robot and the obstacle. The location of the collision is indicated by the 

red circle. The simulation results show that the obstacle avoidance motion of the robot under the 

navigation of the fuzzy control algorithm cannot completely avoid all obstacles and reach the target 

position safely. Therefore, using fuzzy control algorithm alone cannot meet the obstacle avoidance 

requirement of UGV. 

Using fuzzy controllers to navigate UGVs in different simulation environments, planning optimal 

robot motion paths artificially in the simulation environments, the distances between the robot and the 

obstacle in the path and the relative angle between the robot and the target point are collected. The 

deflection angle of each advance in the ideal trajectory is calculated as the expected output value of 

the FNN. Using FNN to optimize the weight parameters, setting the learning rate to 0.001, and the 

allowable error to 0.001. When the error is less than 0.001 or the number of training times is greater 

than 3000 times, the training stops. The network weights after training adjustment (retaining two 

decimal places) are shown in Table 3. 

 

Figure 7. Simulation results of the simulation experiment without neural network. 

According to the optimization result, the value of the weight parameter corresponding to the fuzzy 

controller is adjusted and substituted into the obstacle avoidance algorithm program to obtain the 

simulation result of the obstacle avoidance motion path as shown in Figure 8. 
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Table 3. The value of the weight parameter after training adjustment. 

weight value wight value weight value weight value weight value 

c11 9.95 c12 90.04 c21 9.91 c22 90.10 c31 9.90 

c32 90.10 c41 9.91 c42 90.10 c51 9.91 c52 90.10 

c61 -80.60 c62 -40.60 c63 -0.50 c64 40.50 c65 80.60 

σ1 80.9 σ2 80.19 σ3 80.20 σ4 80.19 σ5 80.5 

σ6 40 w1 -79.50 w2 -39.50 w3 -0.50 w4 39.50 

w5 80.00         

As shown in Figure 8, the robot can maintain a certain distance from the surrounding obstacles 

and reach the target point smoothly during the movement. Comparing Figure 7 and Figure 8 we can 

find that the obstacle avoidance movement path of the robot in Figure 8 is smoother, and the distance 

between the robot and the obstacle is more obvious. Especially at the apex of the rectangular obstacle, 

the movement path is significantly farther away from the obstacle. The simulation results show that 

the designed FNN obstacle avoidance algorithm can realize the obstacle avoidance function and has a 

better obstacle avoidance effect. 

 

Figure 8. Simulation results of the simulation experiment. 

We collected the distance between the robot and the obstacle calculated every time the robot 

advanced, and selected the smallest value among the five distances. The distance between the robot 

and the obstacle in the simulation experiment under the fuzzy controller and FNN algorithm navigation 

is shown in Figure 9. By comparing the two curves, the overall trend of the blue curve is above the 

yellow curve, indicating that the distance between the robot and the obstacle under the control of the 

FNN algorithm is larger than that of the fuzzy controller. The count of different distance ranges is 

shown in Figure 10, we can get that the distances between the robot and the obstacle under the FNN 

navigation are all greater than 10cm. These conformed to the boundary setting of the robot in the 

simulation experiment, indicating that the robot will not collide with obstacles. In addition, the distance 

controlled by the FNN algorithm is more distributed in a larger interval. Therefore, we proved that the 

FNN algorithm has certain advantages compared with the fuzzy control algorithm. 
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Figure 9. The distance between the robot and the obstacle in the simulation movement. 

 

Figure 10. Counting distance distribution under navigation of two algorithms. 

5. Real obstacle avoidance experiment and discussion 

5.1. Unmanned ground vehicle 

The UGV used in this paper is a wheeled unmanned vehicle designed and developed 

independently. The UGV compactly installs all the electronic components and protects them with 

mechanical structure to avoid unnecessary damage caused by the exposed electronic components, 

especially for the protection of sensors and control center. The overall appearance of the UGV 

(including all parts and components such as tires) is 260mm×280mm×110mm. The 3D model and the 
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physical picture of the UGV is shown in Figure 11. 

 

 

(a) (b) 

Figure 11. The 3D model and the physical picture of the UGV. 

In order to meet the application requirements of UGVs for avoiding obstacles and moving in 

complex environments, the robot's environment detection system includes multiple sets of sensors to 

obtain distance information of obstacles. The obstacle avoidance system includes a total 10 sensors, 

including five ultrasonic sensors and five infrared sensors. The locations where the sensors are installed 

are depicted in Figure 1. The 10 sensors were divided into five groups and installed around the robot 

body. Five groups of sensors are distributed within a 180° range in front of the robot. Each group of 

sensors consists of an ultrasonic sensor and an infrared sensor, providing a hardware foundation for 

the application of multi-sensor information fusion technology. In addition, there is an electronic 

compass installed inside the UGV to measure the deflection angle of the UGV. 

5.2. The experiment and discussion  

In order to verify the designed obstacle avoidance technology based on multi-sensor information 

fusion technology and FNN algorithm, we designed an obstacle avoidance experiment based on the 

self-designed UGV platform mentioned above. The effect of obstacle avoidance experiment with the 

robot were analyzed and discussed to verify the correctness and feasibility of the algorithm. 

Imitated the motion environment in the simulation experiment to build the motion environment of 

the robot obstacle avoidance experiment. The initial motion direction of the UGV was set as a constant 

90, that is, it moves towards the front. The steering angle obtained by the UGV in subsequent obstacle 

avoidance calculation needs to be calculated by adding or subtracting with this constant to get a new 

angle value, which is then stored in the register of the control core. After the first steering of the UGV, 

each obstacle avoidance calculation took the angle value as the relative direction of the target point as 

the input of the fuzzy controller. The purpose of this design is to minimize the impact of the obstacle 

avoidance process on the original driving direction and keep the original driving direction. We repeated 

the experiment under the same conditions. The result of the obstacle avoidance experiment is shown 

in Figure 12 and Figure 13. The black solid lines behind the UGV in the figures are the motion track 

of the UGV. 

Figure 12 shows the obstacle avoidance experiment results of the UGV under the navigation of 

the fuzzy controller designed above. There is little difference between the results of repeated 

experiments, which means that the fuzzy controller has poor adaptability to the environment. As shown 

in Figure 12(c) and Figure 12(f), the robot collided with the obstacles twice. In the process of robot 

movement, the distance between the UGV and the obstacle is relatively close. The fuzzy control 

algorithm cannot be adjusted according to the actual situation of obstacle avoidance, and the weight 
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parameters used are not applicable to the actual environment. This indicates that the fuzzy control 

algorithm cannot meet the obstacle avoidance requirement of the robot. 

 

 

   

(a) (b) (c) (d) 

 

   

(e) (f) (g) (h) 

Figure 12. Experiment on robot obstacle avoidance under the control of fuzzy controller. 

 

 

  

(a) (b) (c) 

   
(d) (e) (f) 

Figure 13. Experiment on robot obstacle avoidance under the control of FNN. 

Figure 13 shows the obstacle avoidance experiment of the UGV under the control of FNN 

algorithm. The experimental results show that the UGV can smoothly avoid obstacles and keep a 

proper distance from the obstacle in this complex environment, which proves that the robot has a good 
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obstacle avoidance function. By comparing the entire path of motion showed in Figure 12(h) with 

Figure 13(f), the number of movement direction changes of UGV is significantly less in Figure 13(f), 

which means the UGV reacted more quickly to obstacles under the navigation control of FNN 

algorithm. By analyzing the results of obstacle avoidance experiments, the correctness and feasibility 

of the designed FNN algorithm are verified. 

6. Conclusions 

This article designed and verified an obstacle avoidance method based on multi-sensor 

information fusion technology and FNN algorithm. The motion model of the UGV was established 

combined the structure and motion form, and the motion control strategy of the UGV was determined. 

Ten distance sensors and an angle measuring sensor were used for the obstacle avoidance behavior. 

Then an adaptive weighted multi-sensor information fusion algorithm and a FNN obstacle avoidance 

algorithm were designed and applied to the UGV. The fusion model designed is based on the fuzzy 

logic inference system, which is composed of six inputs, one output and 160 fuzzy rules. Multiple 

membership function for inputs and outputs are chosen. The parameters of membership functions were 

optimized by the neural network. By analyzing the simulation experiment results and actual 

experiment results under the navigation control of fuzzy controller and FNN algorithms, the superiority 

and reliability of the FNN algorithm have been proved. 
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